Facebook Instagram Twitter RSS Feed PodBean Back to top on side

The asymptotic distribution function of the 4-dimensional shifted van der Corput sequence

In: Tatra Mountains Mathematical Publications, vol. 64, no. 3
Vladimír Baláž - Markus Hofer - Jana Fialová - Maria R. Iacò - Oto Strauch
Detaily:
Rok, strany: 2015, 75 - 92
Kľúčové slová:
uniform distribution, distribution function
O článku:
Let $γq(n)$ be the van der Corput sequence in the base $q$ and $g(x,y,z,u)$ be an asymptotic distribution function of the $4$-dimensional sequence \begin{equation*} \bl(γq(n),γq(n+1),γq(n+2),γq(n+3)\br),   n=1,2,… \end{equation*} Weyl's limit relation is the equality \begin{multline*} \limN\to∞((1) / (N))∑n=0N-1F\bl(γq(n),γq(n+1),γq(n+2),γq(n+3)\br) \nonumber\\[-5pt] = \int\limits01 \int\limits01 \int\limits01 \int\limits01 F(x,y,z,u)\ddx\ddy\ddz\ddu g(x,y,z,u). \end{multline*} In this paper we find an explicit formula for $g(x,x,x,x)$ and then as an example we find the limit \begin{equation*} \limN\to∞((1) / (N))∑n=0N-1\max\bl(γq(n),γq(n+1),γq(n+2),γq(n+3)\br) =((1) / (2))+((3) / (q))-((6) / (q2)) \end{equation*} for the base $q=4,5,6,…$ Also we find an explicit form of $s$th iteration $T(s)(x)$ of the von Neumann-Kakutani transformation defined by $T\bl(γq(n)\br)=γq(n+1)$.
Ako citovať:
ISO 690:
Baláž, V., Hofer, M., Fialová, J., Iacò, M., Strauch, O. 2015. The asymptotic distribution function of the 4-dimensional shifted van der Corput sequence. In Tatra Mountains Mathematical Publications, vol. 64, no.3, pp. 75-92. 1210-3195.

APA:
Baláž, V., Hofer, M., Fialová, J., Iacò, M., Strauch, O. (2015). The asymptotic distribution function of the 4-dimensional shifted van der Corput sequence. Tatra Mountains Mathematical Publications, 64(3), 75-92. 1210-3195.