Facebook Instagram Twitter RSS Feed Back to top on side

On total edge irregularity strength of the grids

In: Tatra Mountains Mathematical Publications, vol. 36, no. 2
Jozef Miškuf - Stanislav Jendroľ
Detaily:
Rok, strany: 2007, 147 - 151
Kľúčové slová:
irregular labelling, total labelling, $m imes n$ grid, irregularity strength
O článku:
A total edge irregular labelling $ν$ of a graph $G$ is a labelling of the vertices and edges of $G$ with labels from the set ${1,…,$ $k}$ in such a way that for any two different edges $e$ and $f$ their weights $φ(f)$ and $φ(e)$ are distinct, where the weight of an edge $g=uv$ is the sum of the label of $g$ and the labels of vertices $u$ and $v$. The minimum $k$ for which the graph $G$ has an edge irregular total $k$-labelling is called the total edge irregularity strength of $G$. In this note we determine exact values of the total edge irregularity strength of $m × n$ grids.
Ako citovať:
ISO 690:
Miškuf, J., Jendroľ, S. 2007. On total edge irregularity strength of the grids. In Tatra Mountains Mathematical Publications, vol. 36, no.2, pp. 147-151. 1210-3195.

APA:
Miškuf, J., Jendroľ, S. (2007). On total edge irregularity strength of the grids. Tatra Mountains Mathematical Publications, 36(2), 147-151. 1210-3195.