Facebook Instagram Twitter RSS Feed PodBean Back to top on side


10 kusov hromadne narastených perfektných masívnych monokryštalických supravodičov na báze Gd-Ba-Cu-O-Ag s prídavkom nanokryštalického BaCeO3


6. 2. 2023 | 960 visits

The scientific team from the Institute of Experimental Physics SAS (ÚEF SAV, v. v. i.) in Košice succeeded in creating a new innovative method of producing a massive monocrystalline GdBCOAg superconductor. These types of superconductors are used in the field of high-current electrical engineering as superconducting permanent magnets. They can be used, for example, in the construction of rotating electric machines, frictionless bearings, levitation transport devices or in the production of devices for the magnetic delivery of medicines. In addition to several technical advantages, the new method of Slovak scientists reduces production costs and increases production yield. SAS is looking for industrial partners for licensing/selling the given solution.

The production of a single-crystal GdBCOAg superconductor is based on the growth of a crystal from a molten chemical mixture. "Currently, cerium in the form of cerium dioxide is used in the production of such superconductors, but this process results in an excess of copper oxide, which prevents the crystal from growing sufficiently. The remaining melt subsequently solidifies around the perimeter of the crystal, and since it has a different thermal expansion than a solid crystal, this can lead to the formation of unwanted cracks in the crystal," explains the head of the Department of Materials Physics at IEP SAS and co-author of the patent Dr. Pavel Diko.

A scientific team from Slovakia investigated how it is possible to reduce the amount of solidified melt.  They found that barium cerium oxide plays an important role in this process.

“The addition of a specific amount of this chemical compound reduced the volume fraction of the residual solidified melt, compared to an equivalent addition of standard cerium dioxide. This difference significantly increases the size of the resulting massive crystal,” adds the materials physicist.

The innovative approach of scientists from the IEP SAS brings several competitive advantages.  It enables the full use of cheaper cerium, the resulting monocrystalline superconductor reaches larger dimensions, the volume fraction of the residual solidified melt is reduced, as well as dilatational thermal stresses at the interface between the crystal and the solidified melt are lower.

You can find more information on the website of the Technology Transfer Office of the SAS Office in the section For companies – Licensing opportunities – Materials.


Edited by Katarína Gáliková

Foto: Monika Radušovská

Related articles