Project
Polymer Institute
International Projects
PolyBioMat - Polylactide-based multifunctional materials.
Funkčné materiály na báze polylaktidov.
Duration: | 1. 6. 2023 - 31. 5. 2026 |
Evidence number: | M-ERA.NET 3/2022/235/PolyBioMat |
Program: | ERANET |
Project leader: | Mgr. Špitálsky Zdenko PhD. |
GRAPH-OCD - Injectable hybrid hydrogel of graphene and alginate for improving cell integration in osteochondral repair.
Injectable hybrid hydrogel of graphene and alginate for improving cell integration in osteochondral repair.
Duration: | 1. 1. 2024 - 31. 12. 2026 |
Evidence number: | FLAG-ERA_JTC2023_GRFL-BR |
Program: | ERANET |
Project leader: | Heydari Abolfazl PhD. |
Annotation: | This project focuses on advancing osteochondral tissue engineering by developing injectable shear-thinning sodium alginate (SA)-graphene oxide (GO) hydrogels for minimally invasive applications. These hydrogels are designed to conform to irregular defects and address key challenges in osteochondral repair, such as the integration of repaired and native tissues with differing mechanical properties, composition, and cellularity. By combining SA with GO and its bioinspired derivatives, the hydrogel’s mechanical properties are enhanced to closely mimic the extracellular matrix (ECM), promoting effective cell integration. Additionally, bioorthogonal chemistry is utilized to introduce non-covalent and covalent crosslinks, ensuring the biocompatibility of the injectable scaffold. Despite the significant potential of GO-based hydrogels, they remain unexplored in osteochondral repair. This innovative approach aims to bridge the gap in cartilage and subchondral bone repair, representing a transformative step forward in the field. |
BIOTAPE - Bio-based pressure sensitive adhesive tape
Lepidlá z obnoviteľných zdrojov pre lepiace pásky.
Duration: | 1. 1. 2023 - 31. 12. 2025 |
Evidence number: | 2022-17633/NP/DANUBE 2022 (výzva EUREKA) |
Program: | EUREKA |
Project leader: | Mgr. Mosnáček Jaroslav DrSc. |
PRIORITY - Plastic monitoRIng detectiOn RemedIaTion recoverY.
Monitoring detekcia náprava obnova plastov.
Duration: | 1. 5. 2022 - 30. 10. 2025 |
Evidence number: | CA20101 |
Program: | COST |
Project leader: | Ing. Eckstein Anita PhD. |
BioImplant - Novel biodegradable biopolymer-Bioglass-composite implant technology .
Nová biodegradovateľná biopolymér-biosklo-kompozitná technológia implantátov.
Duration: | 1. 6. 2024 - 31. 7. 2027 |
Evidence number: | M-ERA.NET 3/2023/912.C/BioImplant |
Program: | ERANET |
Project leader: | Ing. Mičušík Matej PhD. |
NOVA - Next Generation BiOactiVe NAnocoatings
Nová generácia bioaktívných nanopovrchov
Duration: | 1. 9. 2022 - 31. 8. 2026 |
Evidence number: | HORIZON -CL4-2021-RESILIENCE-01-101058554 |
Program: | Horizont Európa |
Project leader: | Mgr. Špitálsky Zdenko PhD. |
Annotation: | The NOVA project aims to develop a streamlined, holistic process to implement innovative antimicrobial (antibacterial, antiviral, antifungal) coatings in everyday settings. The COVID-19 global pandemic clearly highlighted an underlying risk in our current urban lifestyle: The transmission of infectious diseases can rapidly reach the exponential phase, causing catastrophic and long -term impacts on the healthcare system, in turn affecting a significant portion of daily and economic activities. Any material/device/product that needs to be handled by individuals and that will stay in use after this manipulation has the potential to act as a fomite. This can be via direct contact or by the settling of the aerosols. Thus, manufacturers need to consider having safety measures to prevent disease transmission by their products. Together with the increased citizen awareness about the subject of healthier living and working environments, there is currently an unmet need for technologies that would render the surfaces of these materials/devices/products antimicrobial in a sustainable and safe manner. The most common fomites are clothing, textile products, frequently touched surfaces (e.g., tables, doorknobs etc.) and electronic devices. The most cited article on this subject showed that 59% of handheld devices were contaminated with at least one bacterial species with S. aureus being the most common. |
HISTRATE - Advanced Composites under HIgh STRAin raTEs loading: a route to certification-by-analysis
Pokročilé kompozity zaťažené vysokým napätím: cesta k certifikácii po analýze
Duration: | 25. 10. 2022 - 24. 10. 2026 |
Evidence number: | CA 21155 |
Program: | COST |
Project leader: | Ing. Mičušík Matej PhD. |
Annotation: | Climate change challenges have driven an ever-increasing use of composite materials, including hybrid and metamaterials, in structures prone to extreme dynamic events. HISTRATE aims to lay the scientific and technological foundations for the creation and implementation of a robust framework for the certification-by-analysis of advanced composite structures subject to high strain rate loading, e.g., impact and blast. A paradigm shift in simulation comprehensiveness, high strain rate testing protocols and smart sensing tools is needed to replace the complex, laborious building block approach for validation and product certification with approaches based on simulations which require less tests. In this way, composition and performance adjustments should be allowed without recertification. Realisation of this aim heavily relies on knowledge available within the HISTRATE network, which now gathers 80 European and non-European, academic and industrial experts active in the wide field of composites. HISTRATE will strongly encourage interaction between the partners by stimulating the exchange and cross-fertilisation of knowledge both across industrial sectors and expertise fields, including material and component testing, measurement and monitoring techniques, modelling methodologies, standardisation and certification. By combining the available knowledge on high strain rate response at different length scales, i.e., from the material constituents to the structure, HISTRATE will radically transform the way we discover, develop, and design ultra-high-performance, durable, safe, sustainable, and novel advanced composites for use in real high strain rate loading applications. The participation of leading actors in the field provides the basis and impetus for the adaptation of this new approach in industry. |
Project web page: | https://www.cost.eu/actions/CA21155/ |
Kinetic coefficients and models for polymerization processes: aqueous-phase kinetics of emulsion polymerization monomers.
Rýchlostné konštanty a modelovanie pre polymerizačné procesy: kinetika vo vodnej fáze pre monoméry polymerizované emulznou polymerizáciou.
Duration: | 1. 11. 2022 - 31. 10. 2025 |
Evidence number: | R & D kontrakt |
Program: | Iné |
Project leader: | Ing. Lacík Igor DrSc. |
EU Circular Economy Network for All: Consumer Protection through reducing, reusing, repairing (ECO4ALL)
Sieť obehového hospodárstva EÚ pre všetkých: Ochrana spotrebiteľa prostredníctvom zníženia, opätovného použitia, opravy.
Duration: | 1. 11. 2023 - 30. 11. 2027 |
Evidence number: | COST CA22124 |
Program: | COST |
Project leader: | Mgr. Podhradská Silvia PhD. |
NETPORE - Network for research, innovation and product development on porous semiconductors and oxides.
Sieť pre výskum, inovácie a vývoj produktov v oblasti poréznych polovodičov a oxidov.
Duration: | 20. 10. 2021 - 20. 10. 2025 |
Evidence number: | COST CA20126 |
Program: | COST |
Project leader: | prof. Nada Ahmed Ali Ahmed Haggag PhD. |
MULTICOMP - Utilizations of multicomponent reactions and reversible-deactivation radical polymerizations: Promising tools for the preparations of advanced polymer materials.
Využitie multikomponentných reakcií a radikálovej polymerizácie s vratnou deaktiváciou ako nástroj pre prípravu pokročilých polymérnych materiálov.
Duration: | 1. 1. 2024 - 31. 12. 2026 |
Evidence number: | SAS-NSTC-JRP-2023-02 |
Program: | JRP |
Project leader: | Mgr. Kollár Jozef PhD. |
National Projects
Design of Novel Composite Polyelectrolyte Membranes for Fuel Cell Applications.
Návrh nových kompozitných polyelektrolytových membrán pre aplikácie palivových článkov.
Duration: | 1. 11. 2024 - 31. 8. 2026 |
Evidence number: | 09103-03-V04-00237 |
Program: | Plán obnovy EÚ |
Project leader: | MSc. Ghonim Randa PhD. |
Annotation: | Renewable and sustainable energies are deemed to play a key role in resolving the crisis of traditional fossil energies and environmental pollution in our societies. Polymer electrolyte membrane fuel cells (PEMFCs) have emerged as promising future power sources due to their high efficiency, high energy densities, modular construction, low operating temperatures, and quick start-up capabilities. However, there are many factors preventing PEMFCs from commercialization. Issues of durability and performance aside, operating temperature, reducing the manufacturing costs must involve reduced materials costs, especially as regards the Nafion membrane and the platinum catalyst content, and simplification of the membrane electrode assembly (MEA) fabrication process by reducing the number of processing steps. Thus, the scientific community has focused its efforts on the development of high-performing polymeric membranes as proton exchange membranes (PEMs) for fuel cell applications. In particular, high conductivity at different humidity and temperature levels and enhanced chemical and mechanical stability under operative conditions are considered the main goals to be reached. The design of mixed-matrix membranes based on conductive polymers and inorganic fillers is an approach commonly used for achieving materials with improved conductive and mechanical properties owing to their high porosity and surface area. In this project, new conducting polymeric membranes based on functionalized polyvinyl alcohol and modified cellulose acetate derivatives will be used owing to their excellent properties, such as low cost, availability, biodegradability, ecofriendliness, and outstanding mechanical characteristics. In addition, functionalized graphene oxide derivatives (like graphene quantum dots and sulfonated graphene) and Metal organic framework (such as ZIF-8 and UIO-66) materials will be incorporated into the fabricated membranes to improve their conductivity and fuel cell performance. The developed composite membranes will be thoroughly characterized using several characterization tools, including FTIR, SEM, XPS, TGA, DSC, XRD, and TEM. Furthermore, mechanical properties, thermal oxidative stability, dimensional stability, chemical stability, contact angle, solvent uptake (water and methanol), permeability, selectivity, and conductivity will also be investigated. On the other hand, factors affecting the synthesis and formulation processes will be optimized. Finally, electrochemical measurements (i.e. polarization curves) and fuel cell performance will be measured and compared with standard Nafion membranes. Thus, the proposed project will be expected to provide new, straightforward, high-performance, and low-cost polyelectrolyte membranes with significant potential for fuel cell applications. |
Biopolymers for the development of innovative treatments and energy self-sufficiency
Využitie biopolymérov pre vývoj inovatívnych liečebných postupov a energetickej sebestačnosti.
Duration: | 1. 1. 2023 - 31. 12. 2025 |
Evidence number: | VEGA 2/0137/23 |
Program: | VEGA |
Project leader: | Ing. Eckstein Anita PhD. |
NATURPACK - Use of natural vegetable oils and extracts for food packaging.
Využitie prírodných rastlinných olejov a extraktov pre potravinové obaly.
Duration: | 1. 7. 2024 - 30. 6. 2028 |
Evidence number: | APVV-23-0401 |
Program: | APVV |
Project leader: | Ing. Eckstein Anita PhD. |
3D printing of filaments with "non-common" fillers for special applications
3D tlač filamentov s „nevšednými“ plnivami pre špeciálne aplikácie
Duration: | 1. 1. 2024 - 31. 12. 2027 |
Evidence number: | VEGA 2/0056/24 |
Program: | VEGA |
Project leader: | Mgr. Kováčová Mária PhD. |
Biobased Acrylic Pressure-Sensitive Adhesives by Photomediated Atom Transfer Radical Polymerization.
Akrylátové lepidlá citlivé na tlak na biologickej báze pomocou foto-sprostredkovanej radikálovej polymerizácie s prenosom atómov.
Duration: | 1. 10. 2024 - 31. 8. 2026 |
Evidence number: | 09I03-03-V04-00241 |
Program: | Plán obnovy EÚ |
Project leader: | MSc. Zain Gamal PhD. |
Annotation: | The general objective of the project is to exploit the available renewable and biobased monomers for acrylic PSAs production. Biopolymers will be used as well for production of PSAs. Photochemically induced atom transfer radical polymerization as a straightforward and eco-friendly method will be used for providing well-defined and high-performance PSAs. The obtained PSAs will be tested for serving as biobased tapes. |
Nano-Neuro-Plast - Activation of the VGF/BDNF/TrkB pathway by synthetic mRNA encapsulated in polyplex nanoparticles: effects on neural excitability, neuroplasticity and animal behaviour.
Aktivácia VGF/BDNF/TrkB dráhy syntetickou mRNA zapúzdrenou v polyplexových nanočasticiach: účinky na nervovú excitabilitu, neuroplasticitu a správanie zvierat.
Duration: | 1. 7. 2021 - 30. 6. 2025 |
Evidence number: | APVV-20-0202 |
Program: | APVV |
Project leader: | Mgr. Kronek Juraj PhD. |
Two-dimensional nanomaterials in hybrids and polymer composites for advanced applications
Dvojdimenzionálne nanomateriály v hybridoch a polymérnych kompozitoch pre pokročilé aplikácie
Duration: | 1. 1. 2022 - 31. 12. 2025 |
Evidence number: | VEGA 2/0006/22 |
Program: | VEGA |
Project leader: | Ing. Omastová Mária DrSc. |
Non-antibiotic approach for the treatment of tick-borne infections.
Eliminácia kliešťami prenášaných infekcií bez použitia antibiotík.
Duration: | 1. 7. 2024 - 30. 6. 2028 |
Evidence number: | APVV-23-0325 |
Program: | APVV |
Project leader: | Mgr. Špitálsky Zdenko PhD. |
NANOGLIO - Nanoengineered Trojan hybrid for site-responsive phototherapy of recurrent glioblastomas.
Fototerapia rekurentných glioblastómov s nádorovo špecifickým trójskym hybridom optimalizovaným na nano-úrovni.
Duration: | 1. 9. 2024 - 30. 6. 2028 |
Evidence number: | APVV-23-0535 |
Program: | APVV |
Project leader: | Mgr. Kroneková Zuzana PhD. |
Gradient copolymers containing functional groups for biomedical applications.
Gradientové kopolyméry s funkčnými skupinami pre využitie v biomedicínskych aplikáciách.
Duration: | 1. 1. 2024 - 31. 12. 2027 |
Evidence number: | VEGA 2/0170/24 |
Program: | VEGA |
Project leader: | Mgr. Kronek Juraj PhD. |
KOREKAS - Immobilization and co-immobilization of viable whole-cell biocatalysts with enzyme cascades for production of chemical specialties, development of methods for their characterization and bioreactor engineering.
Imobilizácia a koimobilizácia viabilných celobunkových biokatalyzátorov s enzýmovými kaskádami pre produkciu chemických špecialít, vývoj metód ich charakterizácie a bioreaktorové inžinierstvo.
Duration: | 1. 7. 2021 - 30. 6. 2025 |
Evidence number: | APVV-20-0272 |
Program: | APVV |
Project leader: | Ing. Lacík Igor DrSc. |
In situ reduction of graphene oxide assisted by polymer chains: computational and experimental study.
In situ redukcia grafén oxidu asistovaná polymérnymi reťazcami: výpočtová a experimentálna štúdia.
Duration: | 1. 1. 2023 - 31. 12. 2026 |
Evidence number: | VEGA2/0098/23 |
Program: | VEGA |
Project leader: | Mgr. Benková Zuzana PhD. |
SUPRACART - Injectable shear-thinning polymeric hydrogels by supramolecular and dynamic covalent networks for cartilage tissue regeneration.
Injektovateľné pseudoplastické polymérne hydrogély založené na supramolekulárnych a dynamických kovalentných sieťach pre regeneráciu chrupavkového tkaniva.
Duration: | 1. 7. 2023 - 30. 6. 2027 |
Evidence number: | APVV-22-0568 |
Program: | APVV |
Project leader: | Heydari Abolfazl PhD. |
Annotation: | The goal of this project is to develop tissue-engineered articular cartilage using an injectable shear-thinning hydrogel administered in a minimally invasive way into living bodies, with the ability to match irregular defects and fulfill most of the requirements for cartilage regeneration. This hydrogel will be formed based on bioorthogonal chemistry through the combination of both dynamic supramolecular and covalent crosslinks. The intention is to improve the mechanical properties to mimic the extracellular matrix (ECM) of articular cartilage without compromising the biocompatibility of the hydrogel. Simultaneously, the hydrogel composition will be modulated to meet the fundamental requirements of the scaffold in treating cartilage, including (i) bioadhesion, (ii) promotion of chondrogenesis, and (iii) biodegradation without toxic by-products. The performance of the proposed platform will be tested in a rabbit model for cartilage regeneration. Dosiahnuté výsledky: Throughout this year, our main focus was on different aspects of polymer library preparation. We synthesized the essential polymer library crucial for the development of injectable hydrogels. As an initial experiment, we devised and created crosslinked injectable hydrogels utilizing both non-covalent and covalent bonds. We assessed the impact of covalent bonds, particularly hydrazone bonds, on the properties of the injected hydrogel, including its chemical and mechanical stability. |
CompoStaPlast - Compostable starch-based plastic materials.
Kompostovateľné plastové materiály na báze škrobu.
Duration: | 1. 9. 2024 - 31. 12. 2027 |
Evidence number: | APVV-23-0224 |
Program: | APVV |
Project leader: | Ing. Mičušík Matej PhD. |
-
Konštrukcia inteligentných polymérnych kompozitných systémov pre kontrolované a cielené podávanie liečiv.
Duration: | 1. 12. 2022 - 30. 9. 2025 |
Evidence number: | SASPRO II 1381/03/02 |
Program: | SASPRO |
Project leader: | Doc. Omer Ahmed Mohamed PhD. |
Annotation: | The overall objective of this project is to develop and evaluate new smart bioactive composites for controlled and targeted drug delivery. These systems will be constructed in forms of bioactive hydrogel Nanocomposites based on modified natural polymers and bioactive MOFs materials. It is expected that the presence of biopolymer derivatives not only leads to the biodegradability and biocompatibility of the system but also leads to the release of anticancer drugs to a greater extent at pH. In addition, functionalization of biopolymer with an extra amine and carboxylic groups is expected to provide stimuli responsive character for the constructed bionanocomposite carrier. Additionally, these platforms will be fabricated in form of duel layered core-shell hydrogel composites microcapsules through polyelectrolyte complex formation based on maodified natural polymers in combination with bioactive Graphene Oxide derivative. These polyelectrolyte complexes are expected to custimize the targeted and controlled drug release profiles. Finally, it is aimed also to construct grafted biocomposie hydrogels based on β-cyclodextrin grafted biopolymer and MOFs and/or GO-derivatives materials as smart pH-sensitive drug carriers. |
DUALCAPS+ - Alginate-based microcapsules with enhanced stability and biocompatibility for encapsulation of pancreatic islets in diabetes treatment.
Mikrokapsuly na báze alginátu so zvýšenou stabilitou a biokompatibilitou pre enkapsuláciu pankreatických ostrovčekov v liečbe cukrovky.
Duration: | 1. 7. 2023 - 30. 6. 2027 |
Evidence number: | APVV-22-0565 |
Program: | APVV |
Project leader: | Ing. Lacík Igor DrSc. |
MOSBAPA - Modification of surfaces as barrier to protein adsorption.
Modifikácia povrchov ako bariéra pre adsorpciu proteínov.
Duration: | 1. 7. 2022 - 30. 6. 2026 |
Evidence number: | APVV-21-0346 |
Program: | APVV |
Project leader: | Mgr. Benková Zuzana PhD. |
MULCOMAT - Multifunctional composite materials for detection, adsorption and decontamination of hazardous organic molecules.
Multifunkčné kompozitné materiály pre detekciu, adsorpciu a dekontamináciu nebezpečných organických molekúl.
Duration: | 1. 7. 2024 - 30. 6. 2028 |
Evidence number: | APVV-23-0635 |
Program: | APVV |
Project leader: | Mgr. Kronek Juraj PhD. |
Novel guanidine-based polycations used for preparation of multicomponent alginate-based microcapsules for cell encapsulation.
Nové polykatióny na báze guanidínu používané na prípravu viaczložkových mikrokapsúl na báze alginátu na zapuzdrenie buniek.
Duration: | 1. 7. 2024 - 31. 12. 2025 |
Evidence number: | APD0132 |
Program: | DoktoGrant |
Project leader: | Ing. Hájovská Pavla PhD. |
FUNBIOM - Advanced functional polymers from biorenewable monomers.
Pokročilé funkčné polyméry z bioobnoviteľných monomérov.
Duration: | 1. 7. 2024 - 30. 6. 2028 |
Evidence number: | APVV 23-0534 |
Program: | APVV |
Project leader: | Mgr. Mosnáček Jaroslav DrSc. |
SuPerCell - Towards Superior Perovskite-based Solar Cells via Optimized Passivation and Structure.
Pokročilé perovskitové solárne články s optimalizovanou pasiváciou a štruktúrou.
Duration: | 1. 7. 2022 - 30. 6. 2026 |
Evidence number: | APVV-21-0297 |
Program: | APVV |
Project leader: | Mgr. Kollár Jozef PhD. |
PACT&NANOTEC - Polymers with Active Chiral Topology and NANOTEChnology.
Polyméry s Aktívnou Chirálnou Topológiou a NANOTEChnológia.
Duration: | 1. 1. 2024 - 31. 12. 2027 |
Evidence number: | VEGA 2/0038/24 |
Program: | VEGA |
Project leader: | Ing. Račko Dušan PhD. |
Self-healing implantable polymeric microspheres crosslinked via bioorthogonal click chemistry for cell encapsulation in diabetes treatment.
Samoregeneračné implantovateľné polymérne mikrosféry sieťované prostredníctvom bioortogonálnej klik chémie pre bunkovú enkapsuláciu v liečbe cukrovky.
Duration: | 1. 1. 2023 - 31. 12. 2025 |
Evidence number: | VEGA 2/0121/23 |
Program: | VEGA |
Project leader: | Heydari Abolfazl PhD. |
Annotation: | The goal of the project is to develop biocompatible alginate-based microspheres stabilized by dual ionic and dynamic covalent crosslinks with self-healing characteristics. The intention is to enhance the chemical and mechanical durability of the microspheres by incorporating dynamic bonds into their network and mitigating foreign body responses using anti-fibrotic agents located on the microsphere surface. These crucial features of microspheres will be tuned through alterations in the alginate backbone by introducing various contents of bio-clickable and anti-fibrotic agents. |
Scholarships for excellent PhD students (R1) – Polymer Institute SAS
Štipendiá pre excelentných PhD. študentov a študentky (R1) – Ústav polymérov SAV, v.v.i.
Duration: | 1. 9. 2023 - 31. 8. 2026 |
Evidence number: | 09I03-03-V02-00001 |
Program: | Plán obnovy EÚ |
Project leader: | MSc. Moghaddam Omid |
PEROVCHIR - Effect of the application of organic molecules on the properties of perovskite thin-film structures.
Vplyv aplikácie organických molekúl na vlastnosti perovskitovských tenkovrstvých štruktúr.
Duration: | 1. 7. 2024 - 31. 12. 2027 |
Evidence number: | APVV-23-0238 |
Program: | APVV |
Project leader: | Mgr. Kronek Juraj PhD. |
The influence of varying humidity conditions on the structure and mechanical properties of thermoplastic starch-based materials.
Vplyv meniacich sa vlhkostných podmienok na štruktúru a mechanické vlastnosti termoplastických materiálov na báze škrobu.
Duration: | 1. 1. 2023 - 31. 12. 2026 |
Evidence number: | VEGA 2/0109/23 |
Program: | VEGA |
Project leader: | MSc. Peidayesh Hamed PhD. |
The effect of solvent composition on kinetics and mechanism of radical polymerization for water-soluble monomers.
Vplyv zloženia rozpúšťadla na kinetiku a mechanizmus radikálovej polymerizácie vodorozpustných monomérov.
Duration: | 1. 1. 2023 - 31. 12. 2025 |
Evidence number: | VEGA 2/0143/23 |
Program: | VEGA |
Project leader: | Ing. Lacík Igor DrSc. |
Changes of microstructure and physical properties of crosslinked polymers in bulk and under confined conditions of macro- and mesopores.
Zmeny mikroštruktúry a fyzikálnych vlastností zosieťovaných polymérov v objeme a uväznených podmienkach makro- a mezo-pórov.
Duration: | 1. 7. 2022 - 30. 6. 2026 |
Evidence number: | APVV-21-0335 |
Program: | APVV |
Project leader: | Ing. Švajdlenková Helena PhD. |
Projects total: 39