Project
Mathematical Institute
National Projects
Automatons and formal languages: descriptional and computational complexity
Automaty a formálne jazyky: popisná a výpočtová zložitosť
Duration: | 1. 1. 2023 - 31. 12. 2026 |
Evidence number: | VEGA 2/0096/23 |
Program: | VEGA |
Project leader: | RNDr. Jirásková Galina CSc. |
Effective Jacobi algorithms for EVD/SVD matrix decompositions and their numerical properties
Efektívne Jacobiho algoritmy pre EVD/SVD rozklady matíc a ich numerické vlastnosti
Duration: | 1. 1. 2023 - 31. 12. 2025 |
Evidence number: | VEGA 2/0001/23 |
Program: | VEGA |
Project leader: | doc. Ing. Okša Gabriel CSc. |
Efficient computation methods for nanoscale material characterization
Efektívne výpočtové metódy pre charakterizáciu materiálov v nanomierke
Duration: | 1. 7. 2022 - 30. 6. 2025 |
Evidence number: | SK-CZ-RD-21-0109 |
Program: | APVV |
Project leader: | prof. RNDr. Wimmer Gejza DrSc. |
Chromatic Problems and Polynomials
Chromatické problémy a polynómy
Duration: | 1. 1. 2022 - 31. 12. 2025 |
Evidence number: | 2/0042/22 |
Program: | VEGA |
Project leader: | RNDr. Kochol Martin PhD., DSc. |
Annotation: | Chromatic problems on graphs lie at the heart of graph theory, a discipline on the border of discrete mathematics, combinatorial optimization and computer science. These problems are important for understanding structure of graphs and complexity of discrete algorithms By its study are used cycles in graphs, linear algebra, groups, optimization and other techniques. Nowhere-zero flows in graphs present a dual form for graph coloring problems. The numbers of colorings and nowhere-zero flows in graphs are evaluated by chromatic and flow polynomials, respectively. The aim of the project is to study various problems related to graph colorings. We plan to study interpretations of the Tutte polynomials and relations among them. We plan to introduce and study polynomials evaluating nonhomogenous variants of nowhere-zero flows on graphs and plan to study colorings of hypergraphs. |
Classification using ensembles of neural networks
Klasifikácia ansámblami z neurónových sietí
Duration: | 1. 1. 2022 - 31. 12. 2025 |
Evidence number: | 2/0172/22 |
Program: | VEGA |
Project leader: | doc. Šuch Ondrej PhD., M.Sc. |
The optimization model of natural gas transportation
Model pre optimalizáciu prepravy zemného plynu
Duration: | 1. 1. 1999 - |
Evidence number: | 1239 |
Program: | Vnútroústavné |
Project leader: | RNDr. Žáčik Tibor CSc. |
DeQHOST - Designing quantum higher order structures
Navrhovanie kvantových štruktúr vyššieho rádu
Duration: | 1. 7. 2023 - 30. 6. 2026 |
Evidence number: | APVV-22-0570 |
Program: | APVV |
Project leader: | Mgr. Jenčová Anna DrSc. |
MATHMER - Advanced mathematical and statistical methods for measument and metrology
Pokročilé matematické a štatistické metódy pre meranie a metrológiu
Duration: | 1. 7. 2022 - 31. 12. 2025 |
Evidence number: | APVV-21-0216 |
Program: | APVV |
Project leader: | prof. RNDr. Wimmer Gejza DrSc. |
Advanced approaches to data aggregation and applications
Pokročilé prístupy k agregácii dát a ich aplikácie
Duration: | 1. 1. 2023 - 31. 12. 2026 |
Evidence number: | VEGA 1/0036/23 |
Program: | VEGA |
Project leader: | Mgr. Zemánková Andrea DrSc. |
Annotation: | Project is devoted to the basic research in the aggregation theory and to applications of aggregation functions in different domains. In particular, we aim to discuss construction methods and properties of aggregation on domains which generalize real intervals, such as bounded posets or lattices. To cover the need for aggregation methods for data where no natural order relation is present we plan to study betweenness-based aggregation functions. A deep study of aggregation of structures, such as orderings or strings, is also planned. Following requirements from applied domains, we plan to introduce and study several new modifications of the standard monotonicity and some other properties and discuss related types of functions. We will continue in development of recently introduced results on copulas, integrals, and from other domains. In collaboration with our foreign partners, we will focus on applications of our results in decision problems, image processing, statistical modelling, and other areas. |
QUANTPROBALG - Probabilistic, Algebraic and Quantum Mechanical Methods of Uncertainty Determination
Pravdepodobnostné, algebrické a kvantovo-mechanické metódy určovania neurčitosti
Duration: | 1. 7. 2021 - 30. 6. 2025 |
Evidence number: | APVV-20-0069 |
Program: | APVV |
Project leader: | prof. RNDr. Dvurečenskij Anatolij DrSc. |
Annotation: | Using the latest methods of quantum structures we study mathematical foundations of quantum mechanics and of quantum measurements. We deepen our knowledge about partial and total algebras like effect algebras, MValgebras, synaptic algebras, orthomodular lattices, BL-algebras, EMV-algebras, wEMV-algebras, residuated lattices and their non-commutative generalizations and states on them with respect to partially ordered groups. Methods of the theory of categories clarify specific properties of quantum structures. Aggregation methods we will be used to combine selected values of measurements into one aggregation function. Uncertainty contained in quantum measurements will be analyze from the point of view of states, quantum channels will be aimed at quantum mechanics, quantum information theory and for description of measures of non-compatibilities. |
-
Príprava Národného programu kvantových technológií SR
Duration: | 1. 1. 2018 - |
Program: | ŠPVV |
Project leader: | doc. RNDr. Nemoga Karol CSc. |
Number theory and its applications
Teória čísel a jej aplikácie
Duration: | 1. 1. 2023 - 31. 12. 2026 |
Evidence number: | VEGA 2/0119/23 |
Program: | VEGA |
Project leader: | doc. RNDr. Strauch Oto DrSc. |
TOPFUN - Topological structures and spaces of functions
Topologické štruktúry a priestory funkcií
Duration: | 1. 7. 2021 - 30. 6. 2025 |
Evidence number: | APVV-20-0045 |
Program: | APVV |
Project leader: | doc. RNDr. Holá Ľubica DrSc. |
-
Topologické štruktúry na priestoroch funkcií
Duration: | 1. 1. 2021 - 31. 12. 2024 |
Evidence number: | VEGA 2/0048/21 |
Program: | VEGA |
Project leader: | doc. RNDr. Holá Ľubica DrSc. |
Multivalued models of uncertainty
Viachodnotové modely neurčitosti
Duration: | 1. 1. 2023 - 31. 12. 2025 |
Evidence number: | VEGA 2/0122/23 |
Program: | VEGA |
Project leader: | RNDr. Čunderlíková Katarína PhD. |
Influence of materials on acoustic properties of historical single-manual pipe organs in Slovakia
Vplyv materiálov na akustické vlastnosti historických jendomanuálových orgánov na území Slovenska
Duration: | 1. 1. 2023 - 31. 12. 2026 |
Evidence number: | VEGA 2/0134/23 |
Program: | VEGA |
Project leader: | doc. RNDr. Haluška Ján CSc. |
RPDTCTS - Research the possibility of digital transformation of continuous transport systems
Výskum možnosti digitálnej transformácie kontinuálnych dopravných systémov
Duration: | 1. 7. 2022 - 30. 6. 2026 |
Evidence number: | APVV-21-0195 |
Program: | APVV |
Project leader: | prof. RNDr. Wimmer Gejza DrSc. |
Projects total: 17