Facebook Instagram Twitter RSS Feed PodBean Back to top on side

Information Page of SAS Organisation

Project

Mathematical Institute

National Projects

Automatons and formal languages: descriptional and computational complexity

Automaty a formálne jazyky: popisná a výpočtová zložitosť

Duration: 1. 1. 2023 - 31. 12. 2026
Evidence number:VEGA 2/0096/23
Program: VEGA
Project leader: RNDr. Jirásková Galina CSc.

Effective Jacobi algorithms for EVD/SVD matrix decompositions and their numerical properties

Efektívne Jacobiho algoritmy pre EVD/SVD rozklady matíc a ich numerické vlastnosti

Duration: 1. 1. 2023 - 31. 12. 2025
Evidence number:VEGA 2/0001/23
Program: VEGA
Project leader: doc. Ing. Okša Gabriel CSc.

Efficient computation methods for nanoscale material characterization

Efektívne výpočtové metódy pre charakterizáciu materiálov v nanomierke

Duration: 1. 7. 2022 - 30. 6. 2025
Evidence number:SK-CZ-RD-21-0109
Program: APVV
Project leader: prof. RNDr. Wimmer Gejza DrSc.

Chromatic Problems and Polynomials

Chromatické problémy a polynómy

Duration: 1. 1. 2022 - 31. 12. 2025
Evidence number:2/0042/22
Program: VEGA
Project leader: RNDr. Kochol Martin PhD., DSc.
Annotation:Chromatic problems on graphs lie at the heart of graph theory, a discipline on the border of discrete mathematics, combinatorial optimization and computer science. These problems are important for understanding structure of graphs and complexity of discrete algorithms By its study are used cycles in graphs, linear algebra, groups, optimization and other techniques. Nowhere-zero flows in graphs present a dual form for graph coloring problems. The numbers of colorings and nowhere-zero flows in graphs are evaluated by chromatic and flow polynomials, respectively. The aim of the project is to study various problems related to graph colorings. We plan to study interpretations of the Tutte polynomials and relations among them. We plan to introduce and study polynomials evaluating nonhomogenous variants of nowhere-zero flows on graphs and plan to study colorings of hypergraphs.

Classification using ensembles of neural networks

Klasifikácia ansámblami z neurónových sietí

Duration: 1. 1. 2022 - 31. 12. 2025
Evidence number:2/0172/22
Program: VEGA
Project leader: doc. Šuch Ondrej PhD., M.Sc.

The optimization model of natural gas transportation

Model pre optimalizáciu prepravy zemného plynu

Duration: 1. 1. 1999 -
Evidence number:1239
Program: Vnútroústavné
Project leader: RNDr. Žáčik Tibor CSc.

DeQHOST - Designing quantum higher order structures

Navrhovanie kvantových štruktúr vyššieho rádu

Duration: 1. 7. 2023 - 30. 6. 2026
Evidence number:APVV-22-0570
Program: APVV
Project leader: Mgr. Jenčová Anna DrSc.

MATHMER - Advanced mathematical and statistical methods for measument and metrology

Pokročilé matematické a štatistické metódy pre meranie a metrológiu

Duration: 1. 7. 2022 - 31. 12. 2025
Evidence number:APVV-21-0216
Program: APVV
Project leader: prof. RNDr. Wimmer Gejza DrSc.

Advanced approaches to data aggregation and applications

Pokročilé prístupy k agregácii dát a ich aplikácie

Duration: 1. 1. 2023 - 31. 12. 2026
Evidence number:VEGA 1/0036/23
Program: VEGA
Project leader: Mgr. Zemánková Andrea DrSc.
Annotation:Project is devoted to the basic research in the aggregation theory and to applications of aggregation functions in different domains. In particular, we aim to discuss construction methods and properties of aggregation on domains which generalize real intervals, such as bounded posets or lattices. To cover the need for aggregation methods for data where no natural order relation is present we plan to study betweenness-based aggregation functions. A deep study of aggregation of structures, such as orderings or strings, is also planned. Following requirements from applied domains, we plan to introduce and study several new modifications of the standard monotonicity and some other properties and discuss related types of functions. We will continue in development of recently introduced results on copulas, integrals, and from other domains. In collaboration with our foreign partners, we will focus on applications of our results in decision problems, image processing, statistical modelling, and other areas.

QUANTPROBALG - Probabilistic, Algebraic and Quantum Mechanical Methods of Uncertainty Determination

Pravdepodobnostné, algebrické a kvantovo-mechanické metódy určovania neurčitosti

Duration: 1. 7. 2021 - 30. 6. 2025
Evidence number:APVV-20-0069
Program: APVV
Project leader: prof. RNDr. Dvurečenskij Anatolij DrSc.
Annotation:Using the latest methods of quantum structures we study mathematical foundations of quantum mechanics and of quantum measurements. We deepen our knowledge about partial and total algebras like effect algebras, MValgebras, synaptic algebras, orthomodular lattices, BL-algebras, EMV-algebras, wEMV-algebras, residuated lattices and their non-commutative generalizations and states on them with respect to partially ordered groups. Methods of the theory of categories clarify specific properties of quantum structures. Aggregation methods we will be used to combine selected values of measurements into one aggregation function. Uncertainty contained in quantum measurements will be analyze from the point of view of states, quantum channels will be aimed at quantum mechanics, quantum information theory and for description of measures of non-compatibilities.

-

Príprava Národného programu kvantových technológií SR

Duration: 1. 1. 2018 -
Program: ŠPVV
Project leader: doc. RNDr. Nemoga Karol CSc.

Number theory and its applications

Teória čísel a jej aplikácie

Duration: 1. 1. 2023 - 31. 12. 2026
Evidence number:VEGA 2/0119/23
Program: VEGA
Project leader: doc. RNDr. Strauch Oto DrSc.

TOPFUN - Topological structures and spaces of functions

Topologické štruktúry a priestory funkcií

Duration: 1. 7. 2021 - 30. 6. 2025
Evidence number:APVV-20-0045
Program: APVV
Project leader: doc. RNDr. Holá Ľubica DrSc.

-

Topologické štruktúry na priestoroch funkcií

Duration: 1. 1. 2021 - 31. 12. 2024
Evidence number:VEGA 2/0048/21
Program: VEGA
Project leader: doc. RNDr. Holá Ľubica DrSc.

Multivalued models of uncertainty

Viachodnotové modely neurčitosti

Duration: 1. 1. 2023 - 31. 12. 2025
Evidence number:VEGA 2/0122/23
Program: VEGA
Project leader: RNDr. Čunderlíková Katarína PhD.

Influence of materials on acoustic properties of historical single-manual pipe organs in Slovakia

Vplyv materiálov na akustické vlastnosti historických jendomanuálových orgánov na území Slovenska

Duration: 1. 1. 2023 - 31. 12. 2026
Evidence number:VEGA 2/0134/23
Program: VEGA
Project leader: doc. RNDr. Haluška Ján CSc.

RPDTCTS - Research the possibility of digital transformation of continuous transport systems

Výskum možnosti digitálnej transformácie kontinuálnych dopravných systémov

Duration: 1. 7. 2022 - 30. 6. 2026
Evidence number:APVV-21-0195
Program: APVV
Project leader: prof. RNDr. Wimmer Gejza DrSc.

Projects total: 17