Information Page of SAS Organisation


Institute of Physics

Dúbravská cesta 9
845 11 Bratislava 45
Slovak Republic

Detached branches

Joint facility of Electrotechnical Institute and Institute of Physics of SASc, Vrbovská cesta 5051/110, 92101 Piešťany

Director: RNDr. Stanislav Hlaváč, CSc.
Phone: [59410] 500,501,557
Secretariat: Mgr. Angelika Winczerová
Tel: +421-2-59410 501
Institute of Physics of the Slovak Academy of Sciences has been founded as the Cabinet of Physics SAS in 1955. Later, in 1963 it was transformed into the Institute of Physics SAS. The main task of the Institute is to carry out basic theoretical and experimental research in physics. The research areas are solid state physics, quantum optics, nuclear and subnuclear physics.

In solid state physics the effort is focused to rapidly solidified materials, (e.g. metallic glasses), thin films and multilayers and to special diagnostic methods like the deep-level transient spectroscopy, positron annihilation, scanning probe microscopy, thermophysical properties measurements, atomic absorption and emission spectroscopy and X-ray diffractometry and reflectometry. Research in solid state theory is focused to low-dimensional systems, phase transitions and quasicrystals. In theoretical quantum optics, nonclassical properties of optical fields (such as a reduction of quantum fluctuations, quantum entanglement, creation and destruction of quantum coherence, etc.) in nonlinear quantum-optical parametric processes are investigated. In the field of nuclear and subnuclear physics the nuclear structure, phenomenology of high-energy collisions, and properties of hadronic spectra are studied.

Specialized services provided by the Institute’s research teams:

  • Transmission electron microscopy
  • Vacuum furnace melting
  • UHV deposition techniques for thin films (evaporation, sputtering)
  • Powder and high-resolution X-ray diffractometry
  • Deep-level transient spectroscopy
  • Scanning tunneling microscopy
  • Atomic absorption and emission spectroscopy
  • Pulse technique measurements of thermophysical properties
  • Positron annihilation method
  • High precision resistometry, dilatometry and magnetostriction measurements
  • Magnetic measurements of soft magnetic materials
  • Ion beam etching