Facebook Instagram Twitter RSS Feed PodBean Back to top on side

Zoznam národných projektov SAV

Lock Databáza národných projektov

Centrum pre využitie pokročilých materiálov SAV, v. v. i.

Anódy pre Li-iónové batérie na báze uhlík-kremíkových kompozitov

Carbon-silicon based composite anodes for Li-ion batteries.

Doba trvania: 1.7.2020 - 30.6.2024
Program: APVV
Zodpovedný riešiteľ: Ing. Fröhlich Karol DrSc.
Anotácia:V súčasnosti používané lítium-iónové batérie pre elektro-mobilitu dosahujú hustotu energie na úrovni 90-235 Wh/kg, resp. 200-630 Wh/L. Zvýšenie na úroveň teoretických hodnôt, t.j. 350 až 400 Wh/kg a 750 Wh/L môže byť dosiahnuté vývojom pokročilých materiálov (katódy, anódy, spojív, separátorov, elektrolytu, zberačov prúdu a samotného obalu. Hlavným cieľom predloženého projektu je vývoj novej generácie kompozitných anód na báze kremík/uhlík (grafit/grafén) pre lítium-iónové batérie pomocou technológie, ktorá umožní potenciálne rozšírenie výroby takýchto materiálov (anód). Kombinácia rôznych prístupov, používaných v oblastiach keramiky, kovov a polymérov bude overená, ako je vysokoenergetické guľové mletie grafitu, grafénu a kremíka, ako aj tvorba hierarchicky štruktúrovaných kompozitov Si / grafén. Tieto prístupy budú tvoriť jadro navrhovanej technológie. Očakáva sa významné zlepšenie anódy, najmä z pohľadu zvýšenia energetickej capacity, špecifickej kapacity a coulombickej účinnosti. Významným prínosom bude taktiež aj rozšírenie poznatkov o dejoch prebiehajúcich pri zaťažení takýchto anód, resp. Batériových článkov, a ich mechanizme pomocou modernej “in-operando” CVS / GCD-SAXS / WAXS analýzy doplnenej o podrobnú elektrochemickú a mikroštrukturálnu analýzu. Predpokladá sa vytvorenie demonštrátora článku batérie pozostávajúceho z vyvinutej anódy, komerčne dostupnej katódy na báze LiFePO4 a LiPF6 elektrolytu. Projekt navrhuje inovatívny spôsob výroby anód na báze Si/C kompozitov s cieľom dosiahnuť širšiu využiteľnosť v konštrukcii lítium-iónových batérií. Projekt predstavuje významný krok smerom k požiadavkam kladeným na anódy lítium-iónových batérií a to dlhodobú stabilitu pri cyklickom nabíjaní a vybíjaní pri vysokých rýchlostiach (viac ako 1000 cyklov pri 5 A/g) a špecifickej kapacite viac ako 800 mAh/g.

Low energy synthesis of high performance NaSICON-like structured cathodes for rechargeable Sodium-Ion Batteries (SIBs)

Low energy synthesis of high performance NaSICON-like structured cathodes for rechargeable Sodium-Ion Batteries (SIBs)

Doba trvania: 1.1.2021 - 31.12.2024
Program: VEGA
Zodpovedný riešiteľ: Mgr. Mosnáček Jaroslav DrSc.

Návrh a optimalizácia biokonjugačných stratégii inovatívnych 2D fototermálnych nanomateriálov s tumor-navádzajúcimi peptidmi

-

Doba trvania: 1.1.2022 - 31.12.2024
Program: VEGA
Zodpovedný riešiteľ: Mgr. Annušová Adriana PhD.

Perovskitové vrstvy s vylepšenou pasiváciou a štruktúrou

Perovskite-based Films with Superior Passivation and Structure

Doba trvania: 1.1.2022 - 31.12.2025
Program: APVV
Zodpovedný riešiteľ: RNDr. Mrkývková Naďa PhD.

Pokročilá fotochemicky indukovaná radikálová polymerizácia s prenosom atómu tolerantná k prítomnosti kyslíka

Advanced Oxygen Tolerant Photochemically Induced Atom Transfer Radical Polymerization

Doba trvania: 1.7.2020 - 30.6.2024
Program: APVV
Zodpovedný riešiteľ: Mgr. Mosnáček Jaroslav DrSc.

Pokročilé lítiové batérie s dlhou životnosťou

Towards lithium based batteries with improved lifetime

Doba trvania: 1.7.2021 - 30.6.2025
Program: APVV
Zodpovedný riešiteľ: Dr. rer. nat. Šiffalovič Peter DrSc.
Anotácia:S neustále sa zvyšujúcimi energetickými požiadavkami na prenosnú elektroniku a elektromobilitu konvenčné lítiumiónové batérie čelia novým výzvam. V navrhovanom projekte sa zameriavame na stabilizáciu kapacity a životnosti lítium-iónových batérií pomocou ultratenkých pasivačných vrstiev pripravených technológiou rastu po atomárnych vrstvách (atomic layer deposition, ALD). Primárne funkcie týchto pasivačných vrstiev sú: i) zabránenie rozpúšťaniu katódových materiálov do elektrolytu a ii) stabilizácia morfológie katódy počas litiácie a de-litiácie. Aj keď pozitívny vplyv pasivačných vrstiev vyrobených pomocou ALD bol už preukázaný, systematické štúdie sú stále žiadané a kľúčové pre vývoj ďalšej generácie lítium-iónových batérií. Hlavnou prekážkou týchto štúdií je identifikácia vhodných analytických techník pre efektívnu spätnú väzbu, ktorá umožní v reálnom čase nahliadnutie do mechanizmov nabíjania/vybíjania v nanorozmeroch. Konvenčné metódy elektrochemickej charakterizácie poskytujú iba náznaky prebiehajúcich mechanizmov počas degradačných procesov. Pre projekt navrhujeme využiť malo- a veľko-uhlový RTG rozptyl (small- and wide-angle X-ray scattering, SAXS/WAXS) za účelom sledovania morfológie a fázových zmien, ktoré nastávajú počas nabíjania/vybíjania lítium-iónových batérií v reálnom čase. Hlavným zameraním predkladaného projektu je aplikácia štúdií SAXS/WAXS v reálnom čase v laboratórnych podmienkach. Za týchto okolností je možné vykonať rozsiahle, systematické štúdie rôznych pasivačných vrstiev ALD.

Porovnanie účinku nanosfér a nanobipyramíd zlata konjugovaných so silibinínom pri liečbe fibrózy pečene in vivo.

-

Doba trvania: 1.1.2022 - 31.12.2024
Program: VEGA
Zodpovedný riešiteľ: Mgr. Šelc Michal PhD.

Príprava a štúdium poréznej a neporéznej hliníkovej anódy pre účely zvýšenia výkonu primárnej Al-vzduch batérie.

-

Doba trvania: 1.1.2022 - 31.12.2024
Program: VEGA
Zodpovedný riešiteľ: Mgr. Šimon Erik PhD.

Využitie nanomedicíny v boji proti rakovine pankreasu prostredníctvom zacielenia nádorovo-asociovanej karbonickej anhydrázy IX.

Nanomedical approach to fight pancreatic cancer via targeting tumorassociated carbonic anhydrase IX

Doba trvania: 1.7.2021 - 30.6.2025
Program: APVV
Zodpovedný riešiteľ: Dr. rer. nat. Šiffalovič Peter DrSc.
Anotácia:Rakovina pankreasu je letálne ochorenie s narastajúcou incidenciou a mortalitou a je štvrtou najčastejšou príčinou úmrtí v súvislosti s nádorovým ochorením v Európe. Priemerný čas prežívania pacientov s rakovinou pankreasu je 4-6 mesiacov po diagnostikovaní ochorenia a má najnižšiu mieru prežitia zo všetkých druhov rakoviny. Len 20% diagnostikovaných prípadov je operovateľných. Fototermálna terapia (PTT) má potenciál stať sa novým priekopníkom v boji proti rakovine pankreasu. Táto špičková biomedicínska aplikácia je založená na rýchlom zahriatí plazmonických nanočastíc vyvolanom absorpciou laserového svetla, po ktorom nasleduje zvýšenie teploty v okolí nanočastíc. Jav lokalizovanej povrchovej plazmónovej rezonancie (LSPR) je možné pozorovať len v špeciálnej triede nanočastíc. Následkom PTT je selektívna hypertermia a ireverzibilná deštrukcia tumoru, pričom nedochádza k poškodeniu zdravého tkaniva. Účinnosť doručenia plazmónových nanočastíc je však často nedostatočná. Môže sa zvýšiť špecializovanou funkcionalizáciou plazmónových nanočastíc s ligandmi (protilátkami), ktoré selektívne rozpoznávajú rakovinové bunky. Jedným z hlavných cieľov navrhovaného projektu je zvýšiť účinnosť doručenia plazmónových nanočastíc pre PTT ich funkcionalizáciou s protilátkami, ktoré selektívne rozpoznávajú nádory. Sľubným terčom pre funkcionalizované nanočastice je karbonická anhydráza IX (CA IX), biomarker hypoxie a agresívneho správania nádorových buniek. CA IX je prítomná v mnohých typoch nádorov, pričom absentuje v korešpondujúcom zdravom tkanive, čo z nej robí ideálneho kandidáta pre vysoko špecifickú protinádorovú terapiu. CA IX je vysoko exprimovaná na povrchu pankreatických nádorových buniek a koreluje so zlou prognózou pacientov s týmto ochorením. Zacielenie pankreatických nádorov pomocou prístupu založeného na nanomateriáloch kombinovaných s anti-CA IX protilátkami môže zabezpečiť vysoko selektívnu aplikáciu PTT s potenciálnym benefitom v klinickej praxi.

Vývoj unikátneho TiMg kompozitného zubného implantátu

Development of unique TiMg composite dental implant

Doba trvania: 1.7.2021 - 30.6.2025
Program: APVV
Zodpovedný riešiteľ: Mgr. Švastová Eliška PhD.
Anotácia:Vďaka dobrej dostupnosti a bezproblémovej prevádzke na dlhé obdobia bez nutnosti dodatočného zásahu dentistu sa zubné implantáty (DI) stávajú vyhľadávaným riešením. Titán (Ti) a zliatiny Ti sú historicky najbežnejšie používanými materiálmi na výrobu DI. Aj keď sa DI z Ti a Ti zliatin používajú s vysokou mierou úspešnosti, stále ostávajú nedostatočne vyriešené ich dva hlavné nedostatky: i) tzv. „stress-shielding“ efekt t.j. mechanická nekompatibilita a ii) ich nedostatočná povrchová bioaktivita. To vedie ku potrebe hľadania nových riešení, prístupov a koncepcií materiálov, a následne ku pokroku a väčšej konkurencii v danej oblasti. Hlavným cieľom navrhovaného projektu je vývoj inovatívneho biomedicínskeho DI vyrobeného z jedinečného čiastočne biodegradovateľného kompozitného materiálu na báze Ti - horčík (Mg). Nový DI minimalizuje hlavné nevýhody súčasných DI, pričom si však zachováva mechanické vlastnosti a únavovú odolnosť súčasných DI na báze Ti. Výhodná kombinácia mechanických a biologických vlastností nového DI spočíva v jeho špeciálnom dizajne, ktorý využíva výhody Ti17Mg, materiálu, z ktorého bude DI vyrobený. Ti17Mg je partnermi projektu vyvinutý experimentálny materiál vyrobený práškovou metalurgiou, ktorý selektívne využíva výhody oboch biokovov. V rámci projektu bude navrhnutý a optimalizovaný nový DI, tak aby využíval potenciál a špecifické vlastnosti Ti17Mg. Funkčnosť DI sa bude systematicky a komplexne hodnotiť v prostredí, ktoré simuluje reálne podmienky v ľudskom tele a to vrátane mechanických, únavových a koróznych testov, a biologických skúšok in vitro a in vivo s použitím bunkových kultúr, malých a veľkých zvieracích modelov. Všetky testy sa uskutočnia v súlade s príslušnými ISO špecifikáciami. Očakáva sa, že na konci projektu bude k dispozícii nový inovatívny DI s vysokou pridanou hodnotou pripravený na testovanie v ľudskom tele. Očakáva sa, že na konci projektu bude dosiahnutý TRL6.

Celkový počet projektov: 10