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FINITE VOLUME SCHEMES FOR THE

AFFINE MORPHOLOGICAL SCALE SPACE (AMSS)

MODEL

Angela Handlovičová — Karol Mikula

Slovak University of Technology in Bratislava, Bratislava, SLOVAKIA

ABSTRACT. Finite volume (FV) numerical schemes for the approximation
of Affine Morphological Scale Space (AMSS) model are proposed. For the scheme

parameter θ, 0 ≤ θ ≤ 1 the numerical schemes of Crank-Nicolson type were
derived. The explicit (θ = 0), semi-implicit, fully-implicit (θ = 1) and Crank-
Nicolson (θ = 0.5) schemes were studied. Stability estimates for explicit and
implicit schemes were derived. On several numerical experiments the properties
and comparison of the numerical schemes are presented.

1. Introduction

In the substantial paper [1], Alvarez, Guichard, Lions and Morel gave axiomat-
ically all image multi-scale theories and gave explicit formulas for the partial
differential equations generated by scale spaces (see also [7]). They had proved
that all causal, local, isometric and contrast invariant scale spaces are given
by curvature evolution equations of the type

ut = g
(
curv(u), t

)|∇u|. (1)

Among them two particular motions became very useful for planar shape defor-
mation and recognition. The first one is represented by mean curvature flows

ut = curv(u)|∇u|. (2)
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The second one is devoted to affine curvature evolutions

ut =
(
curv(u)

)1
3 |∇u|. (3)

There are many interesting papers concerning these two models, either from
theoretical (existence and properties of the solutions) or from numerical (nu-
merical solution and its convergence in some sense) point of views. In this intro-
duction, we focus only on the numerical solution of the AMSS model. We want
to mention the paper [7], where the numerical scheme based on the finite differ-
ence method is presented. Another approach can be seen in [3], where the exact
solution for the model is presented and the accuracy of the numerical scheme
can be computed. The paper is a continuation of our previous paper [2], where
basic numerical scheme based on the finite volume methodology is presented,
namely the semi-implicit finite volume scheme and its iterative improvement.

In this paper, we want to describe four numerical schemes, namely, explicit,
semi-implicit, fully-implicit and Crank-Nicolson schemes. They are all based
on the finite volume method as it was used in [5] for the MCM model. We focused
our study on the properties of numerical schemes concerning experimental order
of convergence, CPU times and theoretical stability results for some of them.

The paper is organised as follows. In Section 2, we present the AMSSmodel and
its discretization. In Section 3, we summarise four numerical schemes for AMSS

model and in Section 4, we present stability estimation for explicit and implicit
schemes. Numerical experiments concerning the properties of proposed numeri-
cal schemes are in Section 5.

2. AMSS model and its finite volume discretization

The model can be written in the following way

ut − |∇u|
(
div

( ∇u

|∇u|
))1

3

= 0, a.e. (t, x) ∈ (0, T )× Ω (4)

with the initial condition

u(0, x) = u0(x), a.e. x ∈ Ω, (5)

and the boundary condition

u(t, x) = 0, a.e. (t, x) ∈ (0, T )× ∂Ω, (6)

here Ω ⊂ R
d, with d ∈ N, and ∂Ω is its boundary. As the model is highly

nonlinear and degenerate, we use the so-called Evans-Spruck [6] regularization
to avoid zero values in denominator. Moreover, we use additional regularization
as in [5]. Thus our regularized problem is of the form
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ut − f(|∇u|)
(
div

( ∇u

f(|∇u|)
))1

3

= 0, a.e. (t, x) ∈ (0, T )× Ω, (7)

where
f(s) = min{

√
s2 + a, b} for some parameters a > 0, b > 0. (8)

In order to describe the schemes, we now introduce some notations for the
space discretisation as in [5].

���������� 2.1 (Space discretisation)� Let Ω be a polyhedral open bounded
connected subset of Rd, with d ∈ N, and ∂Ω = Ω\Ω its boundary. A discretisation
of Ω, denoted by D, is defined as the triplet D = (M, E ,P), where:

1) M is a finite family of nonempty connected open disjoint subsets of Ω
(the “control volumes”) such that Ω = ∪p∈Mp. For any p ∈ M, let ∂p = p\p
be the boundary of p; let |p| > 0 denote the measure of p and let hp denote
the diameter of p and hD denote the maximum value of (hp)m∈M.

2) E is a finite family of disjoint subsets of Ω (the “edges” of the mesh), such
that, for all σ ∈ E , σ is a nonempty open subset of a hyperplane of R

d,
whose (d − 1)-dimensional measure |σ| is strictly positive. We also assume
that, for all p ∈ M, there exists a subset Ep of E such that ∂p = ∪σ∈Ep

σ.
For any σ ∈ E , we denote by Mσ = {p ∈ M, σ ∈ Ep}. We then assume that,
for all σ ∈ E , either Mσ has exactly one element and then σ ⊂ ∂Ω (the set
of these interfaces, called boundary interfaces, is denoted by Eext) or Mσ has
exactly two elements (the set of these interfaces, called interior interfaces, is
denoted by Eint). For all σ ∈ E , we denote by xσ the barycentre of σ. For all
p ∈ M and σ ∈ Ep, we denote by np,σ the unit vector normal to σ outward
to p.

3) P is a family of points of Ω indexed by M, denoted by P = (xp)p∈M, such
that for all p ∈ M, xp ∈ p and p is assumed to be xp-star-shaped, which
means that for all x ∈ p, the inclusion [xp, x] ⊂ p holds. Denoting by dpσ the
Euclidean distance between xp and the hyperplane including σ, one assumes
that dpσ > 0. Then we denote by Dp,σ the cone with vertex xp and basis σ.

4) We make an important following assumption

dpσnp,σ = xσ − xp, ∀p ∈ M, ∀σ ∈ Ep. (9)

We denote

θD = min
p∈M

min
σ∈Ep

dpσ
hp

. (10)

���������� 2.2 (Space-time discretisation)� Let Ω be a polyhedral open
bounded connected subset of Rd, with d ∈ N and let T > 0 be given. We say
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that (D, τ) is a space-time discretisation of (0, T )×Ω if D is a space discretisation
of Ω in the sense of Definition 2.1 and if there exists NT ∈ N with T = (NT +1)τ .

Let (D, τ) be a space-time discretisation of Ω × (0, T ). We define the set
HD ⊂ R

M × R
E such that uσ = 0 for all σ ∈ Eext. We define the following

functions on HD

Np(u)
2 =

1

|p|
∑
σ∈Ep

|σ|
dpσ

(uσ − up)
2, ∀p ∈ M, ∀u ∈ HD. (11)

Let us recall that
‖u‖21,D =

∑
p∈M

|p|Np(u)
2 (12)

defines a norm on HD (see [5] and references therein). We then define the set
N0 = {n = 0, . . . , NT} and HD,τ of all u = (un+1)n∈N0

such that un+1 ∈ HD
for all n ∈ N0, and we set

‖u‖21,D,τ =

NT∑
n=0

τ‖un+1‖21,D, ∀u ∈ HD,τ . (13)

Finally, on Ω ⊂ R
d and time interval (0, T ) we define GD,τ by

GD,τ (x, t) = d
un+1
σ − un+1

p

dpσ
npσ,

for a.e. x ∈ Dpσ, for a.e. t ∈ (nτ, (n+ 1)τ
)
, ∀p ∈ M, ∀σ ∈ Ep, ∀n ∈ N0.

(14)

The idea to obtain the numerical scheme is based on the finite volume method-
ology. We use the approach for approximation as in [2]. First, we rearrange and
then we integrate the equation (7) for an arbitrary p ∈ M with the boundary
∂p and a unit outward normal np. We obtain∫

p

(
ut

f(|∇u|)
)3

dx −
∫
∂p

∂u

∂np

1

f(|∇u|) ds = 0. (15)

We denote by δtu
n
p the approximation of time derivative on the finite volume p

and time interval
(
nτ, (n+ 1)τ

)
, which is usually given by

δtu
n
p =

un+1
p − un

p

τ
.

Using the standard finite volume methodology [4], we can derive an explicit
scheme in the following way(

δtu
n
p

f(Np(un))

)3
|p| − 1

f(Np(un))

∑
σ∈Ep

|σ|
dpσ

(un
σ − un

p ) = 0,

∀p ∈ M, ∀n ∈ N.

(16)
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Moreover, the following relation is given for the interior edges [5]

un
σ − un

p

f(Np(un)) dpσ
+

un
σ − un

q

f(Nq(un)) dqσ
= 0, ∀σ ∈ Eint with Mσ = {p, q}, ∀n ∈ N.

(17)
Involving the above relation, we obtain the following scheme

(
δtu

n
p

)3 1

f(Np(un))3
|p| −

∑
σ∈Ep

(un
q − un

p )|σ|
f(Np(un)) dpσ + f(Nq(un)) dqσ

= 0,

∀p ∈ M, ∀n ∈ N.

(18)

In the expression above, we can notice that the second term is in fact the ap-
proximation of curvature on the finite volume p. So we can pose

Kn
p =

1

|p|
∑
σ∈Ep

|σ|(un
q − un

p )

dpσf(Np(un)) + dqσf(Nq(un)) (19)

and then we obtain (
δtu

n
p

)3 1

f(Np(un))3
|p| −Kn

p |p| = 0,

∀p ∈ M, ∀n ∈ N.

(20)

For approximation of the time derivative, from (20) we can immediately obtain

δtu
n
p = f

(
Np(u

n)
)(
Kn

p

) 1
3 . (21)

Now, if we approximate

(
δtu

n
p

)3 ≈ un+1
p − un

p

τ

(
f
(
Np(u

n)
)(
Kn

p

) 1
3

)2

=
un+1
p − un

p

τ
f
(
Np(u

n)
)2(

Kn
p

) 2
3

(22)

from (20) we have

un+1
p − un

p

τ

(f(Np(u
n))(Kn

p )
1
3 )2

f(Np(un))3
|p| −Kn

p |p| = 0,

and finally, we obtain after straightforward rearrangement

un+1
p − un

p

τ
|p| − f

(
Np(u

n)
)(
Kn

p

) 1
3 |p| = 0,

∀p ∈ M, ∀n ∈ N0.
(23)
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Similarly, we can do approach for the fully-implicit scheme and we obtain(
δtu

n
p

)3 1

f(Np(un+1))3
|p| −Kn+1

p |p| = 0,

∀p ∈ M, ∀n ∈ N0.

(24)

We use again the similar approach for approximation the time derivative.

The nonlinear term for approximation of the time derivative can be obtained
immediately from (24)

δtu
n
p = f

(
Np(u

n+1)
)(
Kn+1

p

)1
3 , (25)

and similarly we can approximate

(
δtu

n
p

)3
=

un+1
p − un

p

τ

(
f
(
Np(u

n+1)
)(
Kn+1

p

) 1
3

)2

=
un+1
p − un

p

τ

(
f
(
Np(u

n+1)
))2(

Kn+1
p

) 2
3

(26)

from (24) we finally obtain

un+1
p − un

p

τ
|p| − f

(
Np(u

n+1)
)(
Kn+1

p

) 1
3 |p| = 0,

∀p ∈ M, ∀n ∈ N0.

(27)

Now, for some θ ∈ 〈0, 1〉 we can write the combination of both schemes of Crank-
-Nicolson type. First we define:

u0
p =

1

|p|
∫
p

u0(x) dx, ∀p ∈ M, (28)

u0
σ =

1

|σ|
∫
σ

u0(s) ds, ∀σ ∈ E , (29)

the boundary condition is fulfilled thanks to

un
σ = 0, ∀σ ∈ Eext, ∀n ∈ N0 (30)

and

(un+1
p − un

p )

τ
− θf

(
Np(u

n+1)
)(
Kn+1

p

) 1
3 − (1− θ)f

(
Np(u

n)
)(
Kn

p

) 1
3 = 0,

∀p ∈ M, ∀n ∈ N0.
(31)

Now, considering a family of values (un
p )p∈M,n∈N0

, given by (28), (29), (30)
and (31), we define [5] as the approximate solution uD,τ in Ω× R+ by

uD,τ (x, 0) = u0
p, uD,τ (x, t) = un+1

p

for a.e. x ∈ p, ∀t ∈ (nτ, (n+ 1)τ
)
, ∀p ∈ M, ∀n ∈ N0.

(32)
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3. Summary of the numerical schemes

Now, we present four schemes that will be used in our computations.

3.1. Explicit scheme

Numerical scheme defined by (28), (29), (30) and (31) gives for θ = 0, explicit
numerical scheme, namely

un+1
p = un

p + τf
(
Np(u

n)
)(
Kn

p

) 1
3, ∀p ∈ M, ∀n ∈ N0. (33)

3.2. Fully-implicit scheme

Numerical scheme (28), (29), (30) and (31) gives for θ = 1, fully-implicit
numerical scheme, namely

un+1
p − τf

(
Np(u

n+1)
)(
Kn+1

p

) 1
3 = un

p , ∀p ∈ M, ∀n ∈ N0. (34)

This nonlinear algebraic system (34) can be computed in an iterative way.
Let

un+1,0
p = un

p , f
(
Np(u

n+1,0)
)
= f

(
Np(u

n)
)

and Kn+1,0
p = Kn

p

and other iterations by

un+1,k+1
p − τ

f
(
Np

(
un+1,k

))
max

{
a1,(K

n+1,k
p )

2
3

}K̃n+1,k+1
p = un

p ,

∀p ∈ M, ∀n ∈ N0,

(35)

where

K̃n+1,k+1
p =

1

|p|
∑
σ∈Ep

|σ|(un+1,k+1
q − un+1,k+1

p

)
dpσf

(
Np(un+1,k)

)
+ dqσf

(
Nq(un+1,k)

) (36)

and a1 > 0 is the prescribed small, fixed parameter.

There are several possibilities to stop the iterations, e.g., if two following
iterations differ less than the prescribed tolerance or if the residuum of linear
algebraic system with the unknowns un+1,k

p and coefficients with the same iter-
ation k is smaller than the prescribed tolerance.

3.3. Semi-implicit scheme

The numerical scheme (28), (29), (30) and (31) gives for θ = 1 semi-implicit
numerical scheme, with modification that nonlinear terms are computed in pre-
vious time step, that means it is a special case of fully-implicit scheme without
iterations

un+1
p − τ

f(Np(u
n))

max
{
a1, (Kn

p )
2
3

}K̄n+1
p = un

p ,

∀p ∈ M, ∀n ∈ N0, (37)
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where

K̄n+1
p =

1

|p|
∑
σ∈Ep

|σ|(un+1
q − un+1

p )

dpσf(Np(un)) + dqσf(Nq(un)) (38)

and a1 > 0 is the prescribed small, fixed parameter.

3.4. Crank-Nicolson scheme

In this case, we use the numerical scheme (28),(29), (30) and (31) for θ = 1
2

and we give the Crank-Nicolson numerical scheme, namely

un+1
p − τ

2
f
(
Np(u

n+1)
)(
Kn+1

p

) 1
3 = un

p +
τ

2
f
(
Np(u

n)
)(
Kn

p

) 1
3 ,

∀p ∈ M, ∀n ∈ N0. (39)

Now using the similar approach as for fully-implicit scheme, we can derive
the iteration scheme as follows: un+1,0

p = un
p , f

(
Np(u

n+1,0)
)
= f(Np(u

n)) and

Kn+1,0
p = Kn

p and other iterations by

un+1,k+1
p − τ

2

f(Np(u
n+1,k))

max
{
a1, (K

n+1,k
p )

2
3

}K̃n+1,k+1
p = un

p +
τ

2
f
(
Np(u

n)
)(
Kn

p

) 1
3

∀p ∈ M, ∀n ∈ N0. (40)

4. Stability estimates

We want to prove stability estimations for the numerical solution obtained
by proposed numerical schemes. We state the assumptions called (A) for the
data in the following:

1) Ω is a finite connected open subset of Rd with boundary ∂Ω defined by a
finite union of subsets of hyperplanes of Rd,

2) u0 ∈ H1
0 (Ω),

3) f is defined by (8).

4.1. Semi-implicit scheme

We are dealing with the semi-implicit scheme, it means that as in (37) we
remind that

un+1
p − τ

f(Np(u
n))

max{a1, (Kn
p )

2
3 }K̄

n+1
p = un

p , (41)

∀p ∈ M, ∀n ∈ N0.

Now let us state the L∞ stability of the semi-implicit scheme. The result is
similar as in [5].
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	�

� 4.1 (L∞ stability of the semi-implicit scheme)� Under assumption (A),
let (τ,D) be a space-time discretisation of (0, T )×Ω in the sense of Definition 2.2.
We denote by

|u0|D,∞ = max
p∈M

|u0
p|, (42)

(Note that, if u0 ∈ L∞(Ω) and then |u0|D,∞ ≤ ‖u0‖L∞(Ω).)

Let (un
p )p∈M,n∈N be a solution of (28), (29) and (30), (37). Then it holds

|un
p | ≤ |u0|D,∞ ∀p ∈ M, ∀n = 0, . . . , NT .

P r o o f. Suppose that for the fixed time step n+ 1 the maximum of all un+1
p is

achieved at the finite volume p. We immediately know that

f(Np(u
n))

max{a1, (Kn
p )

2
3 } > 0

and from the definition of K̄n+1
p and the fact that maximum of all un+1

p is
achieved at the finite volume p, we have

K̄n+1
p ≤ 0

which brings that the second term in the semi-implicit scheme is nonnegative
and it leads to

un+1
p ≤ un

p . (43)

Then, we recursively get the estimate (43), similarly reasoning for the minimum
values. �

Remark� The same conclusion with similar arguments is for the fully-implicit
scheme.

4.2. Explicit scheme

We remind that in this case we have

un+1
p = un

p + τf
(
Np(u

n)
)
(Kn

p )
1
3, ∀p ∈ M, ∀n ∈ N0. (44)

	�

� 4.2 (L∞ stability of the explicit scheme)� Under assumption (A), let
(τ,D) be a space-time discretisation of (0, T )×Ω in the sense of Definition 2.2.

Let (un
p )p∈M,n∈N be a solution of (28), (29) and (30), (34). Let

a = C1|p| (45)

hold for parameter a defined in (8) for some real positive constant C1.
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Let C2 = C1b
− 2

3

∑
σ∈Ep

|σ|
dpσ

. Suppose

τ < C2|p|. (46)

Then for C = b
2
3C

1
3
1 it holds that

|un
p | ≤ |u0|D,∞ + CT, ∀p ∈ M, ∀n = 0, . . . , NT .

P r o o f. From (8) and (11) we express

f
(
Np(u

n)
)
= min

⎧⎨
⎩
√√√√ 1

|p|
∑
σ∈Ep

|σ|
dpσ

(uσ − up)2 + a, b

⎫⎬
⎭ ,

∀p ∈ M, ∀u ∈ HD. (47)

and from (19) and (17) we can derive

Kn
p =

1

|p|
∑
σ∈Ep

|σ|
dpσ

(un
σ − un

p )

f(Np(un))
. (48)

We rearrange the second term of right-hand side of (44) and we obtain

un+1
p = un

p +
τ

|p| 13

⎛
⎝f

(
Np(u

n)
)2 ∑

σ∈Ep

|σ|
dpσ

(
un
σ − un

p

)⎞⎠
1
3

. (49)

Suppose first ∣∣∣∣∣∣
∑
σ∈Ep

|σ|
dpσ

(un
σ − un

p )

∣∣∣∣∣∣ ≤ a.

We can estimate from (49) using the properties of f

|un+1
p | ≤ |un

p |+
τb

2
3 a

1
3

|p| 13 . (50)

Using (45) we obtain∣∣un+1
p

∣∣ ≤ ∣∣un
p

∣∣+ Cτ ≤ max
p∈M

∣∣un
p

∣∣+ Cτ,

∀p ∈ M, ∀n ∈ N0.
(51)

Suppose now ∣∣∣∣∣∣
∑
σ∈Ep

|σ|
dpσ

(un
σ − un

p )

∣∣∣∣∣∣ > a.
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We rearrange (49)

un+1
p = un

p +
τ

|p| 13

⎛
⎝ f(Np(u

n))∑
σ∈Ep

|σ|
dpσ

(un
σ − un

p )

⎞
⎠

2
3∑
σ∈Ep

|σ|
dpσ

(un
σ − un

p )

= un
p

⎛
⎜⎝1− τ

|p| 13

⎛
⎝ f(Np(u

n))∑
σ∈Ep

|σ|
dpσ

(un
σ − un

p )

⎞
⎠

2
3∑
σ∈Ep

|σ|
dpσ

⎞
⎟⎠

+
τ

|p| 13

⎛
⎝ f(Np(u

n))∑
σ∈Ep

|σ|
dpσ

(un
σ − un

p )

⎞
⎠

2
3∑
σ∈Ep

|σ|
dpσ

un
σ .

(52)

Now for stability estimate the coefficient by the term un
p must be positive,

so the stability condition results

τ

|p| 13

⎛
⎝ f(Np(u

n))∑
σ∈Ep

|σ|
dpσ

(un
σ − un

p )

⎞
⎠

2
3∑
σ∈Ep

|σ|
dpσ

≤ τ

|p| 13
(
b

a

)2
3∑
σ∈Ep

|σ|
dpσ

< 1

and we obtain

τ < |p| 13
(a
b

) 2
3
∑
σ∈Ep

|σ|
dpσ

= C1|p|b− 2
3

∑
σ∈Ep

|σ|
dpσ

= C2|p|. (53)

Using the condition (45) and (46) for this case we obtain similarly as in [4]

|un+1
p | ≤ max

p∈M
|un

p |, ∀p ∈ M, ∀n ∈ N0. (54)

Collecting both cases we can conclude from (51) and (54) that

∀p ∈ M, ∀n ∈ NT ,

|un+1
p | ≤ max

p∈M
|un

p |+ Cτ ≤ max
p∈M

‖u0
p|,+CT, (55)

which concludes the proof. �

5. Numerical experiments

We want to present the results obtained by proposed numerical schemes and
therefore, we use the example where the exact solution of (4) is well-known.
This example was used in [3] and [2]. The exact solution is of the form

u(x, y, t) = max
{
1− (x2 + y2)

2
3 − 4

3
t, 0
}2

. (56)
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Initial condition is obtained from the exact solution for t = 0. We use the
homogeneous Dirichlet boundary condition. Our domain Ω in this case is a square
Ω = [−2, 2]× [−2, 2]. The time interval is I = [0, 0.4].

One can see the shape of the exact solution and cuts of the solution for y = 0
for time T = 0; 0.2; 0.4 in Figure 1.

Figure 1. Initial condition (top left) and the exact solution at time T=0.2
(top right), the exact solution at time T=0.4 (bottom left) and the shape
of cuts (y = 0) for initial condition (blue) and the exact solution at time

T=0.2 (green), T=0.4 (red).

The results are computed for all numerical schemes presented at the end
of previous section:

• explicit (EX),

• semi-implicit (SI),

• fully-implicit (FI),

• Crank-Nicolson (CN).

There are several parameters and relations of parameters and also several
choices of the methods that can be used in proposed numerical schemes.
We did many experiments for all of them and here we present the best results
with parameters were the criterion of error versus CPU time we took in mind.
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For all methods we use the parameter of the scheme b = 108 and a = 10−12.
For this choice the explicit method is valid for C1 ≤ 10−11 for all used meshes.
We did it in this way to have the same regularization parameters for all meth-
ods. There is also possibility to select the parameter a = C1|p| for all methods,
but in this case results obtained for coarser meshes are worse. We use the uni-
form mesh and h = |σ| > 0 is the measure of the edge for the finite volume.
For solving the linear algebraic system, we used SOR method with parameter
α = 1.6 and the stopping criterion was denoted by TOL. For fully-implicit and
Crank-Nicolson schemes we used nonlinear iterations, too and the stopping
criterion was denoted by TOLN.

In the tables below we present the errors obtained by the numerical schemes
and the experimental order of convergence (EOC). The considered error is

E2 = ‖uD,τ − ū‖L2(Ω×(0,T )), (57)

where numerical function is defined in (32) and by ū we denote the value of exact
solution given by (56), that means

ū = u(xp, tn) for x ∈ p and t ∈< tn−1, tn >.

Further by N we denote the number of finite volumes along one side of the
domain Ω.

Parameters and notations for schemes are:

• For explicit method due to the conditional stability of the method we use
the relation τ = h2

4 and denote this time step as τEX and error from (57)

is denoted by EEX
2 .

• For semi-implicit scheme we use τ = h2 and denote this time step as τSI
and error from (57) is denoted by ESI

2 . For this case the tolerance for linear
solver SOR is TOL = 0.1h2 and average number of SOR iterations is about
12–15.

• For fully-implicit schemes we use τ = h2 and denote this time step as τFI
and error from (57) is denoted by EFI

2 . For this case the tolerance for lin-
ear solver SOR is TOL = h2 and average number of iterations is about 5.
For nonlinear iterations we use the tolerance TOLN = 0.1h2 and the aver-
age number of iterations for all computations is about 4.

• For the Crank-Nicolson scheme we use τ = h
4 and denote this time step

as τCN and error from (57) is denoted by ECN
2 . For this case the tolerance

for linear solver SOR is TOL = h2 and average number of iterations is
about 15. For nonlinear iterations we use the tolerance TOLN = 4h2 and
the average number of iterations for all computations is about 9.
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The results obtained for explicit scheme and semi-implicit scheme can be
found in Table 1.

Table 1. Error reports and EOCs for explicit and semi-implicit schemes.

N τEX EEX
2 EOC τSI ESI

2 EOC

20 1.0e-02 8.23e-03 - 4.0e-02 3.350e-02 -

40 2.50e-03 2.43e-03 1.762 1.0e-02 1.41e-02 1.307

80 6.25e-04 7.85-04 1.629 2.5e-03 5.40e-03 1.390

160 1.56e-04 3.29e-04 1.257 6.25e-04 1.95e-03 1.474

320 3.92e-05 1.64e-04 1.006 1.56e-04 6.89e-04 1.498

The results obtained for fully-implicit iterative scheme and C-N scheme are
in Table 2.

Table 2. Error reports and EOCs for fully-implicit and Crank-Nicolson schemes.

N τFI EFI
2 EOC τCN ECN

2 EOC

20 4.0e-02 1.50e-02 - 5.0e-02 2.49e-02 -

40 1.0e-02 4.45e-03 1.749 2.5e-02 1.25e-02 0.987

80 2.5e-03 1.42e-03 1.650 1.25-02 3.35e-03 1.906

160 6.25e-04 5.08e-04 1.482 6.25e-03 7.48e-04 2.161

320 1.56e-04 2.05e-04 1.306 3.125e-03 1.91e-04 1.972

From tables above, one can see that best results from EOC point of view
can be achieved using the Crank-Nicolson scheme. In this case the EOC is
nearly of second order. For semi-implicit and fully-implicit scheme we obtain
EOC about 1.5 and for Explicit scheme the EOC decreases down to first order.
One can realize that we do not know the accurate stability condition for this non-
linear equation although we know from previous section the estimation of stabil-
ity condition. We try of course the relation τ = h2. Explicit scheme does not con-
verge in this case. It is better if for the relation τ = Ch2 is the constant C smaller
but then the number of time steps is increasing and it cost much CPU time.
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That is why we choose the relation τ = h2/4. And notice that for the finest
scheme we can obtain the best L2 error. We can obtain comparable results
for N = 160 and N = 320 also for all iterative schemes that mean FI and CN

for this case if we modify the tolerance TOLN, but it is worse for another N and
even more it is worse for comparison of error versus CPU time.

Numerical results obtained using the Crank-Nicolson scheme for T = 0; 0.2; 0.4
can be seen in Figure 2 for N = 40.

Figure 2. Initial condition (top left) and numerical solution at time T=0.2
(top right), numerical solution at time T=0.4 (bottom) for the Crank-
-Nicolson scheme for N = 40.

Next, we compare numerical schemes for error and CPU time point of view
for this example. One can see the results in Log Log scale in Figure 3 for all
presented schemes and in Figure 4 we can see the zoom focused to the smaller
error. Explicit scheme for this comparison is the best to obtain error up to certain
accuracy. For smallest error it is not true due to many time steps which must
be computed.

Finally, we compare only three unconditionally stable schemes, i.e., semi-
implicit scheme, fully-implicit scheme and the Crank-Nicolson scheme.

In Figure 5, there are results for these three schemes presented, and again the
zoom on smaller errors is in Figure 6. From these Figures, it is obvious that C-N

scheme achieves the best results, namely for smaller errors.
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Figure 3. Comparison of error versus CPU time for explicit (blue), semi-
-implicit (black), fully-implicit (red) and C-N scheme (green) in Log Log
scale.

Figure 4. Comparison of error versus CPU time for explicit (blue), semi-
-implicit (black), fully-implicit (red) and C-N scheme (green) in Log Log

scale.
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Figure 5. Comparison of error versus CPU time for semi-implicit (black),

fully-implicit scheme (red) and C-N scheme (green) in Log Log scale.

Figure 6. Comparison of error versus CPU time for semi-implicit (black),
fully-implicit scheme (red) and C-N scheme (green) in Log Log scale.
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6. Conclusion

We studied AMSS model from numerical point of view or more precisely its
regularization form. We have presented numerical schemes based on the finite
volume methodology of Crank-Nicolson type. Further, we focused especially
on schemes, namely explicit, semi-implicit, fully-implicit and Crank-Nicolson
schemes. For explicit and implicit schemes we have proved stability for the nu-
merical solution. The stability of Crank-Nicolson scheme for AMSS model is an
open question yet. On several experiments we have performed the errors and
experimental order of convergence for the examples where the exact solution is
well-known. Graphs where we compare the proposed numerical methods from
error versus CPU time point of view are also included. For future study we want
to show the numerical Affine Invariance Property of proposed scheme and prove
the convergence results.
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SK–810-05 Bratislava
SLOVAKIA

E-mail : angela.handlovicova@stuba.sk
karol.mikula@gmail.com

70

https://doi.org/10.5201/ipol.2011.cm_fds

	1. Introduction
	2. AMSS model and its finite volume discretization
	3. Summary of the numerical schemes
	3.1. Explicit scheme
	3.2. Fully-implicit scheme
	3.3. Semi-implicit scheme
	3.4. Crank-Nicolson scheme

	4. Stability estimates
	4.1. Semi-implicit scheme
	4.2. Explicit scheme

	5. Numerical experiments
	6. Conclusion
	REFERENCES

