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KATUGAMPOLA FRACTIONAL OPERATORS
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ABSTRACT. In this work, there are considered higher order fractional opera-
tors defined in the sense of Katugampola. There are proved some fundamental
properties of the Katugampola fractional operators of any arbitrary real order.
Moreover, there are given conditions ensuring existence of the higher order Ka-

tugampola fractional derivative in space of the absolutely continuous functions.

1. Introduction

In 2011 Udita N. Katugampola introduced (see [1], [2]) new fractional op-
erators, which were named after his surname, i.e., the Katugampola fractional
integral and the Katugampola fractional derivative. Such operators depend on
some extra parameter ρ > 0, which by taking ρ → 0+ reduce to the Hadamard
fractional operators, and for parameter ρ = 1 become the Riemann-Liouville
fractional operators. Thanks to this, the use of the Katugampola fractional oper-
ators simplifies the theory. If we prove something for the Katugampola derivative,
we get this fact for both the Riemann-Liouville derivative and the Hadamard
derivative.

Nowadays, these operators are gaining more and more popularity. The Ka-
tugampola fractional derivative is widely discussed in the literature. They have
applications in fields such as probability theory [3], theory of inequalities [4, 5],
differential equations [6, 7], Mellin transforms [8], maximum principle [9] and
chaos and stability [10]. So far, in the literature, the Katugampola fractional
operators occur only up to the order 2. In this work, the author is interested
in the Katugampola derivative of the higher order. There is considered the exis-
tence of the Katugampola fractional derivative of an arbitrary real order α>0.
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Moreover, in the last section, there are described some useful properties of these
operators, which can be used to further research on the subject, where is still
much to be done.

2. Preliminaries

In this paper, we denote by N a set of natural numbers N = {1, 2, . . .} and
N0 = {0, 1, 2, . . .}.

In this section, we give the definitions of the Katugampola fractional integrals
and fractional derivatives on a finite positive interval of the real line [a, b] (0 <
a < b < ∞) with examples.
To formulate it, we need the following special functions:

• Gamma function defined for x > 0

Γ(x) =

∞∫
0

tx−1e−t dt,

which, for n ∈ N, has the following properties

Γ(n) = (n− 1)!, (1)

Γ(n) = nΓ(n − 1).

• Beta function defined for x, y > 0

B(x, y) =

1∫
0

tx−1(1− t)y−1 dt (2)

which can be written as

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
. (3)

Moreover, let L[a, b] be space of integrable functions f : (a, b) → R such that

b∫
a

|f(t)| dt < ∞.

���������� 2.1� Let n ∈ N, n − 1 < α < n, ρ > 0, 0 < a < b < ∞.
The operators

Iα,ρa+ f(t) =
ρ1−α

Γ(α)

t∫
a

τρ−1

(tρ − τρ)1−α
f(τ) dτ ,

Iα,ρb− f(t) =
ρ1−α

Γ(α)

b∫
t

τρ−1

(τρ − tρ)1−α
f(τ) dτ ,
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for t ∈ (a, b) are called the left-sided and right-sided Katugampola integrals
of fractional order α, provided they exist.

In particular,

Iα,1a+ f(t) = 1
Γ(α)

t∫
a

f(τ)
(t−τ)1−α dτ (Riemman-Lioville fractional in-

tegral)

limρ→0+ Iα,ρa+ f(t) = 1
Γ(α)

t∫
a

(
log t

τ

)α−1
f(τ)dττ (Hadamard fractional integral),

and

In,1a+ f(t) =

t∫
a

t1∫
a

t2∫
a

. . .

tn−1∫
a

f(τ)dτdtn−1 . . . dt1, n ∈ N.

Let us introduce the notation δρ for δρ-derivative defined by δρ := t1−ρ d
dt
.

We can easily prove that for n ∈ N

δnρ I
n,ρ
a+ f(t) = f(t), (4)

provided In,ρa+ f exists.

���������� 2.2� Let n ∈ N, ρ > 0, 0 < a < b < ∞, n − 1 < α < n.
The operators

Dα,ρ
a+ f(t) = δnρ I

n−α,ρ
a+ f(t)

Dα,ρ
b− f(t) = (−1)nδnρ I

n−α,ρ
b− f(t)

for t ∈ (a, b) are called the left-sided and right-sided Katugampola derivatives
of fractional order α, provided they exist.

In particular, for ρ = 1 and for ρ → 0+

Dα,1
a+ f(t) =

(
d

dt

)n
1

Γ(n − α)

t∫
a

f(τ)

(t− τ)α−n+1
dτ ,

lim
ρ→0+

Dα,ρ
a+ f(t) =

1

Γ(n− α)

(
t
d

dt

)n
t∫

a

(
log

t

τ

)n−α−1

f(τ)
dτ

τ
,

we obtain the Riemman-Liouville fractional derivative and the Hadamard frac-
tional derivative, respectively. Moreover,

D0,ρ
a+f(t) = D0,ρ

b−f(t) = f(t),
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and when α = n ∈ N, then

Dn,ρ
a+ f(t) = δn+1

ρ I1,ρ
a+f(t) =

(
t1−ρ d

dt

)n+1
t∫

a

τρ−1f(τ) dτ = δnρ f(t),

and, analogously,
Dn,ρ

b− f(t) = (−1)nδnρ f(t).

Now, we present the examples which show that Katugampola fractional inte-
gral and differential operators of power functions return power functions.

Example. If α > 0, ρ > 0 and λ > −1 then

Iα,ρa+

(
tρ − aρ

ρ

)λ

=
Γ(λ+ 1)

Γ(λ+ α+ 1)

(
tρ − aρ

ρ

)α+λ

,

Iα,ρb−

(
bρ − tρ

ρ

)λ

=
Γ(λ+ 1)

Γ(λ+ α+ 1)

(
bρ − tρ

ρ

)α+λ

.

Example. For ρ > 0, α > 0, λ > α− 1, we have

Dα,ρ
a+

(
tρ − aρ

ρ

)λ

=
Γ(λ+ 1)

Γ(λ+ 1− α)

(
tρ − aρ

ρ

)λ−α

, (5)

and

Dα,ρ
b−

(
bρ − tρ

ρ

)λ

=
Γ(λ+ 1)

Γ(λ+ 1− α)

(
bρ − tρ

ρ

)λ−α

. (6)

The equality (5) was proved in [14]. Formula (6) can be proved similarly by using

substitution of the form u =
bρ − τρ

bρ − tρ
.

From the above, we have the following remark.

Remark 1� If α > 0, n = [α] + 1 and ρ > 0, then

Dα,ρ
a+

(
tρ − aρ

ρ

)α−j

= 0, for j = 1, . . . , n.

In this work, we are interested in the Katugampola fractional derivatives
of order α ∈ (n − 1, n], n ∈ N. Therefore, in the following, we give conditions
ensuring existence of the higher order Katugampola fractional derivatives in the
space ACn

ρ [a, b] defined below.

Moreover, in Section 4 we describe some properties of the Katugampola frac-
tional operators.
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3. Existence of the Katugampola fractional derivative

Let AC[a, b] be the space of functions f which are absolutely continuous
on [a, b] i.e.,

AC[a, b] :=

⎧⎨
⎩f : [a, b] → R : f(t) = c+

t∫
a

ϕ(s) ds

⎫⎬
⎭ , (7)

where c is an arbitrary real constant and ϕ ∈ L[a, b]. Definition (7) can be
written as

AC[a, b] :=

⎧⎨
⎩f : [a, b] → R : f(t) = c̃−

b∫
t

ϕ(s) ds

⎫⎬
⎭ . (8)

The existence of the Katugampola fractional derivative for α ∈ (0, 1] was con-
sidered in [13], and case for α ∈ (1, 2] in [4]. In this work, we consider the
Katugampola fractional derivative for any positive real α. For this purpose, let
us introduce the space ACn

ρ [a, b], for n ∈ N which consists of those real-valued
Lebesgue measurable functions f on (a, b) which have δρ-derivatives up to order
n− 1 and δn−1

ρ f is absolutely continuous on [a, b]:

ACn
ρ [a, b] :=

{
f : [a, b] → R : δn−1

ρ f ∈ AC[a, b], δρ = t1−ρ d

dt

}
. (9)

If ρ = 1 and n = 1, the space AC1
1 [a, b] coincides with AC[a, b].

The space ACn
ρ [a, b] is characterized by the following result.

	�

� 3.1� Let 0 < a < b < ∞, ρ > 0 and n ∈ N. The space ACn
ρ [a, b] consists

of those and only those functions f which can be represented in the form

f(t) =

n−1∑
i=0

ci

(
tρ − aρ

ρ

)i

+
1

(n− 1)!

t∫
a

(
tρ − τρ

ρ

)n−1

ϕ(τ) dτ , (10)

or

f(t) =

n−1∑
i=0

ci(−1)i
(
bρ − tρ

ρ

)i

+
(−1)n−1

(n− 1)!

b∫
t

(
τρ − tρ

ρ

)n−1

ϕ(τ) dτ , (11)

where ci (i = 0, 1, . . . , n− 1) are arbitrary real constants and ϕ ∈ L[a, b].

P r o o f. We will show only the proof of the formula (10). First, we prove neces-
sity. Let f ∈ ACn

ρ [a, b]. Then by (9) we have

δn−1
ρ f ∈ AC[a, b], where δρ = t1−ρ d

dt
.
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From (7) we get

δn−1
ρ f(t) = cn−1 +

t∫
a

ϕ(τ) dτ , (12)

where cn−1 is an arbitrary constant and ϕ ∈ L[a, b]. In order to prove the
formula (11), we should use the above (8) instead of (7) and the rest of the
proof will be analogous. We can rewrite (12) in the form

d

dt
δn−2
ρ f(t) = tρ−1cn−1 + tρ−1

t∫
a

ϕ(τ) dτ. (13)

Now, integrating both sides of (13) we get

δn−2
ρ f(t) = cn−1

tρ − aρ

ρ
+ cn−2 +

t∫
a

tρ − τρ

ρ
ϕ(τ) dτ,

where cn−1, cn−2 are arbitrary constants. Repeating this process m (1 ≤ m ≤
n− 1) times we obtain successively

δn−3
ρ f(t) = cn−3 + cn−2

tρ − aρ

ρ
+

1

2
cn−1

(
tρ − aρ

ρ

)2

+
1

2

t∫
a

(
tρ − τρ

ρ

)2

ϕ(τ) dτ.

δn−4
ρ f(t) = cn−4 + cn−3

tρ − aρ

ρ
+

1

2
cn−2

(
tρ − aρ

ρ

)2

+
1

6
cn−1

(
tρ − aρ

ρ

)3

+
1

6

t∫
a

(
tρ − τρ

ρ

)3

ϕ(τ) dτ.

δn−m
ρ f(t) =

m−1∑
i=0

cn−m+i

(
tρ − aρ

ρ

)i

+
1

(m− 1)!

t∫
a

(
tρ − τρ

ρ

)m−1

ϕ(τ) dτ, (14)

where cn−1, cn−2, . . . , cn−m are arbitrary constants. Taking (14) with m = n,
we obtain (10) and the necessity is proved.
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Now, let f be represented by (10). Taking δρ-derivative m times (m ≤ n− 1),
we have, respectively,

δρf(t) =

n−1∑
i=1

ici

(
tρ − aρ

ρ

)i−1

+
1

(n− 2)!

t∫
a

(
tρ − τρ

ρ

)n−2

ϕ(τ) dτ,

δ2
ρf(t) =

n−1∑
i=2

i(i− 1)ci

(
tρ − aρ

ρ

)i−2

+
1

(n− 3)!

t∫
a

(
tρ − τρ

ρ

)n−3

ϕ(τ) dτ,

δmρ f(t) =

n−1∑
i=m

ci
i!

(i−m)!

(
tρ − aρ

ρ

)i−m

+
1

(n−m− 1)!

t∫
a

(
tρ − τρ

ρ

)n−m−1

ϕ(τ) dτ.

Thus, for m = n− 1 we obtain

δn−1
ρ f(t) = cn−1(n− 1)! +

t∫
a

ϕ(τ) dτ,

which means that f ∈ ACn
ρ [a, b]. �

�
����
 3.2� Let ρ > 0, n ∈ N, n − 1 < α < n, 0 < a < b < ∞ and
f ∈ ACn

ρ [a, b] then the Katugampola fractional derivatives Dα,ρ
a+ f and Dα,ρ

b− f
exist almost everywhere on [a, b] and may be represented in the form

Dα,ρ
a+ f(t) =

n−1∑
i=0

ci
Γ(i+ 1)

Γ(i+ 1− α)

(
tρ − aρ

ρ

)i−α

+
1

Γ(n − α)

t∫
a

(
tρ − sρ

ρ

)n−α−1

ϕ(s) ds,

(15)

and

Dα,ρ
b− f(t) =

n−1∑
i=0

ci(−1)i
Γ(i+ 1)

Γ(i+ 1− α)

(
bρ − tρ

ρ

)i−α

+
(−1)n−1

Γ(n− α)

b∫
t

(
sρ − tρ

ρ

)n−α−1

ϕ(s) ds,

(16)

where ci (i = 0, 1, . . . , n− 1) are some real constants and ϕ ∈ L[a, b].
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P r o o f. We show in detail only the proof of the formula (15). Since f ∈ACn
ρ [a, b],

we have the representation (10). Substituting it into the definition of the left-
sided Katugampola fractional derivative and using (5), we obtain

Dα,ρ
a+ f(t)=

n−1∑
i=0

ci
Γ(i+ 1)

Γ(i+ 1− α)

(
tρ − aρ

ρ

)i−α

+
ρα−2n+1

(n− 1)!Γ(n− α)
δnρ

⎛
⎝

t∫
a

ρτρ−1

(tρ − τρ)1−n+α

τ∫
a

(τρ − sρ)
n−1

ϕ(s) ds dτ

⎞
⎠.

(17)

Changing the order of integration we have

t∫
a

ρτρ−1

(tρ − τρ)1−n+α

τ∫
a

(τρ − sρ)
n−1

ϕ(s) ds dτ

=

t∫
a

ϕ(s)

t∫
s

ρτρ−1

(tρ − τρ)1−n+α
(τρ − sρ)

n−1
dτ ds.

The inner integral can be evaluated by the change of variable u =
τρ − sρ

tρ − sρ
.

It gives
t∫

s

ρτρ−1

(tρ − τρ)1−n+α
(τρ − sρ)

n−1
dτ

= (tρ − sρ)2n−α−1

1∫
0

un−1(1− u)n−α−1 du.

Using the Beta function and the fact (3), we obtain
t∫

s

ρτρ−1

(tρ − τρ)1−n+α
(τρ − sρ)

n−1
dτ

= (tρ − sρ)2n−α−1 Γ(n)Γ(n − α)

Γ(2n− α)
.

Thus
t∫

a

ρτρ−1

(tρ − τρ)1−n+α

τ∫
a

(τρ − sρ)
n−1

ϕ(s) ds dτ

=
Γ(n)Γ(n− α)

Γ(2n− α)

t∫
a

(tρ − sρ)2n−α−1ϕ(s) ds.
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Taking δnρ -differentiation and using properties of Gamma function we obtain

δnρ

⎛
⎝Γ(n)Γ(n− α)

Γ(2n− α)

t∫
a

(tρ − sρ)2n−α−1ϕ(s) ds

⎞
⎠

=
ρΓ(n)Γ(n− α)

Γ(2n− α− 1)
δn−1
ρ

⎛
⎝

t∫
a

(tρ − sρ)2n−α−2ϕ(s) ds

⎞
⎠

=
ρ2Γ(n)Γ(n − α)

Γ(2n− α− 2)
δn−2
ρ

⎛
⎝

t∫
a

(tρ − sρ)2n−α−3ϕ(s) ds

⎞
⎠

= · · ·

= ρmΓ(n)Γ(n− α)Γ(2n− α−m)δn−m
ρ

⎛
⎝

t∫
a

(tρ − sρ)2n−α−m−1ϕ(s) ds

⎞
⎠ .

Finally, taking n = m we have

δnρ

⎛
⎝Γ(n)Γ(n− α)

Γ(2n− α)

t∫
a

(tρ − sρ)2n−α−1ϕ(s) ds

⎞
⎠

= ρnΓ(n)

⎛
⎝

t∫
a

(tρ − sρ)n−α−1ϕ(s) ds

⎞
⎠ .

Substituting this into (17) and using the property of Gamma function (1),
we obtain (15).

In order to prove the formula (16), we should start with substituting (11)
into definition of the right-sided Katugampola fractional derivative. These details
are left to the reader. �

��������� 3.3� If 0 < α < 1 and f ∈ AC[a, b], then Dα,ρ
a+ f exists almost

everywhere in [a, b] and

Dα,ρ
a+ f(t) = c

(
ρ

tρ − aρ

)α

+
1

Γ(1− α)

t∫
a

(
ρ

tρ − τρ

)α

f ′(τ) dτ, (18)

where c is real constant.

Remark 2� Relation (18) was proved in [13].

These results in Theorem 3.2 for the Katugampola fractional derivatives are
analogous to those which have been proven for the Riemann-Liouville and the
Hadamard fractional derivatives. It means that if we take in Theorem 3.2 ρ = 1,
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we obtain the form of the Riemann-Liouville fractional derivatives of the order
α in space ACn

1 [a, b] (n = [α] + 1), i.e.,

Dα
a+f(t) =

n−1∑
i=0

ci(t− a)i−α +
1

Γ(n− α)

t∫
a

ϕ(s)

(t− s)α−n+1
ds,

Dα
b−f(t) =

n−1∑
i=0

(−1)ici(b− t)i−α +
(−1)n

Γ(n− α)

b∫
t

ϕ(s)

(s− t)α−n+1
ds,

where ϕ ∈ L[a, b] and ci are arbitrary constants. These relations were established
in [11, Lemma 2.2]. Moreover, taking ρ→ 0+ in Theorem 3.2 we obtain result
from [12, Theorem 3.4].

4. Properties of the Katugampola fractional operators

The Katugampola fractional integral satisfies several important properties
including boundedness in the Lp(a, b) space or linearity property. These facts
were proved in [1]. The following assertion shows that Katugampola fractional
integrals satisfy semigroup property.

	�

� 4.1� Let α > 0, β > 0, ρ > 0 and f ∈ L[a, b] then

Iα,ρa+ Iβ,ρa+ f(t) = Iα+β,ρ
a+ f(t), (19)

and

Iα,ρb− Iβ,ρb− f(t) = Iα+β,ρ
b− f(t) (20)

for all t ∈ (a, b).

P r o o f. By definition of the Katugampola fractional integral, and next by chan-
ging order of integration we obtain

Iα,ρa+ Iβ,ρa+ f(t) =
ρ1−α−β

Γ(α)Γ(β)

t∫
a

sρ−1f(s)

t∫
s

ρτρ−1

(tρ − τρ)1−α(τρ − sρ)1−β
dτ ds.

Substitution u =
τρ − sρ

tρ − sρ
in the inner integral gives

Iα,ρa+ Iβ,ρa+ f(t) =
ρ1−α−β

Γ(α)Γ(β)

t∫
a

sρ−1f(s)(tρ − sρ)α+β−1

1∫
0

uβ−1(1− u)α−1 du ds.

Using definition of the function Beta and its property (3), we obtain (19).
The property (20) is proved by analogy. �
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	�

� 4.2� Let α > β > 0, ρ > 0 and f ∈ L[a, b] then

Dβ,ρ
a+ Iα,ρa+ f(t) = Iα−β,ρ

a+ f(t), a < t < b.

P r o o f. Let n = [β] + 1. Using definitions of the Katugampola fractional oper-
ators and index rule (19) we obtain

Dβ,ρ
a+ Iα,ρa+ f(t) = δnρ I

n−β,ρ
a+ Iα,ρa+ f(t)

= δnρ I
n,ρ
a+ Iα−β,ρ

a+ f(t),

which ends the proof, because δnρ I
n,ρ
a+ f(t) = f(t), as it is mentioned in (4). �

The next result shows that, for certain classes of functions, the Katugampola
fractional derivative is the left inverse operator of the Katugampola fractional
integral.

�
����
 4.3� Let α > 0, ρ > 0 and f ∈ L[a, b], then

Dα,ρ
a+ Iα,ρa+ f(t) = f(t).

However, as we show below, the Katugampola fractional derivative is not the
right inverse of the Katugampola fractional integral.

�
����
 4.4� Let n− 1 < α < n, n ∈ N, ρ > 0, In−α,ρ
a+ f ∈ ACn

ρ [a, b], then

Iα,ρa+ Dα,ρ
a+ f(t) = f(t) +

n−1∑
i=0

c̃i

(
tρ − aρ

ρ

)i−n+α

,

where c̃i are real constants.

P r o o f. From definition of the space ACn
ρ [a, b] (9) and Lemma 3.1, we can

rewrite the assumption In−α,ρ
a+ f ∈ ACn

ρ [a, b] as

δn−1
ρ In−α,ρ

a+ f(t) = c +

t∫
a

ϕ(τ) dτ (21)

and

In−α,ρ
a+ f(t) =

n−1∑
i=0

ci

(
tρ − aρ

ρ

)i

+
1

(n− 1)!

t∫
a

(
tρ − τρ

ρ

)n−1

ϕ(τ) dτ , (22)

where ci are real constants and ϕ ∈ L[a, b].

Taking δρ-derivative of (21) we obtain

Dα,ρ
a+ f(t) = t1−ρϕ(t).

Thus

Iα,ρa+ Dα,ρ
a+ f(t) = Iα,ρa+

[
t1−ρϕ(t)

]
. (23)
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On the other hand, applying operator Dn−α,ρ
a+ to both sides of (22) we have

f(t) =

n−1∑
i=0

ciD
n−α,ρ
a+

(
tρ − aρ

ρ

)i

+
1

(n− 1)!
Dn−α,ρ

a+

⎛
⎝

t∫
a

(
tρ − τρ

ρ

)n−1

ϕ(τ) dτ

⎞
⎠ .

(24)

From (5) we have

Dn−α,ρ
a+

(
tρ − aρ

ρ

)i

=
Γ(i+ 1)

Γ(i+ 1− n+ α)

(
tρ − aρ

ρ

)i−n+α

. (25)

Furthermore, we have

Dn−α,ρ
a+

⎛
⎝

t∫
a

(
tρ − τρ

ρ

)n−1

ϕ(τ) dτ

⎞
⎠

= δρI
1−n+α,ρ
a+

⎡
⎣

t∫
a

(
tρ − τρ

ρ

)n−1

ϕ(τ) dτ

⎤
⎦

=
ρ−α

Γ(1 − n+ α)
δρ

⎛
⎝

t∫
a

ϕ(s)

t∫
s

ρτρ−1(τρ − sρ)n−1

(tρ − τρ)n−α
dτ

⎞
⎠ .

Substitution u =
τρ − sρ

tρ − sρ
gives

Dn−α,ρ
a+

⎛
⎝

t∫
a

(
tρ − τρ

ρ

)n−1

ϕ(τ) dτ

⎞
⎠

=
ρ−α

Γ(1− n+ α)
δρ

⎛
⎝

t∫
a

ϕ(s)(tρ − sρ)α
1∫

0

un−1(1− u)α−n du ds

⎞
⎠ .

Finally, using properties of Beta and Gamma functions we obtain

Dn−α,ρ
a+

⎛
⎝

t∫
a

(
tρ − τρ

ρ

)n−1

ϕ(τ)dτ

⎞
⎠ =

ρ−αΓ(n)

Γ(α+ 1)
δρ

⎛
⎝

t∫
a

ϕ(s)(tρ − sρ)α ds

⎞
⎠

= Γ(n)Iα,ρa+

(
t1−ρϕ(t)

)
.

(26)
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Substituting (25) and (26) into (24) we have

f(t) =

n−1∑
i=0

ci
Γ(i+ 1)

Γ(i+ 1− n+ α)

(
tρ − aρ

ρ

)i−n+α

+ Iα,ρa+

(
t1−ρϕ(t)

)
. (27)

By (23) and (27) we get the thesis, and the proof is completed. �

The above theorem allows to find a general solution of the following fractional
equation

Dα,ρ
a+ u(t) = 0, (28)

where α, ρ are positive real constants. We have

�
����
 4.5� Let n − 1 < α < n, n ∈ N and ρ > 0, then equation (28) holds
if, and only if,

u(t) =

n∑
i=1

ci

(
tρ − aρ

ρ

)α−i

.

The proof of this theorem is trivial, so it is left to the reader.
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