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ABSTRACT. The authors examine the oscillation of second-order nonlinear dif-
ferential equations with mixed nonlinear neutral terms. They present new oscil-

lation criteria that improve, extend, and simplify existing ones in the literature.
The results are illustrated by some examples.

1. Introduction

This paper is concerned with the oscillatory behaviour of solutions of the se-
cond-order nonlinear differential equations with mixed neutral terms of the form(

a(t) (y′(t))α
)′
+ q(t)xγ(τ(t)) + c(t)xμ(ω(t)) = 0 (1)

and (
a(t) (y′(t))α

)′
= q(t)xγ(τ(t)) + c(t)xμ(ω(t)), (2)

where y(t) = x(t) + p1(t)x
β(σ(t)) − p2(t)x

δ(σ(t)) and t ≥ t0 > 0. Throughout
this paper, we always assume that the following conditions are satisfied:

(i) α, β, γ, μ, and δ are the ratios of odd positive integers with 0 < β < 1 and
δ > 1;
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(ii) a : [t0,∞) → (0,∞) is a continuous function such that

A(t, t0) :=

t∫
t0

a−1/α(s) ds → ∞ as t → ∞; (3)

(iii) p1, p2, q, c : [t0,∞) → (0,∞) are continuous functions;

(iv) τ , σ, ω : [t0,∞) → R are continuous functions such that τ(t) ≤ t, σ(t) ≤ t,
ω(t) ≥ t, and limt→∞ τ(t) = limt→∞ σ(t) = limt→∞ ω(t) = ∞.

By a solution of equation (1) (resp. (2)), we mean a function x ∈ C
(
[tx,∞),R

)
for some tx ≥ t0 such that y ∈ C1

(
[tx,∞),R

)
, a (y′)α ∈ C1

(
[tx,∞),R

)
, and

satisfies (1) (respectively (2)) on [tx,∞). We only consider those solutions of (1)
(respectively (2)) that exist on some half-line [tx,∞) and satisfy the condition

sup {|x(t)| : T1 ≤ t < ∞} > 0 for any T1 ≥ tx.

Moreover, we tacitly assume that (1) (respectively (2)) possesses such solutions.
Such a solution x(t) of either (1) or (2) is said to be oscillatory if it has arbitrarily
large zeros on [tx,∞), i.e., for any t1 ∈ [tx,∞) there exists t2 ≥ t1 such that
x(t2) = 0; otherwise it is called nonoscillatory, i.e., if it is eventually positive or
eventually negative. Equation (1) or (2) is said to be oscillatory if all its solutions
are oscillatory.

In recent years, there has been much research activity concerning the oscil-
lation and nonoscillation of solutions of various differential equations, and we
refer the reader to the monographs [2, 3], and the papers [1, 4–10, 14–22] and
the references cited therein. With respect to neutral differential equations, the
qualitative study of such equations has, besides its theoretical interest, significant
practical importance. This is due to the fact that neutral differential equations
arise in various phenomena including problems concerning electric networks con-
taining lossless transmission lines (as in high-speed computers where such lines
are used to interconnect switching circuits), in the study of vibrating masses
attached to an elastic bar, and in the solution of vibrational problems with time
delays. We refer the reader to Hale’s monograph [11] for further applications
in science and technology.

In reviewing the literature, it becomes apparent that results on the oscilla-
tory behaviour of the second-order differential equations with a single sublinear
neutral term are relatively scarce. For an important initial contribution for such
equations, we may refer to [1, 6]. By using Riccati type transformations, in [1],
the authors obtain some oscillation results for (1) in the case where α = γ = 1,
p2(t) = 0, and c(t) = 0. On the other hand, the authors in [6] established some
new results for the case where α = 1, p2(t) = 0, and c(t) = 0.
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However, to the best of our knowledge, there are few results dealing with the
oscillation of mixed neutral differential equations with both sublinear and super-
linear neutral terms; for example, see [8], where an equation with nonnegative
neutral terms was considered. The aim of the present paper is to initiate the
study of the oscillatory behaviour of (1) and to provide new results that extend,
generalize, and simplify existing ones in the literature, and to analyse the oscil-
latory and asymptotic behaviour of solutions of the corresponding equation (2)
with mixed neutral terms and again under condition (3) with β < 1 and δ > 1.

2. Oscillation of equation (1)

We begin with the following lemma that is essential in the proofs of our
theorems.

����� 2.1 ([12])� If X and Y are nonnegative, then

Xλ + (λ− 1)Y λ − λXY λ−1 ≥ 0 for λ > 1 (4)

and

Xλ − (1− λ)Y λ − λXY λ−1 ≤ 0 for 0 < λ < 1, (5)

where equality holds if and only if X = Y .

For notational purposes, we let

A(v, u) :=

v∫
u

a−1/α(s) ds,

and for any function p ∈ C
(
[t0,∞),R

)
, we set

g1(t) := (δ − 1)δδ/(1−δ)pδ/(δ−1)(t)p
1/(1−δ)
2 (t),

g2(t) := (1− β)ββ/(1−β)pβ/(β−1)(t)p
1/(1−β)
1 (t),

Q(t) :=
q(t)

(p2(h1(t)))
γ/δ

,

and

C(t) :=
c(t)

(p2(h2(t)))
μ/δ

,

where h1(t) = σ−1(τ(t)) ≤ t with limt→∞ h1(t) = ∞, h2(t) = σ−1(ω(t)) with
limt→∞ h2(t) = ∞, h′

2(t) > 0, and σ−1 is the inverse function of σ.
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Our first main result is contained in the following theorem for Eq. (1).

����	�� 2.2� Let conditions (i)–(iv) and (3) hold. Assume that there exist
functions p ∈ C

(
[t0,∞),R

)
, ϕ ∈ C

(
[t0,∞),R

)
, and a nondecreasing function

ξ ∈ C
(
[t0,∞),R

)
such that

lim
t→∞

[g1(t) + g2(t)] = 0, (6)

ϕ(t) ≤ t and ρ(t) := h2(ϕ(t)) ≥ t (7)

and
h1(t) ≤ ξ(t) ≤ t. (8)

If there is a κ0 ∈ (0, 1) such that the first-order delay differential inequality

Z ′(t) + κγ
0q(t)A

γ
(
τ(t), t0

)
Zγ/α(τ(t)) ≤ 0, (9)

the first-order delay differential inequality

W ′(t) +Q(t)Aγ/δ
(
ξ(t), h1(t)

)
W γ/αδ(ξ(t)) ≤ 0, (10)

and the first-order advanced differential inequality

z′(t)−

⎛
⎜⎝ 1

a(t)

t∫
ϕ(t)

C(s) ds

⎞
⎟⎠
1/α

zμ/αδ(ρ(t)) ≥ 0 (11)

have no positive solutions, then equation (1) is oscillatory.

P r o o f. Let x(t) be a nonoscillatory solution to the equation (1), say x(t) > 0,
x(σ(t)) > 0, x(τ(t)) > 0 and x(ω(t)) > 0 for t ≥ t1 for some t1 ≥ t0. The proof
if x(t) is eventually negative is similar, so we omit the details of that case here
as well as in the remaining proofs in this paper. Then, it follows from (1) that(

a(t) (y′(t))α
)′

= −q(t)xγ(τ(t))− c(t)xμ(ω(t)) ≤ −q(t)xγ(τ(t)) < 0, (12)

for t ≥ t1, and hence a(t) (y′(t))α is decreasing and eventually does not change
its sign, say on [t2,∞) for some t2 ≥ t1. Therefore, y

′(t) eventually has a fixed
sign on [t2,∞), and so we shall distinguish the following four cases:

(I) y(t) > 0 and y′(t) < 0, (II) y(t) > 0 and y′(t) > 0,

(III) y(t) < 0 and y′(t) > 0, (IV) y(t) < 0 and y′(t) < 0.

First, we consider case (I). Since y′(t) < 0 and a(t) (y′(t))α is decreasing for
t ≥ t2, we see that, for c1 > 0,

a(t) (y′(t))α ≤ a(t2) (y
′(t2))

α
:= −c1 < 0.

Integrating the last inequality from t2 to t and taking (3) into account, we con-
clude that limt→∞ y(t) = −∞, which contradicts the fact that y(t) is eventually
positive.
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Next, we consider case (II). From the definition of y(t), we have

x(t) = y(t)−[
p(t)x(σ(t))− p2(t)x

δ(σ(t))
]−[

p1(t)x
β(σ(t))− p(t)x(σ(t))

]
. (13)

Applying (4) to
[
p(t)x(σ(t))− p2(t)x

δ(σ(t))
]
with

λ = δ > 1, X = p
1/δ
2 (t)x(σ(t)) and Y =

(
1

δ
p(t)p

−1/δ
2 (t)

)1/(δ−1)

,

we see that[
p(t)x(σ(t))− p2(t)x

δ(σ(t))
] ≤ (δ − 1)δδ/(1−δ)pδ/(δ−1)(t)p

1/(1−δ)
2 (t) := g1(t).

(14)
Applying (5) to

[
p1(t)x

β(σ(t))− p(t)x(σ(t))
]
with

λ = β < 1, X = p
1/β
1 (t)x(σ(t)) and Y =

(
1

β
p(t)p

−1/β
1 (t)

)1/(β−1)

,

we see that[
p1(t)x

β(σ(t))− p(t)x(σ(t))
] ≤ (1− β)ββ/(1−β)pβ/(β−1)(t)p

1/(1−β)
1 (t) := g2(t).

(15)
Using (14) and (15) in (13) gives

x(t) ≥
[
1− g1(t) + g2(t)

y(t)

]
y(t) for t ≥ t2. (16)

Since y(t) > 0 and y′(t) > 0 on [t2,∞), there exist t3 ≥ t2 and a constant c2 > 0
such that y(t) ≥ c2 for t ≥ t3, and so, inequality (16) can be written as

x(t) ≥
[
1− g1(t) + g2(t)

c2

]
y(t) for t ≥ t3. (17)

Now, in view of (6), for any κ ∈ (0, 1) there exists tκ ≥ t3 such that

x(t) ≥ κy(t) for t ≥ tκ. (18)

Fix κ ∈ (0, 1) and choose tκ by (18). Since limt→∞ τ(t) = ∞, we can choose
t5 ≥ tκ such that τ(t) ≥ tκ for all t ≥ t5. Thus, from (18) we have

x(τ(t)) ≥ κy(τ(t)) for t ≥ t5. (19)

Using (19) in (12) yields(
a(t) (y′(t))α

)′
+ κγq(t)yγ(τ(t)) ≤ 0 for t ≥ t5. (20)

Since y(t) is positive and a(t) (y′(t))α is decreasing for t ≥ t5, we see that

y(t) ≥
t∫

t5

a−1/α(s)
(
a1/α(s)y′(s)

)
ds

≥ A(t, t5)
(
a(t) (y′(t))α

)1/α
. (21)
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Letting Z(t) = a(t) (y′(t))α > 0, inequality (21) takes the form

y(t) ≥ A(t, t5)Z
1/α(t). (22)

Using (22) in (20), we see that Z is a positive solution of the inequality

Z ′(t) + κγq(t)Aγ(τ(t), t5)Z
γ/α(τ(t)) ≤ 0, (23)

i.e., inequality (9) has a positive solution, which contradicts our assumption.

Next, we consider the cases where y(t) < 0 for t ≥ t2, i.e., cases (III) and (IV).
Letting z(t) = −y(t), then from the definition of y(t), we see that

z(t) = −y(t) = −x(t)− p1(t)x
β(σ(t)) + p2(t)x

δ(σ(t)) ≤ p2(t)x
δ(σ(t)),

from which, we obtain

x(σ(t)) ≥
(

z(t)

p2(t)

)1/δ
,

or

x(t) ≥
(

z(σ−1(t))

p2(σ−1(t))

)1/δ
for t ≥ t2. (24)

In case (III), we have

z(t) = −y(t) > 0 for t ≥ t2, so z′(t) = −y′(t) < 0 for t ≥ t2.

Now, it follows from (12) that(
a(t) (z′(t))α

)′ ≥ q(t)xγ(τ(t)) for t ≥ t2. (25)

Using (24) in (25) gives(
a(t) (z′(t))α

)′ ≥ Q(t)zγ/δ(h1(t)) for t ≥ t3, (26)

where τ(t) ≥ t2 for t ≥ t3 for some t3 ≥ t2. Now, for t3 ≤ u ≤ v, we may write

z(u)− z(v) = −
v∫

u

a−1/α(s)
(
a(s) (z′(s))α

)1/α
ds ≥ A(v, u)

(
−a1/α(v)z′(v)

)
.

Letting u = h1(t) and v(t) = ξ(t) in the last inequality, we see that

z(h1(t)) ≥ A
(
ξ(t), h1(t)

) (−a1/α(ξ(t))z′(ξ(t))
)
. (27)

Using (27) in (26) gives

(
a(t) (z′(t))α

)′ ≥ Q(t)
[
A
(
ξ(t), h1(t)

) (−a1/α(ξ(t))z′(ξ(t))
)]γ/δ

for t ≥ t3.

(28)

Letting W (t) = a(t) (−z′(t))α > 0, we see that W (t) is a positive solution of the
first-order delay differential inequality

W ′(t) +Q(t)Aγ/δ
(
ξ(t), h1(t)

)
W γ/αδ(ξ(t)) ≤ 0, (29)

which contradicts the assumption that (10) has no positive solutions.
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Finally, we consider case (IV). Since y(t) < 0 for t ≥ t2, as in the above,
letting z(t) = −y(t) > 0 for t ≥ t2, we again arrive at (24). Using (24) in (1),
we obtain (

a(t) (z′(t))α
)′

= q(t)xγ(τ(t)) + c(t)xμ(ω(t))

≥ Q(t)zγ/δ(h1(t)) + C(t)zμ/δ(h2(t))

≥ C(t)zμ/δ(h2(t)). (30)

Integrating (30) from ϕ(t) to t, we see that z(t) is a positive solution of the
first-order advanced inequality

z′(t) ≥

⎛
⎜⎝ 1

a(t)

t∫
ϕ(t)

C(s) ds

⎞
⎟⎠
1/α

zμ/αδ(ρ(t)), (31)

which contradicts the assumption on inequality (11), and completes the proof
of the theorem. �


�	����	� 2.3� Let conditions (i)–(iv) and (3) hold. Assume that there exist
functions p ∈ C

(
[t0,∞),R

)
, ϕ ∈ C

(
[t0,∞),R

)
, and nondecreasing function ξ ∈

C
(
[t0,∞),R

)
such that (6)–(8) are satisfied. If

∞∫
t0

q(s)Aγ
(
τ(s), t0

)
ds = ∞ if γ < α, (32)

∞∫
t0

Q(s)Aγ/δ
(
ξ(s), h1(s)

)
ds = ∞ if γ < αδ, (33)

and
∞∫

t0

⎛
⎜⎝ 1

a(u)

u∫
ϕ(u)

C(s) ds

⎞
⎟⎠
1/α

du = ∞ if μ > αδ, (34)

then equation (1) is oscillatory.

P r o o f. Let x(t) be a nonoscillatory solution to the equation (1), say x(t) > 0
x(σ(t)) > 0, x(τ(t)) > 0 and x(ω(t)) > 0 for t ≥ t1 for some t1 ≥ t0.
Proceeding as in the proof of Theorem 2.2, we again arrive at (23) for t ≥ t5,
(29) for t ≥ t3, and (31) for t ≥ t2, respectively. Using the fact that Z(t) =
a(t) (y′(t))α is positive and decreasing, and noting that τ(t) ≤ t, we have

Z(τ(t)) ≥ Z(t),
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and so, inequality (23) can be written as

Z ′(t) + κγq(t)Aγ
(
τ(t), t5

)
Zγ/α(t) ≤ 0,

or
Z ′(t)

Zγ/α(t)
+ κγq(t)Aγ

(
τ(t), t5

) ≤ 0 for t ≥ t5. (35)

An integration of (35) from t5 to ∞ gives

∞∫
t5

q(s)Aγ
(
τ(s), t5

)
ds ≤ 1

κγ

Z1− γ
α (t5)

1− γ
α

< ∞,

which contradicts (32). Using similar arguments, the remainder of proof follows
from the facts that ξ(t) ≤ t, ρ(t) ≥ t, and inequalities (29) and (31); we omit
the details. �

3. Oscillation of equation (2)

In this section we examine the behaviour of solutions of equation (2).

����	�� 3.1� Let conditions (i)–(iv) and (3) hold. Assume that there exist
functions p ∈ C

(
[t0,∞), (0,∞)

)
and η ∈ C

(
[t0,∞),R

)
such that (6) holds,

η(t) ≤ t, ω′(t) ≥ 0 and π(t) := ω(η(t)) ≥ t, (36)

and either

∞∫
t0

q(s) ds = ∞ or

∞∫
t0

⎛
⎝ 1

a(u)

∞∫
u

q(s) ds

⎞
⎠
1/α

du = ∞, (37)

are satisfied. In addition, if there is a κ0 ∈ (0, 1) such that the first-order
advanced differential inequality

z′(t)− κ
μ/α
0

⎛
⎜⎝ 1

a(t)

t∫
η(t)

c(s) ds

⎞
⎟⎠
1/α

zμ/α(π(t)) ≥ 0, (38)

and the first-order delay differential inequality

Z ′(t) +Q(t)Aγ/δ
(
h1(t), t0

)
Zγ/αδ(h1(t)) ≤ 0, (39)

have no positive solutions. If x(t) is a solution to the equation (2), then either
x(t) is oscillatory or lim inft→∞ |x(t)| = 0.

126



OSCILLATORY BEHAVIOUR OF SECOND-ORDER DIFFERENTIAL EQUATIONS

P r o o f. Let x(t) be a nonoscillatory solution to the equation (2), say x(t)> 0,
x(σ(t)) > 0, x(τ(t)) > 0, and x(ω(t)) > 0 for t ≥ t1, for some t1 ≥ t0.
Then, it follows from (2) that(

a(t) (y′(t))α
)′

= q(t)xγ(τ(t)) + c(t)xμ(ω(t)) ≥ q(t)xγ(τ(t)) > 0, (40)

for t ≥ t1, and hence a(t) (y′(t))α is increasing and eventually does not change
its sign on [t2,∞) for some t2 ≥ t1. Therefore, y

′(t) eventually has a fixed sign
on [t2,∞), and so we shall distinguish the following four cases:

(I) y(t) > 0 and y′(t) < 0, (II) y(t) > 0 and y′(t) > 0,

(III) y(t) < 0 and y′(t) > 0, (IV) y(t) < 0 and y′(t) < 0.

First, we consider case (I): In this case, we claim that lim inft→∞ x(t) = 0.
To prove this, we assume that there exists a constant b > 0 such that x(t) > b.
Using this in (40), we see that

(
a(t)

(
y′(t)

)α)′ ≥ bγq(t). (41)

Integrating (41) from t2 to ∞, we see that

∞∫
t2

q(s) ds ≤ −a(t2)(y
′(t2))α

bγ
< ∞,

which contradicts the first part of (37). If we integrate (41) from t to u and
letting u → ∞, we obtain

− y′(t) ≥
⎡
⎣bγ 1

a(t)

∞∫
t

q(s) ds

⎤
⎦
1/α

. (42)

Integrating (42) from t2 to ∞ and using the second part of (37), we again arrive
at the desired contradiction.

Next, we consider case (II). Proceeding exactly as in the proof of Theorem 2.2,
we again arrive at (18). Using (18) in (2), we see that

(
a(t)

(
y′(t)

)α)′ ≥ κμc(t)yμ(ω(t)) for t ≥ t5. (43)

Integrating (43) from η(t) to t, we see that y(t) is a positive solution of the
first-order advanced differential inequality

y′(t) ≥ κμ/α

⎛
⎜⎝ 1

a(t)

t∫
η(t)

c(s) ds

⎞
⎟⎠
1/α

yμ/α(π(t)), (44)

which contradicts the assumption on inequality (38).
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In case (III), since y(t) < 0 for t ≥ t2, as in the proof of case (III) in The-
orem 2.2, we let z(t) = −y(t) > 0 and see that (24) holds. Using (24) in (40),
we obtain (

a(t) (z′(t))α
)′
+Q(t)zγ/δ(h1(t)) ≤ 0 for t ≥ t2. (45)

Using the fact that z′(t) = −y′(t) < 0 and a(t) (z′(t))α is decreasing, and taking
into account (3), as in the proof of case (I) in Theorem 2.2, we contradicts the
fact that z(t) is eventually positive.

Finally, for case (IV), letting z(t) = −y(t) > 0, we again arrive at (45). Using
the fact that z(t) > 0 and a(t) (z′(t))α is decreasing, we see that

z(t) ≥
t∫

t2

a−1/α(s)
(
a(s) (z′(s))α

)1/α
ds ≥ A(t, t2)

(
a1/α(t)z′(t)

)
. (46)

Letting Z(t) = a(t) (z′(t))α > 0, in (46) yields

z(t) ≥ A(t, t2)Z
1/α(t). (47)

Substituting (47) into (45), we see that Z(t) is a positive solution of the first-
-order delay differential inequality

Z ′(t) +Q(t)Aγ/δ
(
h1(t), t2

)
Zγ/αδ(h1(t)) ≤ 0, (48)

which contradicts our assumption on inequality (39) and completes the proof.
�

It is well-known from [13] (see also [2, Lemma 2.2.9]) that if

lim inf
t→∞

t∫
ζ(t)

R(s) ds >
1

e
, (49)

then the first-order delay differential inequality

x′(t) +R(t)x(ζ(t)) ≤ 0 (50)

where R, ζ ∈ C
(
[t0,∞),R

)
with R(t) ≥ 0, ζ(t) ≤ t, and limt→∞ ζ(t) = ∞, has

no eventually positive solutions. If ζ(t) ≥ t, and ζ′(t) ≥ 0, we have the following
result (see [2, Lemma 2.2.10]): If

lim inf
t→∞

ζ(t)∫
t

R(s) ds >
1

e
, (51)

then the first-order advanced differential inequality

x′(t)−R(t)x(ζ(t)) ≥ 0 (52)

has no eventually positive solutions.
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Thus, from Theorem 3.1, we have the following oscillation result for equa-
tion (2).


�	����	� 3.2� Let conditions (i)–(iv) and (3) hold. Assume that there exist
functions p ∈ C

(
[t0,∞),R

)
and η ∈ C

(
[t0,∞),R

)
such that (6) and (36) hold.

If condition (37),

lim inf
t→∞

π(t)∫
t

⎛
⎜⎝ 1

a(u)

u∫
η(u)

c(s) ds

⎞
⎟⎠
1/α

du >
1

e
if μ = α, (53)

and

lim inf
t→∞

t∫
h1(t)

Q(s)Aγ/δ(h1(s), t0) ds >
1

e
if γ = αδ, (54)

are satisfied, then a solution x(t) of equation (2) is either oscillatory or satisfies
lim inft→∞ |x(t)| = 0.

P r o o f. The proof is straightforward and we omit the details. �


�	����	� 3.3� Let conditions (i)–(iv) and (3) hold. Assume that there exist
functions p ∈ C

(
[t0,∞),R

)
and η ∈ C

(
[t0,∞),R

)
such that (6) and (36) hold.

If condition (37),

∞∫
t0

⎛
⎜⎝ 1

a(u)

u∫
η(u)

c(s) ds

⎞
⎟⎠
1/α

du = ∞ if μ > α, (55)

and
∞∫

t0

Q(s)Aγ/δ(h1(s), t0) ds = ∞ if γ < αδ, (56)

are satisfied, then a solution x(t) of equation (2) is either oscillatory or satisfies
lim inft→∞ |x(t)| = 0.

P r o o f. The proof is similar to the proof of Corollary 2.3, and hence we omit
the details. �

We conclude this paper with some examples to illustrate the above results
and some suggestions for future research.
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4. Examples
Example 1.

Consider the equation

(ty′(t))′ + (1 + t2)x1/3(t/4) + (4t)μ/3xμ(2t) = 0, t ≥ 1, (57)

with

y(t) = x(t) +
1

t
x1/3(t/2)− tx3(t/2).

Here

α = 1, γ = 1/3, β = 1/3, δ = 3, τ(t) = t/4,

σ(t) = t/2, ω(t) = 2t, a(t) = t, q(t) = 1 + t2, c(t) = (4t)μ/3

with μ > 3 is the ratio of positive odd integers,

p1(t) = 1/t and p2(t) = t.

Then, it is easy to see that conditions (i)–(iv) and (3) hold. Letting p(t) = 1,
we see that condition (6) holds. Letting ξ(t) = 2t/3 and ϕ(t) = t/2, we see that

h1(t) = σ−1(τ(t)) = t/2 ≤ 2t/3,

and
ρ(t) := h2(ϕ(t)) = 4t > t,

i.e, conditions (7) and (8) hold. Since

A(t, t0) = A(t, 1) =

t∫
1

ds

s
= ln t,

we see that
∞∫

t0

q(s)Aγ
(
τ(s), t0

)
ds =

∞∫
1

(1 + s2)
(
ln

s

4

)1/3

ds = ∞,

∞∫
t0

Q(s)Aγ/δ
(
ξ(s), h1(s)

)
ds =

∞∫
1

21/9(1 + s2)

s1/9

(
ln

4

3

)1/9

ds = ∞,

and
∞∫

t0

⎛
⎜⎝ 1

a(u)

u∫
ϕ(u)

C(s) ds

⎞
⎟⎠
1/α

du =

∞∫
1

⎛
⎜⎝ 1

u

u∫
u/2

ds

⎞
⎟⎠ du =

∞∫
1

1

2
du = ∞,

i.e., conditions (32)–(34) hold. Thus, by Corollary 2.3, equation (57) is oscilla-
tory.
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Example 2.

Consider the equation(
t1/3 (y′(t))1/3

)′
= (1 + t3)x1/5(t/6) + xμ(3t), t ≥ 1, (58)

with

y(t) = x(t) +
1

t6
x1/7(t/3)− tx5(t/3).

Here
α = 1/3, γ = 1/5, β = 1/7, δ = 5,

μ is the ratio of positive odd integers,

τ(t) = t/6, σ(t) = t/3, ω(t) = 3t, a(t) = t1/3,

q(t) = 1 + t3, c(t) = 1, p1(t) = 1/t6, p2(t) = t.

Then, it is easy to see that conditions (i)–(iv), (3) and the first part of (37) hold.
Letting p(t) = 1, we see that condition (6) holds. Letting η(t) = 2t/3,
we see that

π(t) := ω(η(t)) = 2t > t,

i.e, condition (36) holds. Since

A(t, t0) = A(t, 1) =

t∫
1

ds

s
= ln t,

we see that
∞∫

t0

Q(s)Aγ/δ(h1(s), t0) ds =

∞∫
1

21/25(1 + s3)

s1/25

(
ln

s

2

)1/25
ds = ∞,

and
∞∫

t0

⎛
⎜⎝ 1

a(u)

u∫
η(u)

c(s) ds

⎞
⎟⎠
1/α

du =

∞∫
1

⎛
⎜⎝ 1

u1/3

u∫
2u/3

ds

⎞
⎟⎠
3

du

=
1

27

∞∫
1

u2 du = ∞,

i.e., conditions (55) and (56) hold. Thus, by Corollary 3.3, a solution x(t) of equa-
tion (58) is either oscillatory or satisfies

lim inf
t→∞ |x(t)| = 0.
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Remark 1� There is a number of directions for future research that can be
based on the results we obtained here. For example, could there be two different
delays in the neutral term, that is, could we have

y(t) = x(t) + p1(t)x
β(σ1(t))− p2(t)x

δ(σ2(t))

with
σ1(t) ≤ t and σ2(t) ≤ t?

Here we asked that
0 < β < 1 and δ > 1.

What if
β > 1 and 0 < δ < 1,

or any other combination? Another possibility would be to consider the case
where

lim
t→∞A(t, t0) = lim

t→∞

t∫
t0

a−1/α(s) ds < ∞.

It would be of interest also to extend the results here, or for the modifications
mentioned above, to higher-order equations such as(

a(t)
(
y(n−1)(t)

)α)′
+ q(t)xγ(τ(t)) + c(t)xμ(ω(t)) = 0

and (
a(t)

(
y(n−1)(t)

)α)′
= q(t)xγ(τ(t)) + c(t)xμ(ω(t)),

where n ≥ 3, and the functions a, c, q, and y are as in this paper.
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