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ABSTRACT. This paper is concerned with the controllability of impulsive differ-

ential equations with nonlocal conditions. First, we establish a property of mea-
sure of noncompactness in the space of piecewise continuous functions. Then,
by using this property and Darbo-Sadovskii’s Fixed Point Theorem, we get the
controllability of nonlocal impulsive differential equations under compactness con-
ditions, Lipschitz conditions and mixed-type conditions, respectively.

1. Introduction

Impulsive systems are described by the occurrence of an abrupt change in the
state of the system, which arises at certain time instants over a negligible time
period. The dynamic behaviour of systems with impulses is much more complex
than the behaviour of dynamic systems without impulse effects. In these models,
the investigated simulating processes and phenomena are subjected to certain
perturbations whose duration is negligible in comparison with the total duration
of the process. These processes tend to be more suitably modelled by impulsive
differential equations, which allow for discontinuities in the evolution of the state.
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For more facts on the results and applications of impulsive differential systems,
one can refer to the monographs of Bainov and Simenov [5], Lakshmikanthan
et al. [3] and the papers of [4, 8, 19–21, 25, 28], where the numerous properties
of their solutions are studied and detailed bibliographies are given.

In various fields of science and engineering, many problems that are related
to linear viscoelasticity, nonlinear elasticity and Newtonian or non-Newtonian
fluid mechanics have mathematical models. Popular models essentially fall into
two categories: the differential models and the integrodifferential models. A large
class of scientific and engineering problems is modelled by partial differential
equations, integral equations or coupled ordinary and partial differential equa-
tions which can be described as differential equations in infinite dimensional
spaces using semigroups. In general, functional differential equations, or evolu-
tion equations, serve as an abstract formulation of many partial integrodiffer-
ential equations which arise in problems connected with heat-flow in materials
with memory and many other physical phenomena.

The study of abstract nonlocal conditions was initiated by Byszewski [1].
The importance of the problem consists in the fact that it is more general and
is more effective than the classical initial conditions u(0) = u0. Therefore, it has
been studied extensively under various conditions. Readers may refer to [19,20,
25, 27, 28], where authors studied impulsive differential equations with nonlocal
conditions. In particular, the measure of noncompactness has been used as an
important tool to deal with some similar functional differential and integral
equations; see [6,9,10,33,34].

Motivated by the fact that a dynamical system may evolve through an ob-
servable quantity rather than the state of the system, a general class of evolu-
tionary equations is defined. This class includes standard ordinary and partial
differential equations as well as functional differential equations of retarded and
neutral types. In this way, the theory serves as a unifier of these classic problems.
Included in this general formulation is a general theory for the evolution of tem-
perature in a solid material. In the general case, temperature is transmitted as
waves with a finite speed of propagation. Special cases include a theory of de-
layed diffusion. When physical problems are simulated, the model often takes
the form of semilinear equations. Such problems in the control fluid flow can
be modelled by a semilinear system in a Banach space. For actual flow, control
problems are leading to this kind of model and the resulting model equation are
discussed in [2].

Control theory, on the other hand, is the branch of application-oriented math-
ematics that deals with the basic principles underlying the analysis and design
of control systems. To control an object implies the influence of its behaviour in
order to accomplish a desired goal. In order to implement this influence, prac-
titioners build devices and their interaction with the object being controlled
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is the subject of control theory. In control theory, one of the most important
qualitative aspects of a dynamical system is controllability. Controllability is
an important property of a control system and that property plays a crucial
role in many control problems such as the stabilization of unstable systems by
feedback or optimal control. Roughly, the concept of controllability denotes the
ability to move a system around its entire configuration space using only certain
admissible manipulations. Many basic problems of Control Theory like pole-
assignment, structural engineering, and optimal control, may be solved under
the assumption that the linear system is controllable. In recent years, significant
progress has been made in the controllability of linear and nonlinear determin-
istic systems [7,14–18,23].

In this paper, we discuss the controllability of the following impulsive differ-
ential equations with nonlocal conditions:

u′(t) = Au(t) + f(t, u(t)) +Bv(t), t ∈ J = [0, b], t �= ti,

u(0) = g(u),

Δu(ti) = Ii
(
u(ti)

)
, i = 1, 2, . . . , s,

(1.1)

where A : D(A) ⊆ X → X is the infinitesimal generator of a strongly continuous
semigroup T (t), t ≥ 0 in a Banach space X, B : U ⊆ X → X is a bounded linear
operator; the control function v (·) is given in L2(J, U ),with U as a Banach space;
f, g are appropriate continuous functions to be specified later; Ii : X → X is a
nonlinear map, Δu(ti)=u(t+i )− u(t−i ), for all i=1, 2, . . . , s, 0= t0<t1<t2 < · · ·
· · · < ts < ts + 1 = b, where u(t−i ), u(t

+
i ) denote the left and right limit of u

at t = ti, respectively.

From a practical and theoretical viewpoint, it is natural for mathematics to
combine impulsive conditions and controllability of the system. Recently, the
controlability of nonlocal impulsive differential problem of type (1.1) has been
discussed in the papers of Liu [31] and Ji et al. [10]. The main contributions are
as follows:

1. The study of controllability of impulsive differential equations via measure
of noncompactness described in the form (1.1) is an untreated topic in the
literature and this is an additional motivation for writing this paper.

2. We assume the nonlinear term only satisfies a weak compactness condition
and does not require the compactness of the semigroup.

3. We establish some sufficient conditions for the nonlocal controllability when
the solution operators are only equicontinuous, by means of the Darbo’s fixed
point theorem via the noncompactness measure.
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4. Our theorems guarantee the effectiveness of nonlocal controllability results
under some weak compactness conditions.

5. We emphasize that our methods avoid a technical error when the compactness
of semigroup and other hypotheses are satisfied, the application of controlla-
bility results are only restricted to the finite dimensional space.

The presentation of our work is as follows: Section 2 provides the definitions
and preliminary results to be used in this article. In particular, we review some
of the standard facts on evolution families, Hausdorff measure of noncompact-
ness, and certain useful fixed point results. In Section 3, we focus our attention
on controllability results for nonlinear systems using the measure of noncom-
pactness and Darbo’s Fixed Point Theorem.

2. Preliminaries

Let (X, ‖·‖) and (U, ‖·‖) be real Banach spaces. T (t) is a strongly continuous
semigroup on X, with generator A, is A : D(A) → X. We denote by C([0, b];X)
the space of X-valued continuous functions on [0, b] with the norm ‖x‖ =
sup {‖x(t)‖ , t ∈ [0, b]}. L1([0, b];X) is the space of X-valued Bochner integrable

functions on [0, b] with the norm ‖f‖L1 =
∫ b

0
‖f(t)‖ dt.

The semigroup T (t) is said to be equicontinuous if {T (t)x : x ∈ B} is equicon-
tinuous at t > 0 for any bounded subset B ⊂ X (cf. 27). Obviously, if T (t) is a
compact semigroup, it must be equicontinuous. The converse of the relation is
not correct. Throughout this paper, we suppose that

HA) The semigroup {T (t) : t ≥ 0} generated by A is equicontinuous. Moreover,
there exists a positive number M such that M = sup0≤t≤b ‖T (t)‖.

For the sake of simplicity, we put

J = [0, b], J0 = [0, t1], Ji = (ti, ti + 1], i = 1, 2, . . . , s.

In order to define a mild solution of the problem (1.1), we introduce the set
PC([0, b];X) = {u : [0, b] → X : u is continuous at t �= ti and left continuous
at t = ti and the right limit u(t+i ) exists, i = 1, 2, . . . , s}. It is easy to verify that
PC([0, b];X) is a Banach space with the norm ‖u‖PC=sup {‖u(t)‖ , t ∈ [0, b]}.

Consider the infinite-dimensional linear control system

u′(t) = Au(t) +Bv(t), t ∈ J = [0, b], u(0) = u0,
where

v(t) ∈ L2(J, U ), A : X → X, B : U → X.
(2.1)

Let B ∈ L(U,X) and b ≥ 0. The linear operator W : L2(J, U ) → X is defined by

Wv =

b∫
0

T (b− s)Bv(s) ds
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such that:

(i) W has an invertible operator W−1 which takes values in L2(J, U )/ kerW
(refer [32] for the invertibility of the operator W ), and there exist positive
constants M1 and M2 such that ||B|| ≤ M1 and ||W−1|| ≤ M2.

(ii) There is Kw ∈ L−1(J,R+) such that, for every bounded set Q ⊂ X

β(W−1Q)(t) ≤ Kw(t)β(Q).

We define control formally as

v(t) = W−1

[
u1 − T (b)g(u)−

b∫
0

T (b− s)f
(
s, u(s)

)
ds

−
∑

0<ti<t

T (t− ti)I[u(ti)](t)

]
.

���������� 2.1� A function u ∈ PC([0, b];X) is a mild solution of the prob-
lem (1.1) if

u(t) = T (t)g(u) +

t∫
0

T (t− s)f
(
s, u(s)

)
ds +

t∫
0

T (t− s)Bv(s) ds

+
∑

0<ti<t

T (t− ti) Ii [u (ti) ],

for all t ∈ [0, b].

Now, we introduce the Hausdorff measure of noncompactness (for shortMNC)
defined by

β(Ω) = inf{ε > 0 : Ω has a finite ε− net in X},
for each bounded subset Ω in a Banach space X.

Some basic properties of the Hausdorff measure of noncompactness β(·) are
given in the following lemma.

	�

� 2.2 ([6])� Let X be a real Banach space and B,C ⊆ X be bounded. Then
the following properties holds:

1. B is precompact if and only if β(B) = 0;

2. β(B) = β(B̄) = β(conv B), where B̄ and conv B means the closure of B and
convex hull of B, respectively;

3. β(B) ≤ β(C), when B ⊆ C;

4. β(B + C) ≤ β(B) + β(C), where B + C = {x+ y : x ∈ B, y ∈ C};
5. β(B ∪ C) ≤ max{β(B), β(C)};
6. β(λB) ≤ |λ|β(B), for any λ ∈ R;
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7. If the map Q : D(Q) ⊆ X → Z is Lipschitz continuous with constant k, then
βZ(QB) ≤ kβ(B) for any bounded subset B ⊆ D(Q), where Z is a Banach
space.

The map Q : D ⊆ X → X is said to be β-condensing, if Q is continuous and
bounded, and for any noncompact bounded subset B ⊂ D, we have β(QB) <
β(B), where X is a Banach space.

	�

� 2.3 ([6], Darbo-Sadovskii)� If D ⊂ X is bounded, closed, and convex;
the continuous map Q : D → D is β-condensing; then Q has at least one fixed
point in D.

In order to remove the strong restriction on the coefficient in Darbo-Sadovskii’s
Fixed Point Theorem, Sun and Zhang [29] generalized the definition of a β-
-condensing operator. At first, we give some notations. Let D ⊂ X be closed
and convex, the map Q : D → D and x0 ∈ D. For every B ⊂ D, set

Q(1,x0)(B) = Q(B), Q(1,x0)(B) = Q
(
conv

{
Q(n−1,x0)B, x0

})
,

where conv means the closure convex hull, n = 2, 3, . . .

���������� 2.4� Let D ⊂ X be closed and convex. The map Q : D → D is said
to be β-convex-power condensing if Q is continuous, bounded and there exist
x0 ∈ D, n0 ∈ N such that for every nonprecompact bounded subset B ⊂ D,
we have

β
(
Q(n0,x0)(B)

)
< β(B).

Obviously, if n0 = 1, then a β-convex-power condensing operator is β-con-
densing. Therefore, the convex power condensing operator is a generalization
of the condensing operator. Now, we give the Fixed Point Theorem about the
convex-power condensing operator.

	�

� 2.5 ([29])� If D ⊂ X is bounded, closed and convex, the map Q : D → D
is β-convex-power condensing, then Q has at least one fixed point in D.

We rephrase an important property of the Hausdorff MNC in PC([0, b];X),
which is an extension to the property of MNC in C([0, b];X) and forces us to deal
with the impulsive differential equations.

	�

� 2.6 ( [6],Lemma 2)� If W ⊆ C([0, b];X) is bounded, then β
(
W (t)

) ≤
β(W ) for all t ∈ [0, b], where W (t) = {u(t) : u ∈ W} ⊆ X. Further, if W
is equicontinuous on [0, b], then β

(
W (t)

)
is continuous on [0, b] and β(W ) =

sup {β(W (t)
)
, t ∈ [0, b]}.

By applying Lemma 2.6, we shall extend the result to the space PC([0, b];X).
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	�

� 2.7� If W ⊆ PC([0, b];X) is bounded, then β
(
W (t)

) ≤ β(W ) for all
t ∈ [0, b], where W (t) = {u(t), u ∈ W} ⊆ X. Furthermore, suppose the following
conditions are satisfied:

1. W is equicontinuous on J0 = [0, t1] and each Ji = (ti, ti+1], i = 1, . . . , s;

2. W is equicontinuous at t = t+i , i = 1, . . . , s.

Then supt∈[0,b] β
(
W (t)

)
= β(W ).

P r o o f. For arbitrary ε > 0, there exists Wi ⊆ PC([0, b];X), 1 ≤ i ≤ n,
such that

W = ∪n
i=1Wi and diam(Wi) ≤ 2β(W ) + 2ε, i = 1, 2, . . . , n,

where diam(·) denotes the diameter of a bounded set. Now, we have:

W (t) = ∪n
i=1Wi(t) for each t ∈ [a, b] ,

‖x(t)− y(t)‖ ≤ ‖x− y‖ ≤ diam(Wi) for x, y ∈ Wi.

From the above two inequalities, it follows that

2β
(
W (t)

) ≤ diam(Wi(t)) ≤ diam(Wi) ≤ 2β(W ) + 2ε.

By the arbitrariness of ε, we get that β
(
W (t)

) ≤ β(W ) for every t ∈ [0, b].

Therefore, we have supt∈[0,b] β
(
W (t)

) ≤ β(W ).

Next, if the conditions 1. and 2. of Lemma 2.7 are satisfied, it remains
to prove that β(W ) ≤ supt∈[0,b] β

(
W (t)

)
. We denoteW |Ji

by the restriction ofW

on Ji = [ti, ti+1], i = 0, 1, . . . , s. That is, for x ∈ W |Ji
, define that

x(t) =

{
x(t), ti < t ≤ ti+1,

x(t+i ), t = ti.

and obviously W |Ji
is equicontinuous on Ji due to the condition 1. and 2.

of Lemma 2.7. Then from Lemma 2.6, we have that

β(W |Ji
) = sup

t∈Ji

β
(
W |Ji

(t)
)
.

Moreover, we define the map

Λ : PC([0, b];X) → C([0, t1];X)× C([t1, t2];X)× · · · × C([ts, b];X)

by x → (x0, x1, . . . , xs), where

x ∈ PC([0, b];X), xi = x|Ji
, ‖(x0, x1, . . . , xs)‖ = max

0≤i≤s
‖xi‖.

As Λ is an isometric mapping, noticing the equicontinuity of W |Ji
on Ji,

we have that

β(W ) = β
(
W |J0

×W |J1
× · · · ×W |Js

) ≤ max
i

β(W |Ji
) = max

i
sup
t∈Ji

β
(
W |Ji

(t)
)
.
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And from the fact that supt∈Ji
β
(
W |Ji

(t)
) ≤ supt∈[0,b] β

(
W (t)

)
, for each

i = 0, . . . , s, we get that β(W ) ≤ supt∈[0,b] β
(
W (t)

)
. This completes the proof.

�

	�

� 2.8 ( [6])� If W ⊂ C([0, b];X) is bounded and equicontinuous, then
β
(
W (t)

)
is continuous and

β

⎛
⎝ t∫

0

W (s) ds

⎞
⎠ ≤

t∫
0

β
(
W (s)

)
ds,

for all t ∈ [0, b], where
∫ t

0
W (s) ds = {∫ t

0
x(s) ds : x ∈ W}.

	�

� 2.9� If the hypothesis (HA) is satisfied, i.e., {T (t) : t ≥ 0} is equicon-

tinuous and η ∈ L1([0, b];R+), then the set {∫ t

0
T (t − s)u(s) ds : ‖u(s)‖ ≤ η(s)

for a.e. s ∈ [0, b]} is equicontinuous for t ∈ [0, b].

P r o o f. We let 0 ≤ t < t+ h ≤ b and have that

∥∥∥∥∥∥
t+h∫
0

T (t+ h− s)u(s) ds−
t∫

0

T (t− s)u(s) ds

∥∥∥∥∥∥
≤
∥∥∥∥∥∥

t∫
0

T (t+ h− s)u(s) ds−
t∫

0

T (t− s)u(s) ds

∥∥∥∥∥∥ +

t+h∫
t

‖T (t+ h− s)u(s)‖ ds.

(2.2)

If t = 0, the the right hand side of (2.2) can be made small when h is small and
independent of u. If t > 0, then we can find a small ε > 0 with t− ε > 0. Then
it follows from (2.2) that

∥∥∥∥∥∥
t∫

0

T (t+ h− s)u(s) ds−
t∫

0

T (t− s)u(s) ds

∥∥∥∥∥∥
≤
∥∥∥∥∥∥T (h+ ε)

t−ε∫
0

T (t− ε− s)u(s) ds− T (ε)

t−ε∫
0

T (t− ε− s)u(s) ds

∥∥∥∥∥∥
+

∥∥∥∥∥∥
t∫

t−ε

T (t+ h− s)u(s) ds

∥∥∥∥∥∥+
∥∥∥∥∥∥

t∫
t−ε

T (t− s)u(s) ds

∥∥∥∥∥∥ (2.3)
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Here, as T (t) is equicontinuous for t > 0, thus

∥∥∥∥[T (h+ ε)− T (ε)]

t−ε∫
0

T (t− ε− s)u(s) ds

∥∥∥∥→ 0, as h → 0,

uniformly for u.

Then from (2.2), (2.3), and the absolute continuity of integrals, we get that{∫ t

0
T (t−s)u(s) ds, ‖u(s)‖≤η(s) for a.e. s ∈ [0, b]

}
is equicontinuous for t ∈ [0, b].

�

	�

� 2.10 ([30])� Let {fn}∞n=1 be a sequence of functions in L1([0, b];R+).
Assume that there exists μ, η ∈ L1([0, b];R+) satisfying supn≥1 ‖fn(t)‖ ≤ μ(t)
and β({fn(t)}∞n=1) ≤ η(t) a.e. t ∈ [0, b], then for all t ∈ [0, b], we have

β

⎛
⎝
⎧⎨
⎩

t∫
0

T (t− s)fn(s) ds : n ≥ 1

⎫⎬
⎭
⎞
⎠ ≤ 2M1

t∫
0

η(s) ds.

3. Main Result

In this section we give the existence results for the problem (1.1) under dif-
ferent conditions on g and Ii when the semigroup is not compact, f is not
compact, or Lipschitz continuous, by using Lemma 2.7 and the generalized β-
-condensing operator. More precisely, Theorem 3.1 is concerned with the case
that compactness conditions are satisfied. Theorem 3.2 deals with the case that
Lipschitz conditions are satisfied. Also, mixed-type conditions are considered
in Theorem 3.3 and Theorem 3.4.

For a finite positive constant r, we set

Br={x∈X :‖x‖≤r}, and Wr={u∈PC([0, b];X) :u(t)∈Br, t∈ [0, b]}.
We define map G : PC([0, b];X) → PC([0, b];X) relative to our mild solution
u ∈ PC([0, b];X) of the system (1.1) by

(Gu)(t) =T (t)g(u) +

t∫
0

T (t− s)f
(
s, u(s)

)
ds

+

t∫
0

T (t− s)Bv(s) ds +
∑

0<ti<t

T (t− ti)Ii
(
u(ti)

)
(3.1)
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with

(G1u)(t) = T (t)g(u), (G2u)(t) =
t∫
0

T (t− s)f
(
s, u(s)

)
ds,

(G3u)(t) =
t∫
0

T (t− s)Bv(s) ds, (G4u)(t) =
∑

0<ti<tT (t− ti)Ii
(
u(ti)

)
,

for all t ∈ [0, b]. It is easy to see that u is the mild solution of the problem (1.1),
if and only if, u is a fixed point of the map G.

We list the following hypotheses:

Hf) f : [0, b]×X → X satisfies the following conditions:

(i) f(t, .) : X → X is continuous for a.e. t ∈ [0, b] and f(., x) : [0, b] → X is
measurable for all x ∈ X. Moreover, for any r > 0, there exists a function
ρr ∈ L1([0, b], R) such that

‖f(t, x)‖ ≤ ρr(t) for a.e. t ∈ [0, b] and x ∈ Br.

(ii) there exists a constant L1 > 0 such that for any bounded set D ⊂ X,

β(f(t,D)) ≤ L1β(D) for a.e. t ∈ [0, b]. (3.2)

Hg1) g : PC([0, b];X) → X is continuous and compact.

HI1) Ii : X → X is continuous and compact for i = 1, . . . , s.

�
����
 3.1� Assume that the hypotheses HA), Hf), Hg1), and HI1) are satis-
fied, then the nonlocal impulsive problem (1.1) has at least one mild solution [0, b],
provided that there exists a constant r > 0 such that

M

[
sup
u∈Wr

‖g(u)‖+ ‖ρr‖L1 +M1M2

√
b‖v‖L2 + sup

u∈Wr

s∑
i=1

∥∥Ii[u(ti)]∥∥
]
≤ r. (3.3)

P r o o f. We will prove that the solution map G has a fixed point by using the
Fixed Point Theorem about the β-convex-power condensing operator.

First, we prove that the map G is continuous on PC([0, b];X). For this pur-
pose, let {un}∞n=1 be a sequence in PC([0, b];X) with

lim
x→∞un = u

in PC([0, b];X). By the continuity of f with respect to the second argument,
we deduce that for each s ∈ [0, b], f

(
s, un(s)

)
converges to f

(
s, u(s)

)
in X.
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And we have

‖Gun −Gu‖ =

∥∥∥∥
[
T (t)g(un) +

t∫
0

T (t− s)f
(
s, un(s)

)
ds+

t∫
0

T (t− s)Bvn(s) ds

+
∑

0<t)i<t

T (t− ti)Ii
(
u(ti)

)]

−
[
T (t)g(u) +

t∫
0

T (t− s)f
(
s, u(s)

)
ds+

t∫
0

T (t− s)Bv(s) ds

+
∑

0<ti<t

T (t− ti)Ii
(
u(ti)

)]∥∥∥∥
≤ M‖g(un)− g(u)‖+M

t∫
0

∥∥f(s, un(s)
)− f

(
s, u(s)

)∥∥ ds
+MM1‖vn − v‖L2 ,

where

‖vn − v‖ ≤ MM2

⎧⎨
⎩

b∫
0

∥∥f(s, un(s)
)−f

(
s, u(s)

)∥∥ ds
+

s∑
i=1

∥∥Ii(un(ti)
)−Ii

(
u(ti)

)∥∥} .

Then, by the continuity of g, Ii and using the Dominated Convergence
Theorem, we get limn→∞ Gun = Gu in PC([0, b];X) ⇒ G is continuous
on PC([0, b];X).

Secondly, we claim that GWr ⊆ Wr. In fact, for any u ∈ Wr ⊂ PC([0, b];X),
from (3.1) and (3.3), we have

‖(Gu)(t)‖ = ‖(G1u)(t) + (G2u)(t) + (G3u)(t) + (G4u)(t)‖

≤ ‖T (t)g(u)‖+
∥∥∥∥∥

t∫
0

T (t− s)f
(
s, u(s)

)
ds

∥∥∥∥∥
+

∥∥∥∥∥
t∫

0

T (t− s)Bv(s) ds

∥∥∥∥∥+
∥∥∥∥∥
∑

0<ti<t

T (t− ti)Ii
(
u(ti)

)∥∥∥∥∥
≤ M

{
‖g(u)‖+ ‖ρr‖L1 +MM2

√
b‖v‖L2 +

s∑
i=1

Ii
(
u(ti)

)}
,
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where

‖v‖L2 ≤ M2

{
‖u1‖+M‖g(u)‖+M

b∫
0

‖f(s, u(s))‖ ds+M

s∑
i=1

Ii
(
u(ti)

)}
.

Hence, ‖(Gu)(t)‖ ≤ r for each t ∈ [0, b],

which implies that

GWr ⊆ Wr.

Now, we show that GWr is equicontinuous on J0 = [0, ti], Ji = [ti, ti+1] and
is also equicontinuous at t = t+i , i = 1, . . . , s. Indeed, we only need to prove
that GWr is equicontinuous on [t1, t2] as the cases for other subintervals are the
same.

For u ∈ Wr, t1 ≤ s < t ≤ t2, we have, using the semigroup property,

‖T (t)g(u)− T (s)g(u)‖ ≤ M‖[T (t− s)− T (0)]g(u)‖.

Thus G1Wr is equicontinuous on [t1, t2] due to the compactness of g and the
strong continuity of T (·). The same idea can be used to prove the equicontinuity
of G4Wr on [t1, t2], i.e., for u ∈ Wr, t1 ≤ s < t ≤ t2, we have∥∥T (t− t1)I1

(
u(t1)

)− T (s− t1)I1
(
u(t1)

)∥∥
≤ M

∥∥[T (t− s)− T (0)]I1
(
u(t1)

)∥∥
which implies the equicontinuity of G4Wr on [t1, t2] due to the compactness of I1
and the strong continuity of T (·).

Moreover, from Lemma 2.9, we have that G2Wr is equicontinuous on [0, b].
Therefore, the functions in

GWr = (G1 +G2 +G3 +G4)Wr

are equicontinuous on each [ti, ti+1], i = 0, 1, . . . , s.

Set W = convG(Wr), where conv means the closure of convex hull. It is
easy to verify that G maps W into itself and W is equicontinuous on each
Ji = [ti, ti+1], i = 0, 1, . . . , s. Now, we show that G : W → W is a convex-power
condensing operator. Take x0 ∈ W , we shall prove that there exists a positive
integral n0 such that

β
((
G(n0,x0)

)
(D)
)
< β(D)

for every non-precompact bounded subset D ⊂ W .
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From Lemma 2.2 and Lemma 2.8, noticing the compactness of g and Ii,
we have

β
((
G(1,x0)D

)
(t)
)
= β

(
(GD)(t)

)
≤ β

(
T (t)g(D)

)
+ β

⎛
⎝ t∫

0

T (t− s)f
(
s,D(s)

)
ds

⎞
⎠

+ β

⎛
⎝ t∫

0

T (t− s)Bv(s) ds

⎞
⎠+ β

( ∑
0<ti<t

T (t− ti)Ii
(
D(ti)

))

≤
t∫

0

β
(
T (t− s)f

(
s,D(s)

))
ds+

t∫
0

β
(
T (t− s)Bv(s)

)
ds

≤ M

⎧⎨
⎩

t∫
0

β
(
f
(
s,D(s)

))
ds+

t∫
0

β
(
Bv(s)

)
ds

⎫⎬
⎭

≤ M

⎧⎨
⎩

t∫
0

L1β(D) ds+M1

t∫
0

β
(
v(s)

)
ds

⎫⎬
⎭

≤ ML1{t+MM1b
3/2Kw(s)}β(D)

for each t ∈ [0, b], where β
(
v(s)

) ≤ Kw(s)MLbβ(D).

Further,

β
((
G(2,x0)D

)
(t)
)
= β

((
Gconv{G(1,x0)D, x0}

)
(t)
)

≤ β
(
T (t)g

(
conv{G(1,x0)D(s), x0}

))

+ β

⎛
⎝ t∫

0

T (t− s)f
(
s, conv{G(1,x0)D(s), x0(s)}

)
ds

⎞
⎠

+ β

⎛
⎝ t∫

0

T (t− s)Bv(s) ds

⎞
⎠

+ β

⎛
⎝ ∑

0<ti<t

T (t− ti)Ii[conv{G(1,x0)D(ti), x0(ti)}]
⎞
⎠
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≤ β

⎛
⎝ t∫

0

T (t− s)f
(
s, conv{G(1,x0)D(s), x0(s)}

)
ds

⎞
⎠

+ β

⎛
⎝ t∫

0

T (t− s)Bv(s) ds

⎞
⎠

≤ M

t∫
0

β
(
f
(
s, conv{G(1,x0)D(s), x0(s)}

))
ds

+MM1

t∫
0

β
(
v(s)

)
ds

≤ M

t∫
0

L1β
(
conv{G(1,x0)D(s), x0(s)}

)
ds+MM1

t∫
0

β
(
v(s)

)
ds

≤ ML1

t∫
0

β
((
G(1,x0)D

)
(s)
)
ds+MM1

t∫
0

β
(
v(s)

)
ds

≤ ML1

t∫
0

ML1sβ(D) ds+MM1

t∫
0

β
(
v(s)

)
ds

≤ M 2L2
1β(D)

∫
0

ts ds+MM1

t∫
0

β
(
v(s)

)
ds

≤ M 2L2
1β(D)

t2

2!
+MM1

√
b

{
M 2L2

1b
2

2!
β(D)

}

≤ M 2L2
1

2!
β(D){t2 +MM1b

5/2}

for t ∈ [0, b], where β
(
v(s)

) ≤ M2L2
1

√
bb2

2! β(D).

We can continue this iterative procedure and get that

β
(
(G(n,x0)D)(t)

) ≤ MnLn
1

n!
β(D){bn +MM1b

n
√
b}

≤ MnLn
1 b

n

n!
β(D){1 +MM1

√
b} for t ∈ [0, b].
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As G(n,x0)(D) is equicontinuous on each [ti, ti+1], by Lemma 2.7, we have
that

β
(
G(n,x0)D

)
= sup

t∈[0,b]

β
((
G(n,x0)D

)
(t)
)
≤ MnLn

1 b
n

n!
β(D){1 +MM1

√
b}.

By the fact that
MnLn

1 b
n

n! → 0 as n → ∞, we know that there exists a large
enough positive integral n0 such that

Mn0Ln0
1 bn0

n0!
< 1

which implies that G : W → W is a convex-power condensing operator. From
Lemma 2.5, G has at least one fixed point in W , which is just a mild solution
of the non local impulsive problem (1.1). This completes the proof of Theo-
rem 3.1. �

Remark 3.2� By using the method of the measure of noncompactness, we
require f to satisfy some proper conditions of MNC, but do not require the
compactness of a semigroup T (t). Note that if f is compact or Lipschitz contin-
uous, the condition Hf) (ii) is satisfied. And our work improves many previous
results, where they need the compactness of T (t) of f , or the Lipschitz conti-
nuity of f . In the proof, Lemma 2.7 plays an important role for the impulsive
differential equations, which provides us with the way to calculate the measure
of noncompactness in PC([0, b];X). The use of noncompact measure in func-
tional differential and integral equations can also be seen in [18–20,22].

Remark 3.3� When we apply Darbo-Sadovskii’s Fixed Point Theorem to get
the fixed point of a map, a strong inequality is needed to guarantee its con-
densing property. By using the β-convex-power condensing operator developed
by Sun et al. [29], we do not impose any restrictions on the coefficient L1.
This generalized condensing operator also can be seen in Liu et al. [31], where
nonlinear Volterra integral equations are discussed. In the following, by using
Lemma 2.7 and Darbo-Sadovskii’s Fixed Point Theorem, we give the existence
results of the problem (1.1) under Lipschitz conditions and mixed-type condi-
tions, respectively.

We give the following hypothesis:

Hg2) g : PC([0, b];X) → X is Lipschitz continuous with the Lipscitz constant k.

HI2) Ii : X → X is Lipschitz continuous with the Lipschitz constant ki; that is,

‖Ii(x)− Ii(y)‖ ≤ ki‖x− y‖, for x, y ∈ X, i = 1, 2, . . . , s.
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�
����
 3.4� Assume that the hypotheses HA), Hf), Hg2), HI2) are satisfied,
then the nonlocal impulsive problem (1.1) has at least one mild solution on [0, b],
provided that

M

(
k + L1b+MM + 1L1b

3/2Kw(s) +

s∑
i=1

ki

)
< 1, (3.4)

and (3.3) is satisfied.

P r o o f. From the proof of Theorem 3.1, we have that the solution operator G is
continuous and maps Wr into itself. It remains to show that G is β-condensing
in Wr.

By the conditions Hg2) and HI2), we get that G1 +G4 : Wr → PC([0, b];X)
is Lipschitz continuous with the Lipschitz constant M

(
k +

∑s
i=1 ki

)
.

In fact, for u,w ∈ Wr, we have

‖(G1 +G4)u− (G1 +G4)w‖PC

= sup
t∈[0,b]

∥∥T (t)(g(u)− g(w)
)∥∥

+
∑

0<ti<t

∥∥∥T (t− ti)
(
Ii
(
u(ti)

)
Ii
(
w(ti)

))∥∥∥
≤ M

{
‖g(u)−g(w)‖+

s∑
i=1

∥∥Ii(u(ti))− Ii
(
w(ti)

)∥∥}

≤ M

{
k +

s∑
i=1

ki

}
‖u− w‖PC .

Thus from Lemma 2.7, we obtain that

β
(
(G1 +G4)Wr

) ≤ M

(
k +

s∑
i=1

ki

)
β(Wr). (3.5)

For the operator (G2u)(t) =
∫ t

0
T (t − s)f

(
s, u(s)

)
ds, from Lemma 2.6,

Lemma 2.8 and Lemma 2.9, we have

β(G2Wr) = sup
t∈[0,b]

β
(
(G2Wr)

)
(t)

≤ sup
t∈[0,b]

t∫
0

β
(
T (t− s)f

(
s,Wr(s)

))
ds

≤ sup
t∈[0,b]

M

t∫
0

L1β
(
Wr(s)

)
ds

≤ ML1bβ(Wr).

(3.6)
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For the operator (G3u)(t) =
∫ t

0
T (t− s)Bv(s) ds

β(G3Wr) = sup
t∈[0,b]

β
(
(G3Wr)(t)

)

≤ sup
t∈[0,b]

t∫
0

β
(
T (t− s)Bv(s)

)
ds

≤ sup
t∈[0,b]

MM1

t∫
0

β
(
v(s)

)
ds

≤ M 2M1L1b
3
2Kw(s)β(Wr).

(3.7)

Combining (3.5), (3.6) and (3.7), we have

β(GWr) ≤ β
(
(G1 +G4)Wr

)
+ β(G2Wr) + β(G3Wr)

≤ M

{
k +

s∑
i=1

ki + L1b+MM1L1b
3
2Kw(s)

}
β(Wr).

From the condition (3.4),

M (k + L1b+MM1L1b
3
2Kw(s) +

s∑
i=1

ki) < 1,

the solution map G is β-condensing in Wr.

By Darbo-Sadovskii’s Fixed Point Theorem, G has a fixed point in Wr which
is just a mild solution of the nonlocal impulsive problem (1.1). This completes
the proof of Theorem 3.4. �

Among the previous works on nonlocal impulsive differential equations, a few
are concerned with the mixed-type conditions. Here, by using Lemma 2.7, we
can also deal with the mixed-type conditions in a similar way.

�
����
 3.5� Assume that the hypotheses HA), Hf), Hg1), HI2) are satisfied,
then the nonlocal impulsive problem (1.1) has at least one mild solution on [0, b]
provided that

M (1 +MM1

√
bKw)

(
L1b+

s∑
i=1

ki

)
< 1, (3.8)

and (3.3) is satisfied.

P r o o f. We will also use Darbo-Sadovskii’s Fixed Point Theorem to obtain a
fixed point of the operator G related to the mild solution of the system. From
the proof of Theorem 3.1, we have that G is continuous and maps Wr into itself.
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Subsequently, we show that G is β-condensing in Wr. From the compactness
of g and the strong continuity of T (·), we get that {T (·)g(u) : u ∈ Wr} is
equicontinuous on [0, b]. Then by Lemma 2.6, we have that

β(G1Wr) = sup
t∈[0,b]

β
(
(G1Wr)(t)

)
= sup

t∈[0,b]

β
(
(T (t)g(Wr)

)
= 0.

(3.9)

On the other hand, for u,w ∈ Wr, we have

‖G4u−G4w‖ = sup
t∈[0,b]

∥∥∥∥∥
∑

0<ti<t

T (t− ti)
(
Ii
(
u(ti)

)− Ii
(
w(ti)

))∥∥∥∥∥
≤ M

s∑
i=1

∥∥Ii(u(ti))− Ii
(
w(ti)

)∥∥
≤ M

s∑
i=1

ki‖u− w‖PC .

Then by Lemma 2.7, we obtain that

β(G4Wr) ≤ M

s∑
i=1

kiβ(Wr) (3.10)

and

β(G3Wr) ≤ M 2M1L1

√
bKw

(
L1b+

s∑
i=1

ki

)
β(Wr). (3.11)

Combining (3.6), (3.9), (3.10), and (3.11), we get that

β(GWr) ≤ β(G1Wr) + β(G2Wr) + β(G3Wr) + β(G4Wr)

≤ M (1 +MM1

√
bKw)

(
L1b+

s∑
i=1

ki

)
β(Wr).

From the condition (3.8), the map G is β-condensing in Wr. So, G has a fixed
point in Wr due to Darbo-Sadovskii’s Fixed Point Theorem, which is just a
mild solution of the nonlocal impulsive problem (1.1). This completes the proof
of Theorem 3.5. �

�
����
 3.6� Assume that the hypotheses HA), Hf), Hg2), HI1) are satisfied,
then the nonlocal impulsive problem (1.1) has at least one mild solution on [0, b]
provided that

M (1 +MM1

√
bKw)(k + L1b) < 1, (3.12)

and (3.3) is satisfied.
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P r o o f. From the proof of Theorem 3.1, we have that the solution operator G
is continuous and maps Wr into itself. In the following, we shall show that G is
β-condensing in Wr.

By the Lipschitz continuity of g, we have that for u,w ∈ Wr,

‖G1u−G1w‖PC = sup
t∈[0,b]

‖T (t)(g(u)− g(w)
)‖ ≤ Mk‖u− w‖PC ,

Then by Lemma 2.7, we obtain that

β(G1Wr) ≤ Mkβ(Wr). (3.13)

Similar to the discussion in Theorem 3.1, from the compactness of Ii and the
strong continuity T (·), we get thatG4Wr is equicontinuous on each Ji = [ti, ti+1],
i = 0, 1, . . . , s. Then by Lemma 2.7, we have that

β(G4Wr) = sup
t∈[0,b]

β
(
(G4Wr)(t)

) ≤ s∑
i=1

β
(
T (t− ti)Ii

(
Wr(ti)

))
= 0 (3.14)

and

β(G3Wr) = sup
t∈[0,b]

β
(
(G3Wr)(t)

) ≤ M 2M1Kw

√
b(k + L1b)β(Wr). (3.15)

Combining (3.6), (3.13), (3.14), and (3.15), we have that

β(GWr) ≤ β(G1Wr) + β(G2Wr) + β(G3Wr) + β(G4Wr)

≤ M
(
1 +MM1

√
bKw

)
(k + L1b)β(Wr).

From condition (3.12), the map G is β-condensing in Wr. So, G has a fixed
point in Wr due to Darbo-Sadovskii’s Fixed Point Theorem, which is just a
mild solution of the nonlocal impulsive problem (1.1). This completes the proof
of Theorem 3.6. �

4. Conclusion

In this manuscript, we dealt with the controllability of impulsive differen-
tial equations with nonlocal conditions. After studying the property of measure
of noncompactness in the space of piecewise continuous functions, we discussed
the controllability of nonlocal impulsive differential equations under compactness
conditions, Lipschitz conditions and mixed-type conditions; using the established
property and Darbo-Sadovskii’s Fixed Point Theorem. Our theorems guarantee
the effectiveness of controllability results.
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One can extend system (1.1) to second order system/inclusion and study
the controllability result using sine and cosine operators and multivalued
analysis. Time dependent and space dependent finite and infinite delay of the
system/inclusion will be the future work with multiple applications. Fuzzy solu-
tion and the controllability will be quite interesting using the same terminology
of measure of noncompactness. Controllability of nonlocal impulsive fractional
order (0 < α < 1) functional differential equations with measure of noncompact-
ness will be another future work.

Acknowledgement� Authors wish to express their gratitude to the anonymous
referees for their valuable suggestions and comments for improving this manu-
script.
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