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ABSTRACT. The problems of existence of limit cycles and their numbers are

the most difficult problems in the dynamical planar systems. In this paper, we
study the limit cycles for a family of polynomial differential systems of degree
6k + 1, k ∈ N∗, with the non-elementary singular point. Under some suitable
conditions, we show our system exhibiting two non algebraic or two algebraic
limit cycles explicitly given. To illustrate our results we present some examples.

1. Introduction

One of the important problems in the qualitative theory of differential equa-
tions is to solve the second part of the 16th problem out of 23 problems that
Hilbert presented at the international congress of mathematicians in Paris (1900),
see [11]. Hilbert asked there for an upper bound for the maximum number of limit
cycles of all polynomial differential systems of degree n of the form

ẋ = dx
dt = P (x, y),

ẏ = dy
dt = Q(x, y),

(1)

where P (x, y) and Q(x, y) are real polynomials in the variables x and y.
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The degree of the system is the maximum of the degrees of the polynomials P
and Q.

System (1) is integrable on an open set Ω of R2 if there exists a non con-
stant C1 function H : Ω → R, called a first integral of the system on Ω, which
is constant on the trajectories of the system (1) contained in Ω, i.e., if

dH (x, y)

dt
= P (x, y)

∂H (x, y)

∂x
+Q (x, y)

∂H (x, y)

∂y
≡ 0

in the points of Ω. Moreover, H = h is the general solution of this equation,

where h is an arbitrary constant.

A function of the form fλ1
1 . . . f

λp
p exp (h/f0), where fi and h are polynomials

in C[x, y] and the λi ∈ C, is called a Darboux function, see for example [12,13].
System (1) is called Darboux integrable if it has a first integral which is a Dar-
boux function (for a definition of first integral see [7]). A Liouvillian function
is a function which can be expressed by quadratures of elementary functions.
For more details see [8].

It is well-known that for differential systems defined on the plane R2, the
existence of a first integral determines their phase portrait, see [6,9].

A limit cycle of system (1) is an isolated periodic solution in the set of all
periodic solutions of system (1). If a limit cycle is contained in an algebraic curve
of the plane then we say that it is algebraic, otherwise it is called non-algebraic.
In general, it is not easy to distinguish when a limit cycle is algebraic or not.

For example, the limit cycle of the van der Pol differential system discovered
in 1927 (see [15]) was not proved until 1995 by O d a n i [14] that it was non-
-algebraic. The van der Pol system can be written as a polynomial differential
system (1) of degree 3, but its limit cycle is not known explicitly.

In the last years, several papers were published exhibiting polynomial differen-
tial systems for which non–algebraic limit cycles are explicitly known.
The first explicit non-algebraic limit cycle, due to G a s u l l , G i a c o m i n i and
T o r r e g r o s a [9], was for a polynomial differential system of degree 5. After-
wards, A l- D o s a r y [1] gave a family of polynomial differential systems, with
an explicit non-algebraic limit cycle, which generalizes the system studied in [9].
B e n d j e d d o u in [3] provided a class of polynomial differential system of degree
odd with explicit non-algebraic limit cycle.

The first result for the coexistence of algebraic and non-algebraic limit cycle
goes back to J. G i n é and M. G r a u [10] for n = 9. These authors transform
their system into a Ricatti equation which is transformed into a variable coef-
ficients second order linear differential equation using the classic linearization
method.
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B e n d j e d d o u et al. [2, 4] provide a polynomial differential system of de-
gree 5 exhibiting simultaneously two explicit limit cycles one algebraic and
another non-algebraic. In [5] a class of differential systems of degree 6n + 1
with three explicit limit cycles which are not algebraic is presented.

In this paper, we are interested in studying the integrability and the limit
cycles of systems with degenerate non-elementary singular point of the form

ẋ = 2x
(
x2 + y2

)k
+
(
γ − (x2 + y2

)k)(
2c
(
x2 + y2

)k − bP2k(x, y)
)

×
(
aγx− (ax− 4ky)

(
x2 + y2

)k)
,

ẏ = 2y
(
x2 + y2

)k
+
(
γ − (x2 + y2

)k)(
2c
(
x2 + y2

)k − bP2k(x, y)
)

×
(
aγy − (ay + 4kx)

(
x2 + y2

)k)
, (2)

where a, b, c, γ ∈ R, k is a positive integer (k ∈ N
∗) , and P2k(x, y) is a homoge-

neous polynomial of degree 2k such that

P2k(x, y) =

k−1∑
s=0

(−1)
s

(
2k

2s+ 1

)
x2k−2s−1y2s+1, (3)

where (
2k

2s+ 1

)
=

2k!

(2s+ 1)! (2k − 2s− 1)!
.

Moreover, we determine sufficient conditions for a polynomial differential system
to possess an explicit two non-algebraic or two algebraic limit cycles surrounding
the origin point. Concrete examples exhibiting the applicability of our result are
introduced.

We say that a singular point is non-elementary if both eigenvalues of the linear
part of the vector field at that point are zero, and elementary otherwise. A non-
elementary singular point is called degenerate if its linear part is identically zero,
otherwise it is called nilpotent.

2. Main result

As a main result, we shall prove the following theorem.

������� 2.1� Consider polynomial differential system (2). Then the following
three statements hold:

1. System (2) is Darboux integrable with the Liouvillian first integral

I(x, y) =
((
x2 + y2

)k − γ
)2

e−a arctan y
x −

arctan y
x∫

0

e−as

c− 1
2b sin 2ks

ds.
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2. If a < 0, b �= 0, c > 1
2 |b|, γ > 0 and aγ2

(
c− 1

2 |b|
)
+ 1 < 0, then the

system (2) has two explicit non-algebraic limit cycles, given in polar coor-
dinates (r, θ) by

r1 (θ, r
∗
1) =

(
γ +

√
ϕ (θ, r∗1)

) 1
2k

,

r2 (θ, r
∗
2) =

(
γ −

√
ϕ (θ, r∗2)

) 1
2k

,

where

ϕ (θ, r∗i ) = eaθ
((

(r∗i )
2k − γ

)2
+ g(θ)

)
, i = 1, 2,

g(θ) =

θ∫
0

e−as

c− 1
2b sin 2ks

ds,

r∗1 =

(
γ +

√
e2πa

1− e2πa
g(2π)

) 1
2k

,

r∗2 =

(
γ −

√
e2πa

1− e2πa
g(2π)

) 1
2k

.

3. If b = 0, ac < 0, γ > 0 and γ2 + 1
ac > 0, then system (2) has two explicit

algebraic limit cycles, given in Cartesian coordinates (x, y) by

((
x2 + y2

)k − γ
)2

+
1

ac
= 0.

The following Lemma collects some results which we need to show the state-
ments of Theorem 2.1.

����	 2.2� Let a < 0, c > 1
2 |b|, aγ2

(
c− 1

2 |b|
)
+ 1 < 0 and γ > 0, then the

following statements hold:

1. The function Φ(θ) = γ2e−aθ−g(θ) is strictly increasing, for all θ ∈ [0, 2π[,
where g(θ) is a function defined in previous theorem.

2. e2πa

1−e2πa g(2π) < γ2e−aθ − g(θ) .

3. 0 < ϕ(θ) < γ2, where ϕ(θ) = eaθ
(

e2πa

1−e2πa g(2π) + g(θ)
)
.
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P r o o f o f s t a t e m e n t (1) o f L e mm a 2.2.

We remark that the function Φ is differentiable for all θ ∈ [0, 2π[, then

dΦ

dθ
= − e−aθ

c − 1
2b sin 2kθ

(
aγ2
(
c− 1

2
b sin 2kθ

)
+ 1

)
.

Since a < 0, c > 1
2 |b| and γ > 0, then

0 < c− 1

2
|b| < c− 1

2
b sin 2kθ <

1

2
|b|+ c

and

aγ2

(
1

2
|b|+ c

)
+ 1 < aγ2

(
c− 1

2
b sin 2kθ

)
+ 1 < aγ2

(
c − 1

2
|b|
)
+ 1.

Since aγ2
(
c− 1

2 |b|
)
+ 1 < 0, then

aγ2

(
c − 1

2
b sin 2kθ

)
+ 1 < 0, hence Φ′(θ) > 0.

Consequently, the function Φ is strictly increasing. �

P r o o f o f s t a t e m e n t (2) o f L e mm a 2.2.

Because Φ(θ) is strictly increasing then we have Φ (0)< Φ(θ)< Φ(2π) equiva-
lent to

γ2 < γ2e−aθ − g(θ) < γ2e−2πa − g(2π). (4)

We remark that γ2 < γ2e−2πa − g(2π) which implies that

g(2π) < γ2
(
e−2πa − 1

)
= γ2

(
1− e2πa

)
e2πa

,

since a < 0, then
e2πa

1− e2πa
g(2π) < γ2. (5)

Taking into account (4) we obtain

e2πa

1− e2πa
g(2π) < γ2e−aθ − g (θ) . �

P r o o f o f s t a t e m e n t (3) o f L e mm a 2.2.

First we prove that ϕ(θ) < γ2. From the statement 2 of Lemma 2.2, we have

ϕ(θ) = eaθ
(

e2πa

1− e2πa
g(2π) + g(θ)

)
< eaθ

(
γ2e−aθ − g(θ) + g(θ)

)
= γ2.
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Then ϕ(θ)<γ2. Since c> 1
2 |b| we get that g(θ)>0 and we have a>0, it follows

that e2πa

1−e2πa g(2π)>0, hence ϕ(θ)>0. Consequently,

0 < ϕ(θ) < γ2, for all θ ∈ [0; 2π[.

This completes the proof of Lemma 2.2. �

P r o o f o f T h e o r e m 2.1. First, we have

yẋ− xẏ = 4k
(
γ − (x2 + y2

)k)(
2c
(
x2 + y2

)k− bP2k(x, y)
) (

x2 + y2
)k+1

.

Thus, the equilibrium points of system (2) are presented in the equation curve’s

4k
(
γ − (x2 + y2

)k)(
2c
(
x2 + y2

)k − bP2k(x, y)
) (

x2 + y2
)k+1

= 0. (6)

In polar coordinates (r, θ), where x = r cos θ and y = r sin θ, the function
P2k(x, y) reads as

P2k (r cos θ, r sin θ) =

k−1∑
s=0

C2s+1
2k (−1)

s
(r cos θ)

2k−2s−1
(r sin θ)

2s+1

= r2k sin(2kθ).

Then the curve’s (6) can be written as

4kr2k
(
γ − r2k

) (
2c− b sin(2kθ)

)
r2k+2 = 0.

From the condition c > 1
2 |b|, we have 2c − b sin(2kθ) > 0, then the equilibrium

points of system (2) are presented on the curve

r2k
(
γ − r2k

)
= 0.

We deduce that the origin is an equilibrium point which is a degenerate non–
elementary singular point of system (2), because the linear part of this system
is identically zero, and any other, if exists must lie on the curve(

x2 + y2
)k − γ = 0. (7)

To prove our results, we write the polynomial differential system (2) in polar
coordinates (r, θ) defined by x = r cos θ and y = r sin θ. Then the system becomes

ṙ = r2k+1
(
2 + a (2c− b sin 2kθ)

(
γ − r2k

)2)
,

θ̇ = −4k (2c− b sin 2kθ)
(
γ − r2k

)
r4k.

(8)

The differential system (8), where 4k (2c− b sin 2kθ)
(
γ − r2k

)
r4k �= 0, can be

written as the equivalent differential equation

dr

dθ
=

r
(
2 + a(2c− b sin 2kθ)(γ − r2k)2

)
−4k(2c− b sin 2kθ)(γ − r2k)r2k

. (9)
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Via the change of variables ϕ = (r2k − γ)2, the equation (9) is transformed
into the linear equation

dϕ

dθ
= aϕ+

1

c− 1
2b sin 2kθ

. (10)

The general solution of this equation is

ϕ (θ, h) = eaθ
(
h+ g(θ)

)
, (11)

where h ∈ R and

g(θ) =

θ∫
0

e−as

c− 1
2b sin 2ks

ds.

Consequently, the implicit solution of equation (9) is given by(
r2k − γ

)2
= eaθ

(
h+ g(θ)

)
.

By passing to Cartesian coordinates, we deduce that the first integral is

I(x, y) =
((
x2 + y2

)k − γ
)2

e−a arctan y
x −

arctan y
x∫

0

e−as

c− 1
2 b sin 2ks

ds.

Since this first integral is a function that can be expressed by quadratures of el-
ementary functions, it is a Liouvillian function, and consequently system (2) is
Darboux integrable.

Notice that system (2) has a periodic orbit if and only if the equation (9)
has a strictly positive 2π-periodic solution. The solution satisfying the initial
condition r(0, r0) = r0 > 0 is given by h = (r2k0 − γ)2. Then, the implicit
solution of equation (9) with this initial condition is(

r2k − γ
)2

= eaθ
((
r2k0 − γ

)2
+ g(θ)

)
. (12)

Since ϕ =
(
r2k − γ

)2
, it is clear that

r (2π, r0) = r (0, r0) if and only if ϕ (2π, r0) = ϕ (0, r0) ,

we have

ϕ0 = ϕ (0, r0) =
(
r2k0 − γ

)2
and ϕ (2π, r0) = e2πa

((
r2k0 − γ

)2
+ g(2π)

)
.

Then, the condition ϕ (2π, r0) = ϕ (0, r0) implies that

(
r2k0 − γ

)2
=

e2πa

1− e2πa
g(2π). (13)

Thus

ϕ(θ) = eaθ
(

e2πa

1− e2πa
g(2π) + g(θ)

)
.
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The implicit form of the solution of (9) can be written as

(
r2k − γ

)2
= eaθ

(
e2πa

1− e2πa
g(2π) + g(θ)

)
. (14)

From the expression of the change of variable ϕ =
(
r2k − γ

)2
that transform (9)

into (10), one gets

r1(θ) =
(
γ +

√
ϕ (θ)

) 1
2k

,

r2(θ) =
(
γ −

√
ϕ (θ)

) 1
2k

.

These two solutions are strictly positive because we have γ > 0 and from the
statement (3) of Lemma 2.2 we have 0 < ϕ(θ) < γ2.

From (13), there are two different values of r0 with the property

r(2π; r0) = r0 > 0

given by

r∗1 =

(
γ +

√
e2πa

1− e2πa
g(2π)

)1
2k

,

r∗2 =

(
γ −

√
e2πa

1− e2πa
g(2π)

)1
2k

.

Since a < 0, γ > 0 and by (5) we have e2πa

1−e2πa g(2π) < γ2, then r∗1 > 0 and r∗2 > 0.

After the substitution of the values r∗i , i = 1, 2 into ri(θ), i = 1, 2 we obtain

r1 (θ, r
∗
1) =

(
γ +

√
ϕ (θ, r∗1)

)1
2k

,

r2 (θ, r
∗
2) =

(
γ −

√
ϕ (θ, r∗2)

)1
2k

,

(15)

where

ϕ (θ, r∗i ) = eaθ
((

(r∗i )
2k − γ

)2
+ g(θ)

)
, i = 1, 2.

To show that ri(θ), i = 1, 2 are periodic solutions, we have to show that

a) there does not exist any singular point of (14),

b) the functions θ �−→ ri(θ), i = 1, 2 are 2π -periodic,

c) ri(θ) > 0, i = 1, 2 for all θ ∈ [0, 2π[.
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a) We first prove that there is no singular point of (14). In particular, we shall
prove that the curve (7) does not intersect the orbit (14). This curve in polar
coordinates becomes r2k−γ = 0. To show this, we have to show that the system⎧⎨

⎩
(
r2k − γ

)2 − eaθ
(

e2πa

1−e2πa g(2π) + g(θ)
)
= 0,

r2k − γ = 0.
(16)

has no solutions.

From the second equation of system (16) we get that r2k = γ, we replace this
value in the first equation, we obtain

eaθ
(

e2πa

1− e2πa
g(2π) + g(θ)

)
= 0,

which is a contradiction because

eaθ
(

e2πa

1− e2πa
g(2π) + g(θ)

)
= ϕ(θ)

and from Lemma 2.2 we have 0 < ϕ(θ) < γ2. So (16) has no solutions.

b) Periodicity. From (15) we say that ri(θ, r
∗
i ), i = 1, 2 are 2π-periodic

if and only if ϕ(θ) is 2π-periodic, then we have

ϕ(θ + 2π) = ea(θ+2π)

(
e2πa

1− e2πa
g(2π) + g (θ + 2π)

)
. (17)

However,

g(θ + 2π) =

θ+2π∫
0

e−as

c− 1
2b sin 2ks

ds

= g(2π) +

θ+2π∫
2π

e−as

c− 1
2 b sin 2ks

ds.

In the integral
∫ θ+2π

2π
e−as

c− 1
2 b sin 2ks

ds, we use the change of variable w = s − 2π,

we obtain

g(θ + 2π) = g(2π) +

θ∫
0

e−a(w+2π)

c− 1
2 b sin 2k (w + 2π)

dw

= g(2π) + e−2πag(θ).

We replace

g(θ + 2π) by g(2π) + e−2πag(θ) in (17),

and after some calculations we obtain ϕ(θ+2π)=ϕ(θ), hence ϕ(θ) is 2π-periodic.
Consequently, the functions ri (θ, r

∗
i ) , i = 1, 2 are also 2π-periodic.
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c) Strict positivity of ri (θ, r
∗
i ) , i = 1, 2, for all θ ∈ [0; 2π[. Since 0 < ϕ(θ) < γ2

and γ > 0, we have γ2 > ϕ(θ), which implies γ >
√
ϕ(θ), hence

γ −
√
ϕ(θ) > 0 and γ +

√
ϕ(θ) > 0.

Therefore ri (θ, r
∗
i ) , i = 1, 2 are strictly positive.

In order to prove that the periodic orbit is hyperbolic limit cycle, we consider
the equation (9), and we introduce the Poincaré return map

λ → Π(2π, λ) = r(2π, λ).

Therefore, periodic orbits of system (2) are hyperbolic limit cycles if and only if
dri(2π,λ)

dλ

∣∣∣
λ=r∗i

�= 1, i = 1, 2, where

r∗1 =

(
γ +

√
e2πa

1− e2πa
g(2π)

) 1
2k

, r∗2 =

(
γ −

√
e2πa

1− e2πa
g(2π)

) 1
2k

.

We have

r1 (2π, λ) =

(
γ +

√
e2aπ

(
(λ2k − γ)

2
+ g(2π)

)) 1
2k

,

r2 (2π, λ) =

(
γ −

√
e2aπ

(
(λ2k − γ)

2
+ g(2π)

)) 1
2k

.

After some calculations we obtain

dr1(2π, λ)

dλ

∣∣∣∣
λ=r∗1

=
dr2(2π, λ)

dλ

∣∣∣∣
λ=r∗2

= e2πa �= 1.

Consequently, the limit cycles of the differential equation (9) are hyperbolic
(see for instance [16]).

Now we prove that these two limit cycles are not algebraic for b �= 0.
The curve defined by these two limit cycles is

(
r2k − γ

)2 − eaθ
(

e2πa

1− e2πa
g(2π) + g(θ)

)
= 0. (18)

More precisely, in Cartesian coordinates, r2 = x2 + y2, θ = arctan y
x , this curve

can be written as

G(x, y)=
((
x2+y2

)k−γ
)2

− ea arctan y
x

(
e2πag(2π)

1− e2πa
+

arctan
y
x∫

0

e−as

c− 1
2b sin 2ks

ds

)
= 0. (19)
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We remark that G(x, y) = 0 is not a polynomial because there is no integer n

for which both ∂nG
∂xn and ∂nG

∂yn vanish identically, for example when calculating

∂G
∂x note that the expression ea arctan

y
x

(
e2πa

1−e2πa g(2π) +
∫ arctan

y
x

0
e−as

c− 1
2 b sin 2ks

ds
)

appear again, so for any order of derivation this expression will appear. Therefore
the curve G(x, y) = 0 is non-algebraic and the limit cycles of the system (2) will
also be non-algebraic. �

P r o o f o f s t a t e m e n t (3). If we take b = 0, we get g(θ) = 1
ac

(
1− e−aθ

)
and

g(2π) = 1
ac

(
1− e−2πa

)
. Then

ϕ(θ) =
−1

ac
.

Going back through the changes of variables
(
r2k − γ

)2
= ϕ and by passing

to Cartesian coordinates (x, y), we obtain((
x2 + y2

)k − γ
)2

+ 1
ac = 0.

The system (2) has two algebraic limit cycles if and only if ac < 0, γ >
√

− 1
ac .

This complete the proof of Theorem 2.1. �

3. Examples

The following examples illustrate our result.

For k = 1, we have
P2(x, y) = 2xy.

For k = 2, we have

P4(x, y) =

(
4

1

)
x3y + (−1)

(
4

3

)
xy3

= 4x3y − 4xy3.

Example. If we take γ = 2, c = 2, b = 1, a = −1, then system (2) reads

ẋ = 2x
(
x2 + y2

)k
+
(
2− (x2 + y2

)k)(
4
(
x2 + y2

)k − P2k(x, y)
)

×
(
−2x+ (x+ 4ky)

(
x2 + y2

)k)
,

ẏ = 2y
(
x2 + y2

)k
+
(
2− (x2 + y2

)k)(
4
(
x2 + y2

)k − P2k(x, y)
)

×
(
−2y − (4kx− y)

(
x2 + y2

)k)
.

(20)
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This system has two non algebraic limit cycles whose expressions in polar coor-
dinates (r; θ) are

r1(θ) = 2 +

√
e−θ

((
(r∗1)

2 − 2
)2k

+ g(θ)

)
,

r2(θ) = 2−
√
e−θ

((
(r∗2)

2k − 2
)2

+ g(θ)

)
,

where

g(θ) =

θ∫
0

es

2− 1
2 sin 2ks

ds,

r∗1 =

(
2 +

√
e−2π

1− e−2π
g (2π)

) 1
2k

, r∗2 =

(
2−

√
e−2π

1− e−2π
g(2π)

) 1
2k

.

Case k=1 Case k=2

Figure 1. Two non-algebraic limit cycles of system (20) in Poincaré disc.

Example. Let γ = 2, c = 2, b = 0 and a = −1, then the system (2) becomes

ẋ = 2x
(
x2 + y2

)k − 4
(
x2 + y2

)k (
2− (x2 + y2

)k)
×
(
2x− (x+ 4ky)

(
x2 + y2

)k)
,

ẏ = 2y
(
x2 + y2

)k − 4
(
x2 + y2

)k (
2− (x2 + y2

)k)
×
(
2y + (−y + 4kx)

(
x2 + y2

)k)
.

(21)
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TWO NON ALGEBRAIC LIMIT CYCLES

We remark that this system satisfies the conditions of statement (3) of Theo-
rem 2.1, hence the system (21) possesstwo algebraic limit cycles given in Carte-
sian coordinates by the expression((

x2 + y2
)k − 2

)2
− 1

2
= 0.

Case k=1 Case k=2

Figure 2. Two algebraic limit cycles of system (21) in Poincaré disc.
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