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MIXTURE AND NON-MIXTURE

CURE FRACTION MODELS BASED

ON GENERALIZED GOMPERTZ DISTRIBUTION

UNDER BAYESIAN APPROACH

Prafulla Kumar Swain — Gurprit Grover — Komal Goel

ABSTRACT. The cure fraction models are generally used to model lifetime data
with long term survivors. In a cohort of cancer patients, it has been observed
that due to the development of new drugs some patients are cured permanently,
and some are not cured. The patients who are cured permanently are called cured
or long term survivors while patients who experience the recurrence of the dis-

ease are termed as susceptibles or uncured. Thus, the population is divided into
two groups: a group of cured individuals and a group of susceptible individuals.
The proportion of cured individuals after the treatment is typically known as
the cure fraction. In this paper, we have introduced a three parameter Gompertz
(viz. scale, shape and acceleration) or generalized Gompertz distribution in the
presence of cure fraction, censored data and covariates for estimating the propor-

tion of cure fraction through Bayesian Approach. Inferences are obtained using
the standard Markov Chain Monte Carlo technique in openBUGS software.

1. Introduction

In lifetime data analysis, the standard survival analysis techniques inherently
assume that all the subjects have the same susceptibility to the disease and
will eventually experience the event over a sufficiently long period of follow-up.
But the situation in which the studied population is a mixture of uncured (sus-
ceptible individuals- who may experience the event of interest), and cured (non-
-susceptible individuals- who will never experience the event), the standard sur-
vival models are usually not appropriate because they do not account for the
possibility of cure. Many patients with disease like cancer can be long-term sur-
vivors, and thus cure models can be a useful tool to analyze and describe their
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survival data. Progress in the treatment of cancer has led to a spate of statisti-
cal research to develop cure models. These models are generally used to model
lifetime data with long term survivors with an objective to estimate the cure
rate, survival distribution and the effect of covariates. The cure fraction is a use-
ful measure to monitor trends and differences in survival of curable diseases.
The first created cure model, which is still widely used in survival analysis,
had been constructed by [3] and later developed by [2]. The model proposed
by him is formulated in terms of a mixture model, which introduces a compo-
nent representing the proportion of immunes in the population and a distribution
representing the survival experience of the susceptible, called the latency dis-
tribution. There are many choices for latency distribution like Weibull, gamma,
lognormal, Gompertz, exponential etc. Many analyses of cancer survival data are
based on overall survival or progression free survival (PFS). No patient can be
“cured” of death, so in these situations cure models can be used to model long-
-term survivors rather than cured patients. These models can be used to inves-
tigate heterogeneity between cured and uncured patients. Also they are suitable
for modeling censored and uncensored lifetime data. This model extends several
distributions widely used in the lifetime data analysis allowing flexibility in mod-
eling monotone and non-monotone shape hazard rates and it serves as a good
alternative for the analysis of real datasets. Generally, in a population cure is
said to occur when the mortality rate in the diseased group of individuals return
to same level as that of general population. A straight forward way to identify the
presence of long term survivors in a dataset is to look at the pattern of survival
curve of patients in dataset. If the survival curve has a plateau at the end, then
a cure model may be an appropriate model for analyzing that dataset. These
models can be a useful alternative to Cox-proportional hazard models as these
can be used in situations where the assumption of proportionality fails. Also, they
are helpful in determining the covariates associated with long-term as well as
short term effects. Cure models provide simultaneous estimates of the proportion
of the patients cured from the disease and the distribution of the survival times
for uncured patients (latency distribution). A c h c a r et al. (2012) [1] estimated
the cure fraction by using a two parameter Weibull distribution in the presence
of cure fraction under both mixture and non mixture cure models. A Bayesian
analysis of the four-parameter generalized modified Weibull (GMW) distribution
in presence of cure fraction, censored data and covariates had been presented
by [10]. K a n n a n et al. [7] used the generalized exponential cure rate model
with covariates to estimate cure fraction under mixture and non mixture setup.
Several authors [11] used Poisson distribution as latent distribution in analyzing
long term survivors. Y am a g u c h i (1992) [13] used the generalized gamma to
model the latency distribution and the logistic function to model the cure frac-
tion in terms of covariates. Y u et al. [14] established that among the various
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distributions namely lognormal, loglogistic, Weibull and generalized gamma, the
estimate of cure fraction was robust with generalized gamma distribution. As
most of the authors used Weibull and exponential distributions mostly for es-
timating cure rate, we here used the generalized Gompertz distribution for the
analysis purpose.

The Gompertz distribution is one of the commonly used distributions in sur-
vival analysis, as it is a flexible distribution which can be skewed to the right
and to the left and is also a continuous probability distribution on (0,∞) that
has an increasing failure rate. It has been used as a growth model to fit the
tumor growth in cancer studies. C h i e n- L i n S u et al. had used a 2-parameter
Gompertz distribution (scale and shape parameters) for the survival analysis
of smoking-cessation data in the presence of cure fraction. In addition to shape
and scale parameter of Gompertz distribution, we have considered the accelera-
tion parameter (which works as a factor of fragility in the survival of the indi-
vidual when the time increases) for determining the changes in the hazard rate
with respect to time. The main advantage of this new distribution is that it has
increasing or constant or decreasing or bathtub curve failure rate depending
upon the shape parameter. Also, we have made an attempt to estimate the cure
fraction using Bayesian approach while assuming beta and gamma priors on pa-
rameters under mixture and non mixture cure models. Bayesian methods make
it easier to estimate and analyze complicated problems, while classical inference
methods are quite cumbersome. Also, the Bayesian approach allows us to in-
clude any prior information that we have on the parameters in the model and
hence helps in obtaining a much refined set of posterior estimates. An illustra-
tion of proposed methodology is applied to a real dataset of melanoma cancer
patients in the presence of cure data, censored observations and covariates.

The rest of the paper is organized as follows. In the next section we describe
(i) classes of cure models namely, mixture and non mixture cure models, (ii) the
3-parameter Gompertz distribution and (iii) its likelihood under both mixture
and non-mixture models. Then, in Section 3, results have been given and finally
the discussion has been presented in Section 4.

2. Materials and methods

2.1. Mixture cure fraction model

A mixture cure fraction model [9], as the name suggests, is a mixture of two
types of individuals. In this model, population is divided into two segments,
viz. cured or long term survivors and uncured or susceptibles.

Let p(0 < p < 1) be the probability of an individual being cured and (1− p)
be the probability of an individual being susceptible.
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Then the survival function at time t can be defined as

S(t) = p+ (1− p)S0(t), (1)

where S0(t) is the baseline survival function for the susceptible individuals, which
is assumed to follow generalized Gompertz distribution with the parameters
λ, c, θ, i.e.,

S0(t) ∼ GGD(λ, c, θ).

The cumulative distribution function for the lifetime T can be defined as

F (t) = 1− S(t) = (1− p)
(
1− S0(t)

)
= (1− p)F0(t)

implying that the probability density function is

f(t) = (1− p)f0(t),

where f0(t) is the baseline probability density function for the susceptible indi-
viduals.

Let (ti, δi) be a random sample of size n (i = 1, 2, . . . , n) from the cancer data
set, where ti is the survival time for the ith cancer patient and δi is the indicator
variable defined as:

δi =

{
1, for uncensored lifetime,
0, for censored lifetime

}
, i = 1, 2, . . . , n.

Therefore, the contribution of ith cancer patient to the likelihood is given by

Li =
[
f(ti)

]δi[
S(ti)

]1−δi
=

[
(1− p)f0(ti)

]δi[
p+ (1− p)S0(ti)

]1−δi
. (2)

2.2. Non-mixture cure fraction model

A non mixture cure fraction model [1] defines an asymptote for the cumulative
hazard and hence for the cure fraction. In this case, the survival function is
defined as

S(t) = pF0(t) = exp[(log p)]F0(t), (3)

where
F0(t) = 1− S0(t).

Under this model, the contribution of the ith subject to the likelihood function
is given by

Li =
[
h(ti)

]δi
S(ti) =

[−(log p)f0(ti)
]δi

exp
[
(log p)F0(ti)

]
, (4)

where h(t) = f(t)
S(t) is the hazard function.
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2.3. Generalized Gompertz distribution for the susceptible individuals

As a special case, let us assume a three parameter Gompertz distribution
introduced by [6] for the susceptible individuals with probability density function
given by

f0(t) = θλect exp

[
− λ

c

(
ect − 1

)][
1− exp

[
− λ

c

(
ect − 1

)]]θ−1

, (5)

where t, λ, θ, c > 0. Here λ is a scale parameter, c is an acceleration parameter
and θ is the shape parameter. The main property of this new distribution is that
it has decreasing or unimodal probability density function and has increasing,
constant or decreasing shaped hazard function. Figure 1, represents the hazard
plot of this distribution. This property makes this distribution very useful in sur-
vival analysis. The advantage of this distribution over exponential distribution
is that it has increasing or decreasing failure rate, while exponential distribution
has constant hazard rate. Also, the Weibull distribution has disadvantage over
the generalized Gompertz distribution and it is that the maximum likelihood
estimators of the parameters of Weibull distribution may not behave property
for all parameter values even when the location parameter is set to zero.

Figure 1. Hazard plot of 3-parameter Gompertz distribution.

Its survival function is given as

So(t) = 1−
[
1− exp

[
−λ

c

(
ect − 1

)]]θ
. (6)

Then, the cumulative density function is

F0(t) = 1− S0(t).
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The 2-parameter Gompertz distribution is a particular case of this distribution
with shape parameter θ = 1.

Therefore, the log likelihood functions of this distribution under mixture and
non-mixture cure fraction models can be written as

l(β) = log(1− p)
∑
i

δi +
∑
i

δi log θ +
∑
i

δi log λ+ c
∑
i

δiti

− λ

c

∑
i

δi(e
cti − 1) + (θ − 1)

∑
i

δi log

(
1− exp

[
− λ

c
(ecti − 1)

])

+
∑
i

(1− δi)

[
log

[
p+ (1− p)

{
1−

(
1− exp

[
− λ

c
(ecti − 1)

])θ}]]
(7)

(under mixture cure models),

and

l(β) =
∑
i

δi log(− log p) +
∑
i

δi log θ +
∑
i

δi log λ+ c
∑
i

δiti

− λ

c

∑
i

δi(e
cti − 1) + (θ − 1)

∑
i

δi log

(
1− exp

[
− λ

c
(ecti − 1)

])

+

[∑
i

(log p)

(
1− exp

[
− λ

c
(ecti − 1)

])θ]
(8)

(under non-mixture cure models),
where β = (p, λ, c, θ).

The joint posterior distribution for the parameters of the model is obtained
by combining the joint prior distribution with the likelihood function of β.
Although the joint posterior distribution for the parameters of the proposed
model is of great complexity, samples of the joint posterior distribution can be
generated using some existing MCMC (Markov Chain Monte Carlo) simula-
tion methods. A great computational simplification to simulate these samples is
obtained using the OpenBUGS software, where we only need to specify the dis-
tribution for the data and the prior distributions for the parameters. For a
Bayesian analysis of the mixture and non-mixture models not including covari-
ates, we assume a beta prior distribution Beta (1, 1) for the proportion p of the
long-term survivors because p is a probability and can only take values in the
interval (0, 1). We also assume gamma prior distribution for the parameters of
generalized Gompertz distribution where Gamma (a, b) denotes a gamma distri-
bution with mean (a/b) and variance (a/b2) with a = b = 1. In the presence of
covariates, we assume N(e, f2) with mean e and variance f2 for all the regression
parameters. For all cases, we assume prior independence among the parameters
included in the model.
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Posterior summaries of interest are obtained from simulated samples for the
joint posterior distribution using standard Markov Chain Monte Carlo (MCMC)
procedures. For all the cases, we assume a burn-in-sample of 10,000 samples,
taking every 100th sample to have approximately uncorrelated values. We gener-
ated 10,10,000 samples for each parameter of interest. The 10000 first simulated
samples were discarded as a burn-in period, which is usually used to eliminate
the effect of the initial values.

2.4. Model comparison criteria

Comparison between mixture and non-mixture models assuming different dis-
tributions was assessed using the deviance information criteria (DIC) proposed
by [12], where a lower DIC value indicates better model fit.

The DIC is defined as follows:

DIC = D̂ + 2(D̄ − D̂),

where D̄ is the average of deviance (−2LogLikelihood) over the posterior distri-

bution, and D̂ is the deviance calculated at the posterior mean parameters.

To obtain inferences regarding the predictors, we have consider the following
regression model

λi = βo exp(β1x1i + β2x2i + · · ·+ βkxki) for overall survival

and

log

(
pi

1− pi

)
= αo + α1x1i + · · ·+ αkxki for cure fraction,

where x = (x1, . . . , xk)
′ is a set of predictors affecting the parameters. Assum-

ing the mixture and non-mixture models based on the generalized Gompertz
distribution; let us consider normal prior distributions N(0, 100) for the param-
eters of regression models. Thus, we are assuming approximately non-informative
priors for these parameters. Note that the parameter α2 is related to the effect
of the treatment on the cure fraction. If the credible interval for α2 includes zero,
we can conclude that there is no evidence of treatment effect on cure fraction.

3. Results

To illustrate the methodology, mixture and non-mixture cure models are fit-
ted to the melanoma dataset from the ECOG phase III clinical trial e1684, which
is also illustrated by PSPMCM SAS macro [5]. This trial was a two-arm clini-
cal trial involving patients randomized to one of two treatment arms: high-dose
interferon (IFN) or observation. The aim of this trial is to evaluate the high
dose interferon alpha-2b (IFN) regimen against the placebo as the postoperative
adjuvant therapy. After deleting missing data, a total number of 284 observa-
tions is used in the analysis. Three covariates viz. treatment (0 control group;
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1 IFN group), gender (0 for male, 1 for female) and age are taken into account
both in the incidence and latency parts. A total of 69% patients were found
to be censored in the trial. The Kaplan-Meier estimate of the survival function
is given in Figure 2, where the presence of a plateau near 0.3 suggests that cure
model is suitable for this dataset.

Figure 2. Kaplan–Meier survival curve.

We first obtained the posterior summaries under standard Weibull, stan-
dard Gompertz and generalized Gompertz distribution. The parameter estimates
from all these three distributions are quite similar (Table 1). Moreover, from the
DIC values, it has been observed that the generalized Gompertz distribution has
the smallest DIC value, concluding this distribution to be best amongst all.

Figure 3 represents the Cox-Snell residual curves for testing the goodness of fit
of Weibull and Gompertz distributions. For this, we computed the Kaplan-Meier
estimates of the cumulative hazard function and plotted it against the Cox-Snell

Table 1. Posterior summaries not including the cure fraction p.

Model Parameter Posterior 95% Credible DIC

mean (SD) interval

Standard Weibull λ 8.347(81.34) (0,37.9) 393.2

(2-pmts.) θ 8.6(81.86) (0,38.4)

Standard Gompertz λ 8.961(89.01) (0,44.07) 580.7
(2-pmts.) θ 9.945(102.6) (0,47.76)

Generalized Gompertz λ 8.63(84.32) (0,36.9) 200.6
(3-pmts.) θ 10.54(110.6) (0,44.3)

c 9.19(91.16) (0,49.9)
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residuals. The best fitted model is one in which Cox-Snell residuals have an expo-
nential distribution, which is being showed by Gompertz distribution. In Table 1,
we have the posterior summaries of the estimates considering Bayesian approach
for each of these probability distributions. The Bayesian estimates were obtained
using OpenBUGS software.

H

Figure 3. Cox-Snell plot for Weibull and Gompertz distribution.

As the result from Table 1 indicates GGD to be the best, we now fit cure
models on this distribution in our dataset of melanoma cancer patients. To
analyze this dataset, we consider the mixture and non mixture cure fraction
models defined earlier in the presence of and not of covariates. As a first analysis,
we assume the cure fraction models not in presence of covariates. Table 2 presents
the posterior summaries of parameters based on GGD under mixture and non-
mixture cure models in the absence of covariates.

From the fitted cure models in the absence of covariates, it has been observed
that the mixture and non mixture GGD fits well to the survival times. The re-
sults indicate that the cure fraction (p) is significant under both the models.
Also the DIC value of mixture cure model (282.8) is less than the non-mixture
cure model (328.7). In the presence of covariates (treatment, age, sex), we assume
the following two regression models,

λi = βo exp(β1x1i + β2x2i + β3x3i) for overall survival

and,

log

(
pi

1− pi

)
= αo + α1x1i + α2x2i + α3x3i for cure fraction,
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where x1i is the sex of the patient (0=male, 1=female), x2i denotes the treat-
ment (1=IFN treatment group, 0=control group), x3i is the patient age for
i = 1, 2, . . . , n. Table 3 gives the estimates of the regression models considering
Bayesian approach under both the models in the presence of covariates.

Table 2. Posterior summaries including the cure fraction p

(in the absence of covariates).

Model Parameter Posterior 95% Credible DIC
mean (SD) interval

Mixture λ 9.407(103) (0,30.97) 282.8
cure model θ 8.757(86.15) (0,41.12)

c 10.63(98.85) (0,67.23)

p 0.499(0.291) (0.024,0.976)

Non-mixture λ 6.785(63.32) (0,23.52)
cure model θ 7.137(81.58) (0,32.1) 328.7

c 9.037(86.89) (0,48.85)
p 0.498(0.291) (0.023,0.975)

Table 3. Posterior summaries including cure fraction p
(in the presence of covariates).

Model Parameter Posterior SD 95% Credible
mean interval

Mixture α0(intercept) 0.0002 0.102 (-0.192,0.195)

cure model α1(sex) 0.0013 0.099 (-0.196,0.191)

α2(treatment) -0.0005 0.100 (0.189,0.199)

α3(age) 0.0029 0.098 (-0.189,0.198)

β0(intercept) 0.0009 0.101 (-0.199,0.199)

β1(sex) -0.0032 0.098 (-0.198,0.186)

β2(treatment) -0.0011 0.101 (0.194,0.201)

β3(age) -0.0007 0.098 (-0.188,0.192)

c 11.55 113.10 (0,55.97)
θ 7.037 60.71 (0,29.75)

Non-mixture α0(intercept) -0.0010 0.100 (-0.194,0.193)

cure model α1(sex) 0.0007 0.100 (-0.196,0.198)

α2(treatment) -0.0008 0.099 (0.196,0.194)

α3(age) 0.0007 0.100 (-0.195,0.201)

β0(intercept) -0.0015 0.101 (-0.199,0.199)

β1(sex) 0.0002 0.099 (-0.195,0.196)

β2(treatment) -0.0002 0.100 (0.197,0.200)

β3(age) 0.0008 0.100 (-0.194,0.195)

c 10.11 96.03 (0,43.94)

θ 12.95 130.8 (0,64.01)
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Dynamic trace and posterior Density plot of cure fraction under mixture model

Dynamic trace and posterior Density plot of cure fraction under non-mixture model

Figure 4. Trace plots for convergence diagnostics and marginal posterior
kernel density plots.
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From Table 3, we observe that the similar results are obtained for both
the models. A significant comparison reveals that 95% Credible Interval for α2

and β2 does not include zero suggesting that the IFN treatment has a significant
effect on the survival and cure probability, and the covariates namely age and
sex have no significant effect on the survival and cure probability. Figure 4 shows
the dynamic trace and posterior density plots of cure fraction under mixture and
non mixture cure models. The trace plot indicates that the Markov chain has
stabilized with good mixing and hence MCMC algorithm converged, and the
kernel density plot estimates the posterior marginal distribution.

4. Discussion

The purpose of this study is to show the utility and flexibility of general-
ized Gompertz distribution under cure models. These models have been well
developed in the statistical literature, but are not as common in the clinical lit-
erature. For diseases like cancer in which patients are long-term survivors, cure
models can provide an interesting way to characterize and study their survival.
They are generally used to model lifetime data with long term survivors. Even
though the cure models are first proposed by [3] but they are still widely used
in survival analysis, as they provide a measure to monitor trends and differ-
ences in survival of curable diseases. These are the only models which provide
an estimate for proportion of cure patients and distribution of survival times
of uncured patients simultaneously. These models are very appropriate when
the studied population is a mixture of cure (who does not experience the event)
and susceptible individuals (who experience the event). There are two classes
of cure models, mixture and non-mixture cure models, both of which can de-
scribe short-term and long-term effects. One advantage of these models besides
estimating cure rate is to reduce the cure model to a common survival model
in absence of cure patients, i.e., if the study or follow-up time is long enough,
then also these models are reliable. Also, they incorporate several distributions
which are widely used in the lifetime data analysis, allowing flexibility in mod-
eling their monotone and non-monotone shape hazard rates.

Our aim in this study is to show the utility of generalized Gompertz distribu-
tion under cure models. Based on this distribution we developed a cure fraction
regression model suitable for modeling censored and uncensored lifetime data.
Aiming to show its flexibility, practical relevance and applicability of the regres-
sion model, we provided an application to melanoma cancer patient’s dataset.
As the Kaplan-Meier survival curve shows a long and stable plateau with heavy
censoring at the tail, it may be taken as evidence of a cured fraction. Mixture
and non-mixture cure models are fitted over a dataset of 284 melanoma cancer
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patients with baseline survivor function as generalized Gompertz distribution.
A descriptive comparison reveals that mixture cure models are best fitted than
non-mixture cure models which match with the findings of [1]. As treatment ef-
fect is significant across both the models, implying that IFN treatment improve
the cure rate and survival of patient, which has also been proved by [8].

As discussed above, some alternative parametric distributions could also be
considered that provide more flexibility in the shape of excess mortality/relative
survival functions, while still giving reliable estimates of cure fraction.
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Appendix. OpenBUGS codes

The OpenBUGS code used for the analysis of the melanoma cancer data is
given below, considering the mixture model.

model

{

for(i in 1: N)

{

f0A[i]<-theta*lambda*exp(c*t[i])*exp(-(lambda/c)*(exp(c*t[i])-1))

f0B[i]<-pow(1-exp(-(lambda/c)*(exp(c*t[i])-1)),1-theta)

f0[i]<-f0A[i]/f0B[i]

S0[i]<-1-pow(1-exp(-(lambda/c)*(exp(c*t[i])-1)),theta)

F0[i]<-1-S0[i]

L[i]<-pow((1-p)*f0[i],d[i])*pow(p+(1-p)*S0[i],1-d[i])

\# for mixture models

log L[i]<-log(L[i])

zeros[i]<-0

zeros[i]~dloglik(log L[i])

}

p~dbeta(1,1)

theta~dgamma(1,1)

lambda~dgamma(1,1)

c~dgamma(1,1)

}

In this code N is the sample size, f0[i] is the baseline probability density func-
tion as given in eqn. (5), S0[i] is the baseline survivor function given in eqn. (6),
L[i] is the likelihood function, t[i] is the time-to-event variable and d[i] is
the censoring indicator variable (denoted by δij). Considering that the general-
ized Gompertz distribution is not available directly as a choice in OpenBUGS
we used the dloglik() distribution, which requires us to specify the logarithm
of the likelihood function.
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For the non-mixture model, we replace in the code for L[i] by,

L[i]<-pow(h[i],d[i])*exp(F0[i]*log(p))

h[i]<-(-(log(p)))*f0[i]

We did not encounter any problem of convergence while obtaining posterior
samples in the models.
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