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INTEGRATION BASED ON FUSION FUNCTIONS

L’uboḿıra Horanská — Alexandra Šipošová

ABSTRACT. In this paper, we present an approach to data aggregation based
on a generalization of the discrete Choquet integral by means of fusion func-

tions. Inspired by Mesiar, R.–Kolesárová, A.–Bustince, G.–Pereira Dimuro, G.–
–Bedregal, B.: Fusion functions based discrete Choquet-like integrals, European J.
Oper. Res. 252 (2016), 601–609, we merge information contained in capacities m
of criteria sets and values of score vectors by a fusion function F instead of the
product operator. We give the conditions under which fusion functions F yield

well-defined functionals Cm
F and we also discuss properties of these functionals.

Some examples for particular capacities m and particular fusion functions F are
given.

1. Introduction

A decision making problem consists in choosing the best alternative according
to some criteria. One of the useful tools used for the evaluation of a score vector
related to the considered criteria is the Choquet integral, which is able to reflect
a certain interaction between criteria. The Choquet integral [2] was generalized
in several ways, see, for instance, [4], [5].

Our generalization was inspired by that of M e s i a r et al. in [3], where the au-
thors generalized one of the two usually used discrete forms of the Choquet
integral (see below, the formula (1)) replacing the product operator by a fu-
sion function satisfying certain conditions. Using the same idea, we generalize
the other formula (see the formula (2)) for the discrete Choquet integral. Note
that, in general, the resulting functional differs from that obtained in [3].

We recall the definition of the Choquet integral on a general monotone mea-
sure space (X,S,m), where X is a non-empty set X, S is a σ-algebra of its
subsets and m : S → [0,∞] a monotone measure, i.e., a set function satisfying
the properties m(∅) = 0 and m(A) ≤ m(B) for all A,B ∈ S, A ⊆ B.
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���������� 1.1� Let (X,S,m) be a monotone measure space. For any S-mea-
surable function f : X → [0, 1] the Choquet integral Chm(f) is given by

Chm(f) =

1∫
0

m
({

x ∈ X|f(x) ≥ t
})

dt,

where the integral on the right-hand side is the Riemann integral.

In this paper, we will only deal with finite spaces X = {1, . . . , n} for some
n ∈ N , n ≥ 2, S = 2X and normed monotone measures m : 2X → [0, 1], i.e.,
monotone measures with m(X) = 1, calling them capacities [6]. The set of all
capacities m : 2X → [0, 1] will be denoted by Mn. Any 2X -measurable function
f : X → [0, 1] will be identified with a vector x = (x1, . . . , xn) ∈ [0, 1]n, where
xi = f(i), i = 1, . . . , n.

A discrete form of the Choquet integral is of great importance in decision
making theory, regarding a finite set X = {1, . . . , n} as some criteria set, a vector
x ∈ [0, 1]n as a score vector and a capacity m : 2X → [0, 1] as the weights
of particular sets of criteria.

	
��������� 1.2� Let X = {1, . . . , n} and let m : 2X → [0, 1] be a capacity.
Then for any x ∈ [0, 1]n the discrete Choquet integral is given by

Chm(x) =

n∑
i=1

(
x(i) − x(i−1)

) ·m(
E(i)

)
, (1)

where (·) : X → X is a permutation such that x(1) ≤ · · · ≤ x(n), E(i) ={
(i), . . . , (n)

}
for i = 1, . . . , n, and x(0) = 0, or, equivalently, by

Chm(x) =

n∑
i=1

x(i) ·
(
m
(
E(i)

)−m
(
E(i+1)

))
, (2)

with x(i) and E(i), i = 1, . . . , n, as above, and E(n+1) = ∅.
Observe that information contained in a score vector and that one in a capac-

ity are joined by the standard product operator. Replacing the product in for-
mulae (1) and (2) by a function F : [0, 1]2 → [0, 1] (a binary fusion function),
we obtain the following formulae:

CF
m(x) =

n∑
i=1

F
(
x(i) − x(i−1),m

(
E(i)

))
(3)

and

Cm
F (x) =

n∑
i=1

F
(
x(i),m(E(i))−m

(
E(i+1)

))
, (4)

respectively.
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The functionals Cm
F defined by (3) were deeply studied in [3] including a com-

plete characterization of functionals CF
m as aggregation functions.

In this paper, we will analyse the functionals defined by (4). The paper is
organized as follows. In the next section, we provide the conditions under which
a functional Cm

F is correctly defined for any capacity m∈Mn and any x∈ [0, 1]n.
The problem has to be solved separately for n = 2 and n > 2. In both cases,
we also exemplify Cm

F for suitable fusion functions and for particular capacities.
In Section 3, we discuss properties of functionals Cm

F and show the connection
of Cm

F with the discrete Choquet integral. Finally, some concluding remarks are
added.

2. Functionals Cm
F : definition and examples

In this section, we analyse conditions under which the functionals Cm
F intro-

duced in (4) are well-defined and we bring several examples.

Evidently, for a score vector x ∈ [0, 1]n with card {x1, . . . , xn} = n there is
a unique permutation (·) : X → X such that x(1) ≤ · · · ≤ x(n) (in fact, all
inequalities are strict). Thus Cm

F is correctly defined by formula (4). If some
ties occur, i.e., if card {x1, . . . , xn} < n, we have to analyse the two following
cases.

Case 1: Let n = 2. Consider x = (x1, x2) = (x, x), and a capacity ma,b ∈
M2 defined by ma,b({1}) = a and ma,b({2}) = b, where a, b ∈ [0, 1]. Then
C

ma,b

F (x, x) is well-defined only if formula (4) gives back the same value for both
possible permutations (1,2) and (2,1) ordering the vector x increasingly, i.e., if it
holds

F (x, 1− a) + F (x, a) = F (x, 1− b) + F (x, b)

for all a, b ∈ [0, 1].

Consequently, we obtain the following proposition.

	
��������� 2.1� Let n = 2. Then Cm
F : [0, 1]2 → [0, 2] introduced in (4) is

well-defined if and only if

F (x, u) + F (x, 1− u) = 2F (x, 1/2), (5)

for any x, u ∈ [0, 1].

We can immediately characterize all well-defined functionals C
ma,b

F :

C
ma,b

F (x, y) =

⎧⎪⎨
⎪⎩
F (x, 1− b) + F (y, b) if x < y,

2F (x, 1/2) if x = y,

F (x, a) + F (y, 1− a) if x > y.

(6)
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Example 2.2. Consider F : [0, 1]2 → [0, 1] defined by F (x, y) = x
2

(
(2y−1)3+1

)
.

Then F satisfies the constraints of Proposition 2.1. and thus Cm
F is correctly

defined for any ma,b ∈ M2. Note that then

C
ma,b

F (x, y) =

{
x+y
2 + (y−x)

2 (2b− 1)3 if x ≤ y,
x+y
2

+ (x−y)
2

(2a− 1)3 otherwise.

If a = b, i.e., ma,a is a symmetric capacity, then

C
ma,a

F (x, y) =
x+ y

2
+

|x− y|
2

(2a− 1)3 for all x, y ∈ [0, 1].

Observe that all fusion functions of the form F (x, u) = f(x)·g(u) or F (x, u) =
1 − (

1 − f(x)
) · (1 − g(u)

)
, where f : [0, 1] → [0, 1] is an arbitrary function and

g : [0, 1] → [0, 1] is such that g(u) = 1 − g(1 − u) for all u ∈ [0, 1], satisfy
formula (5) and therefore provide well-defined functionals Cm

F .

The following proposition illustrates that the class of suitable fusion functions
contains fusion functions not only of the two types mentioned above. The proof
of the proposition is straightforward.

	
��������� 2.3� Let F : [0, 1]2 → [0, 1] and G : [0, 1]2 → [0, 1] be fusion
functions satisfying formula (5), and let α, β ∈ [0, 1] be such that α + β = 1.
Then αF + βG defined for all (x, u) ∈ [0, 1]2 by

(αF + βG)(x, u) = αF (x, u) + βG(x, u),

is a fusion function satisfying formula (5).

Moreover, for any capacity ma,b ∈ M2 it holds that

C
ma,b

αF+βG = αC
ma,b

F + βC
ma,b

G .

Case 2: Now, consider n > 2 and a vector x = (x1, . . . , xn) ∈ [0, 1]n such
that card{x1, . . . , xn} < n. Without loss of generality, we can suppose that
card{x1, . . . , xn} = n − 1 and x1 = x2 = min{x1, . . . , xn} = x. Then, similarly
as before, we find out that Cm

F (x) is well-defined only if

F
(
x, 1−m({2, 3, . . . , n}))+ F

(
x,m({2, 3, . . . , n})−m({3, . . . , n})) =

F
(
x, 1−m({1, 3, . . . , n}))+ F

(
x,m({1, 3, . . . , n})−m({3, . . . , n})).

The last equality has to be satisfied for any capacity m ∈ Mn, i.e., for any
α, β, γ, δ ∈ [0, 1] such that α+ β = γ + δ ∈ [0, 1] it should hold that

F (x, α) + F (x, β) = F (x, γ) + F (x, δ).

The only solution of this Cauchy’s equation (see [1]) is of the form

F (x, y) = f(x) · y, (7)

where f : [0, 1] → [0, 1] is an arbitrary function. On the other hand, any func-
tion F of the form (7) yields a well-defined functional Cm

F : [0, 1]n → [0, n].
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��������� 2.4� Let n > 2. The functional Cm
F : [0, 1]n → [0, n] is well-defined

for any m ∈ Mn if and only if F (x, u) = f(x) · u for all x, u ∈ [0, 1] and some
function f : [0, 1] → [0, 1]. In that case

Cm
F (x) =

n∑
i=1

f
(
x(i)

) · (m(
E(i)

)−m
(
E(i+1)

))
. (8)

Example 2.5. Consider F : [0, 1]2 → [0, 1] given by F (x, y) = (1 − x)y which
satisfies Proposition 2.3. Then for each m ∈ Mn and x ∈ [0, 1]n it holds:

Cm
F (x) = 1− Chm(x) = Chmd(1− x),

where md is a dual capacity to m, given by md(E) = 1−m(Ec). Note that Cm
F

is a decreasing operator, Cm
F (0, . . . , 0) = 1 and Cm

F (1, . . . , 1) = 0.

Using (8), for a fixed suitable fusion function F given by (7), we can derive
Cm

F for some particular capacities m ∈ Mn, see the following table.

m ∈ Mn Cm
F ; F (x, y) = f(x) · y

m∗(E) =

{
1 if E �= ∅,
0 if E = ∅ Cm∗

F (x) = f
(
x(n)

)
= f

(
max
1≤i≤n

xi

)

m∗(E) =

{
1 if E = {1, · · · , n},
0 otherwise

Cm∗
F (x) = f

(
x(1)

)
= f

(
min

1≤i≤n
xi

)

CmH
F (x) = f(xi), where

mH(E) =

{
1 if H ⊆ E,

0 otherwise

{
j ∈ {1, · · · , n}|xj ≥ xi

} ⊇ H but{
j ∈ {1, · · · , n}|xj > xi

} ⊇ H does not hold
∅ �= H ⊆ X

m(E) = card E
n

Cm
F (x) = 1

n

n∑
i=1

f(xi)

Note that m∗ and m∗ are the greatest and the smallest elements of Mn,
respectively, and that m∗ = mH for H = X.
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3. Properties of functionals Cm
F

The Choquet integral is widely used in data aggregation due to its genuine
properties. It is desirable for functionals obtained by our generalization to inherit
these properties.

Let us recall that a function A : [0, 1]n → [0, 1] is:

• an aggregation function, if A is monotone increasing and

A(0) = A(0, . . . , 0) = 0, A(1) = A(1, . . . , 1) = 1;

• a mean, if for each x ∈ [0, 1]n it satisfies the property

Min(x) ≤ A(x) ≤ Max(x),

where Min(x) = min{x1, . . . , xn}, Max(x) = max{x1, . . . , xn};
• translation invariant, if A(x1 + c, . . . , xn + c) = c + A(x1, . . . , xn) for all
c ∈]0, 1] and (x1, . . . , xn) ∈ [0, 1]n such that (x1 + c, . . . , xn + c) ∈ [0, 1]n;

• idempotent, if A(x, . . . , x) = x for each x ∈ [0, 1];

• positively homogeneous, if A(cx) = cA(x) for each x ∈ [0, 1]n and c > 0
such that cx ∈ [0, 1]n;

• comonotone additive, if A(x+x) = A(x)+A(x) for all comonotone vectors
x,x ∈ [0, 1]n such that x + x ∈ [0, 1]n (vectors x = (x1, . . . , xn), x =
(x1, . . . , xn) are comonotone, if (xi−xj)(xi−xj)≥0 for all i, j∈ {1, . . . , n});

Let n = 2. For binary functionals Cm
F of the form (6) with F satisfying (5),

the following properties can be derived.

	
��������� 3.1� Let n = 2. Let F : [0, 1]2 → [0, 1] be a fusion function satis-
fying formula (5). Then for functional Cm

F of the form (6) it holds that

(i) Cm
F is idempotent for each m ∈ M2, if and only if F satisfies F

(
x, 12

)
= x

2
for all x ∈ [0, 1].

(ii) If Cm
F is a mean for each m ∈ M2, then F

(
x, 12

)
= x

2 for all x ∈ [0, 1].
Conversely, if F is an increasing function in the first variable, such that
F
(
x, 12

)
= x

2 for all x ∈ [0, 1], then Cm
F is a mean for each m ∈ M2.

P r o o f. The idempotency of Cm
F and the necessity in (ii) follows directly from

formula (6).

If F is an increasing function in the first variable such that F
(
x, 12

) ≥ x
2 for all

x ∈ [0, 1], using (6), one can easily check that Cm
F ≥ Min for eachm ∈ M2. Anal-

ogously, if F is an increasing function in the first variable such that F
(
x, 12

) ≤ x
2

for all x ∈ [0, 1], then Cm
F ≥ Max for each m ∈ M2. Summarizing, we obtain

the sufficient condition in (ii). �
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��������� 3.2� Let n = 2. Let F : [0, 1]2 → [0, 1] be a fusion function
satisfying formula (5). Then functional Cm

F is translation invariant for each
m ∈ M2 if and only if F (x, u) = xg(u) + h(u), where g, h : [0, 1] → [0, 1] are
functions satisfying the conditions g(u) + g(1 − u) = 1, h(u) + h(1 − u) =
2F (0, 1/2), 2F (0, 1/2) ≤ g(u) + h(u) ≤ 1.

P r o o f. Let Cm
F be translation invariant. Then, for all x, y, c, u ∈ [0, 1] with x+c,

y + c ∈ [0, 1], we have

F (x+ c, u) + F (y + c, 1− u) = c+ F (x, u) + F (y, 1− u). (9)

Taking x = y = 0 and u = 1/2, we obtain

F (c, 1/2) = c/2 + F (0, 1/2).

Thus, for every x ∈ [0, 1], it has to be satisfied

F (x, 1/2) = x/2 + F (0, 1/2), (10)

where F (0, 1/2) ∈ [0, 1/2].

Now, rearranging terms in (9) and using (5), (10), we have

F (x+ c, u)− F (x, u)

= c + F (y, 1− y)− F (y + c, 1− u)

= c +
(
2F (y, 1/2)− F (y, u)

)− (
2F (y + c, 1/2)− F (y + c, u)

)
= F (y + c, u)− F (y, u) +

(
c+ 2y/2 + 2F (0, 1/2)− 2(y + c)/2− 2F (0, 1/2)

)
= F (y + c, u)− F (y, u).

It means that for the considered u and c, it holds that

F (x+ c, u)− F (x, u) = F (y + c, u)− F (y, u),

for all admissible x and y. It implies that F (x+ c, u)−F (x, u) is a function of c
and u, independent of x, i.e.,

F (x+ c, u)− F (x, u) = ϕ(c, u). (11)

Putting consecutively 0, c, 2c, . . . for x, we get

x = 0 : F (c, u)− F (0, u) = ϕ(c, u),

x = c : F (2c, u) = F (c, u) + ϕ(c, u) = 2F (c, u)− F (0, u),

x = 2c : F (3c, u) = F (2c, u) + ϕ(c, u) = 3F (c, u)− 2F (0, u),

etc. Proceeding by induction, for all k ∈ N, c, u ∈ [0, 1] with kc ∈ [0, 1], we obtain

F (kc, u) = kF (c, u)− (k − 1)F (0, u),

or, equivalently,

F (kc, u) = k
(
F (c, u)− F (0, u)

)
+ F (0, u). (12)
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For a fixed u, we can write F (kc, u) = H(kc) and H(kc) = kG(c) + t. Following
the technique used in the solution of the Cauchy equation and due to the bound-
edness of F, it can be shown that the last equality holds for every k ∈ [0, 1] (see [1]
for details). Hence, we can put c = 1 and k = x, obtaining H(x) = xG(1) + t,
and consequently from (12) we get

F (x, u) = x
(
F (1, u)− F (0, u)

)
+ F (0, u),

or
F (x, u) = xg(u) + h(u),

where g(u) = F (1, u)−F (0, u), h(u) = F (0, u), and functions g, h satisfy the con-
ditions

g(u) + g(1− u) = 1,

h(u) + h(1− u) = 2F (0, 1/2),

2F (0, 1/2) ≤ g(u) + h(u) ≤ 1.

The necessity is proved.

Now, to prove the sufficiency, consider that m ∈ M2, m({1}) = a, m({2}) =
b, F (x, u) = xg(u) + h(u), with g, h satisfying the conditions listed above.
Then, if x < y, for all admissible c also x+ c < y + c, and we get

Cm
F (x+ c, y + c)

= F (x+ c, 1− b) + F (y + c, b)

= (x+ c)g(1− b) + h(1− b) + (y + c)g(b) + h(b)

= c
(
g(b) + g(1− b)

)
+ xg(1− b) + yg(b) +

(
h(b) + h(1− b)

)
= c+ xg(1− b) + yg(b) + 2F (0, 1/2),

and

Cm
F (x, y)

= F (x, 1− b) + F (y, b)

= xg(1− b) + h(1− b) + yg(b) + h(b)

= xg(1− b) + yg(b) + 2F (0, 1/2).

Comparing both expressions, we obtain Cm
F (x+c, y+c) = c+Cm

F (x, y). The rest
of the proof for x ≥ y runs as before. �

	
��������� 3.3� Let n = 2. Let F : [0, 1]2 → [0, 1] be a fusion function
satisfying formula (5). Then functional Cm

F is comonotone additive for each
m ∈ M2, if and only if F satisfies F (x, u) = xF (1, u) for all x, u ∈ [0, 1].

P r o o f. Let Cm
F be comonotone additive for each m ∈ M2. It means

C
ma,b

F (x+ y) = C
ma,b

F (x) + C
ma,b

F (y),

for all comotonone vectors x = (x1, x2),y = (y1, y2) with x1, x2, y1, y2 ∈ [0, 1].
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Due to (6), for every u ∈ [0, 1] it yields

F (x1 + y1, u) + F (x2 + y2, 1− u) =

F (x1, u) + F (x2, 1− u) + F (y1, u) + F (y2, 1− u). (13)

For y1 = y2 = 0 and u = 1/2 we get

F (x1, 1/2)+F (x2, 1/2) =

F (x1, 1/2) + F (x2, 1/2) + F (0, 1/2) + F (0, 1/2),

hence, necessarily 2F (0, 1/2) = 0.

Now, from (6) we have

F (0, u) + F (0, 1− u) = 2F (0, 1/2) = 0, for all u ∈ [0, 1],

and the nonnegativity of F implies

F (0, u) = 0, for all u ∈ [0, 1]. (14)

Putting x2 = y2 = 0, u = 1/2, from (13) we get

F (x1 + y1, 1/2)+F (0, 1/2) =

F (x1, 1/2) + F (0, 1/2) + F (y1, 1/2) + F (0, 1/2),

which, due to (14), can be written as

F (x1 + y1, 1/2) = F (x1, 1/2) + F (y1, 1/2). (15)

Rearranging terms in (13) and using (5) and (15), we obtain

F (x1 + y1, u)− F (x1, u)− F (y1, u)

= F (x2, 1− u) + F (y2, 1− u)− F (x2 + y2, 1− u)

= 2F (x2, 1/2)− F (x2, u) + 2F (y2, 1/2)− F (y2, u)

− (
2F (x2 + y2, 1/2)− F (x2 + y2, u)

)
= F (x2 + y2, u)− F (x2, u)− F (y2, u).

It follows, that F (x+y, u)−F (x, u)−F (y, u) does not depend on x, y, so we can
deduce that

F (x+ y, u)− F (x, u)− F (y, u) = ϕ(u).

Moreover, according to (14), for x = y = 0 we have

ϕ(u) = F (0, u)− F (0, u)− F (0, u) = 0.
Hence

F (x+ y, u) = F (x, u) + F (y, u), for all x, y, u ∈ [0, 1].

The unique solution of this Cauchy equation is of the form

F (x, u) = xF (1, u), for all x, u ∈ [0, 1],

and the necessity is proved.
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To prove sufficiency, let F (x, u) = xF (1, u), for all x, u ∈ [0, 1] and let
x = (x1, x2),y = (y1, y2) be comonotone vectors. Then, the vectors x,y,x + y
are ordered increasingly by the same permutation. For x1 < x2 we have

C
ma,b

F (x+ y)

= F (x1 + y1, 1− b) + F (x2 + y2, b)

= (x1 + y1)F (1, 1− b) + (x2 + y2)F (1, b)x1F (1, 1− b)

+ y1F (1, 1− b) + x2F (1, b) + y2F (1, b)

= F (x1, 1− b) + F (x2, b) + F (y1, 1− b) + F (y2, b)

= C
ma,b

F (x) + C
ma,b

F (y)

The same formulae can be derived for x1 ≥ x2. �

Since comonotone additivity along with boundedness implies positive ho-
mogenity, we obtain the following corollary.

�
����
� 3.4� Let n = 2. Let F : [0, 1]2 → [0, 1] be a fusion function satisfying
formula (5). Then functional Cm

F is positively homogeneous for each m ∈ M2,
if and only if F satisfies F (x, u) = xF (1, u) for all x, u ∈ [0, 1].

	
��������� 3.5� Let n = 2. Let F : [0, 1]2 → [0, 1] be a fusion function
satisfying formula (5). Then for functional Cm

F of the form (6) it holds that

(i) Cm
F is an aggregation function for each m ∈ M2 if and only if F is an in-

creasing function in the first variable satisfying F (0, u) = 0 for all u ∈ [0, 1]
and F (1, 12 ) =

1
2 .

(ii) Cm
F gives back the capacity, i.e., Cm

F (χE) = m(E) for all E ⊆ X and
for each m ∈ M2, if and only if F (1, u) = u and F (0, u) = 0 for all
u ∈ [0, 1].

P r o o f. Statement (i) follows directly from (6).

To prove (ii), let F (1, u) = u and F (0, u) = 0 for all u ∈ [0, 1]. We can easily
check that Cm

F (χE) = m(E) for all subsets of X = {1, 2} using (6).

Taking E = ∅ and supposing that Cm
F gives back capacity, from (6) we get

0 = Cm
F (χE) = 2F (0, 1/2).

Since F is nonnegative and satisfying

F (0, u) + F (0, 1− u) = 2F (0, 1/2) = 0,

we can conclude that F (0, u) = 0 for all u ∈ [0, 1].

Take E = {1}. Considering such capacity m ∈ M2, that m({1}) = u for fixed
u ∈ [0, 1], from (6) we obtain

u = Cm
F (χE) = F (1, u) + F (0, 1− u) = F (1, u),

and the necessity is proved. �
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Now,we focus on the symmetry of binary functionals Cm
F . Obviously, for a sym-

metric capacity ma,a we obtain a symmetric functional C
ma,a

F . Moreover, it holds
that

C
ma,a

F (x, y) = F
(
min{x, y}, 1− a

)
+ F

(
max{x, y}, a).

This functional can be regarded as a generalization of the OWA operator de-
fined by

OWA(x, y) = (1− a)min{x, y}+ amax{x, y}.
Note that for obtaining a symmetric functional Cm

F , the considered capacity
need not be necessarily symmetric, see the following example.

Example 3.6. Let F (x, u) = f(x)+g(u), where f : [0, 1] → [
0, 12

]
is an arbitrary

function and g : [0, 1] → [0, 12 ] is such that g(u)+g(1−u) = c for some c ∈ [
0, 12

]
.

Then F satisfies formula (5), C
ma,b

F is correctly defined for any ma,b ∈ M2, and
it can be expressed as

C
ma,b

F (x, y) = f(x) + f(y) + 2c,

which is a symmetric functional.

Now, let n ≥ 2. Since a fusion function satisfying (7) fulfils also (5), the class
of all suitable fusion functions yielding well-defined binary functional Cm

F con-
tains all suitable fusion functions yielding well-defined functional in higher di-
mensions. Thus the following results for the functionals Cm

F of the form (8)
with F satisfying (7) for n = 2 are special cases of those in the previous propo-
sitions.

	
��������� 3.7� Let F : [0, 1]2→ [0, 1], F (x, u)=f(x)u, where f : [0, 1]→ [0, 1]
is an arbitrary function. Then for any fixed n ≥ 2 it holds that

(i) Cm
F is a mean for each m ∈ Mn if and only if f(x) = x for all x ∈ [0, 1].

(ii) Cm
F is idempotent for each m∈Mn, if and only if f(x)=x for all x∈ [0, 1].

(iii) Cm
F is translation invariant for each m∈Mn, if and only if f(x)=x for all

x ∈ [0, 1].

P r o o f.

(i) Using (8), it can be proved that Cm
F ≥ Min for eachm ∈ Mn, if and only if

f(x) ≥ x. Similarly, Cm
F ≤ Max for each m ∈ Mn, if and only if f(x) ≤ x.

Summarizing, we obtain the statement.

(ii) The statement follows directly from (8).

(iii) Let f(x) = x for all x ∈ [0, 1]. The same permutation orders increas-
ingly vectors x = (x1, . . . , xn) and (x1 + c, . . . , xn + c) for every c ∈]0, 1].
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Thus

Cm
F (x1 + c, . . . , xn + c)

=
n∑

i=1

(
x(i) + c

)(
m(E(i))−m(E(i+1))

)

=

n∑
i=1

x(i)

(
m
(
E(i)

)−m(E(i+1)

))
+ c

n∑
i=1

(
m
(
E(i)

)−m
(
E(i+1)

))

= Cm
F (x1, . . . , xn) + c.

Conversely, let Cm
F be a translation invariant functional. Then for every

c ∈]0, 1] and x1, . . . , xn ∈ [0, 1] it holds

Cm
F (x1 + c, . . . , xn + c) = Cm

F (x1, . . . , xn) + c.

Considering x1 = · · · = xn = 0 and using (8) we obtain

Cm
F (c, . . . , c) =

n∑
i=1

f(c)
(
m
(
E(i)

)−m
(
E(i+1)

))

= f(c)

n∑
i=1

(
m
(
E(i)

)−m
(
E(i+1)

))
= f(c),

and

c+ Cm
F (0, . . . , 0) = c+

n∑
i=1

f(0)
(
m
(
E(i)

)−m
(
E(i+1)

))

= c+ f(0)

n∑
i=1

(
m
(
E(i)

)−m
(
E(i+1)

))
= c+ f(0).

Due to the translation invariance of Cm
F it means

f(c) = c+ f(0), for all c ∈]0, 1]. (16)

Since f(x) ≤ 1 for every x ∈ [0, 1], putting c = 1 in (16) we can conclude
that f(0) = 0 and consequently f(x) = x for all x ∈ [0, 1].

�

Note that for the standard product F (x, u) = xu the functional Cm
F coincides

with Chm, therefore the properties of being a mean, idempotent and translation
invariant hold only for the Choquet integral itself.

	
��������� 3.8� Let F : [0, 1]2→ [0, 1], F (x, u)=f(x)u, where f : [0, 1]→ [0, 1]
is an arbitrary function. Then for any fixed n ≥ 2, Cm

F is comonotone additive
for each m ∈ Mn, if and only if f satisfies f(x) = xf(1) for all x ∈ [0, 1].
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P r o o f. Let f(x) = xf(1) for all x ∈ [0, 1] and let x = (x1, . . . , xn) and
x′ = (x′

1, . . . , x
′
n) be comonotone vectors. Then, the same permutation orders

vectors x,x′,x+ x′ increasingly. Hence,

Cm
F (x+ x′)

=

n∑
i=1

f
(
x(i) + x′

(i)

)(
m
(
E(i)

)−m
(
E(i+1)

))

= f(1)

n∑
i=1

(
x(i) + x′

(i)

)(
m
(
E(i)

)−m
(
E(i+1)

))

= f(1)

n∑
i=1

(
x(i)

)(
m
(
E(i)

)−m
(
E(i+1)

))
+f(1)

n∑
i=1

(
x′
(i)

)(
m
(
E(i)

)−m
(
E(i+1)

))

=

n∑
i=1

f
(
x(i)

)(
m
(
E(i)

)−m
(
E(i+1)

))
+

n∑
i=1

f
(
x′
(i)

)(
m
(
E(i)

)−m
(
E(i+1)

))

= Cm
F (x) + Cm

F (x′).

Conversely, considering vectors x = (x, . . . , x), x′ = (x′, . . . , x′), for a comono-
tone additive functional Cm

F we have

n∑
i=1

f(x+ x′)
(
m
(
E(i)

)−m
(
E(i+1)

))

= Cm
F (x+ x′)

= Cm
F (x) + Cm

F (x′)

=

n∑
i=1

f(x)
(
m
(
E(i)

)−m
(
E(i+1)

))
+

n∑
i=1

f(x′)
(
m
(
E(i)

)−m
(
E(i+1)

))
.

Therefore,

0 =

n∑
i=1

(
f(x+ x′)− f(x) + f(x′)

)(
m
(
E(i)

)−m
(
E(i+1)

))

=
(
f(x+ x′)− f(x) + f(x′)

) n∑
i=1

(
m
(
E(i)

)−m
(
E(i+1)

))
= f(x+ x′)− f(x) + f(x′).

Thus, we obtain the Cauchy equation

f(x+ x′) = f(x) + f(x′), for all x, x′ ∈ [0, 1]

with the unique solution in form f(x) = xf(1). �
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�
����
� 3.9� Let F : [0, 1]2→ [0, 1], F (x, u)=f(x)u, where f : [0, 1]→ [0, 1]
is an arbitrary function. Then for any fixed n ≥ 2, Cm

F is positively homogeneous
for each m ∈ Mn, if and only if f satisfies f(x) = xf(1) for all x ∈ [0, 1].

	
��������� 3.10� Let F : [0, 1]2→ [0, 1], F (x, u)=f(x)u, where f : [0, 1]→ [0, 1]
is an arbitrary function. Then for any fixed n ≥ 2 it holds that

(i) Cm
F is an aggregation function for each m ∈ Mn if and only if f is an in-

creasing function satisfying f(0) = 0 and f(1) = 1.

(ii) Cm
F gives back the capacity for each m ∈ Mn, if and only if f(0) = 0 and

f(1) = 1.

P r o o f.

(i) Due to (8), f(0) = 0 and f(1) = 1 is equivalent to Cm
F (0) = 0 and

Cm
F (1) = 1, respectively. Moreover, the increasingness of a function f is

equivalent to the increasingness of Cm
F in each variable.

(ii) For a fusion function F (x, u) = f(x)u, the functional Cm
F is in form (8).

Let E ⊆ X be such that card(E) = k. Then E(n−k+1) = E, where (·) is
a permutation ordering the vector χE increasingly. Then

Cm
F (χE)

=

n−k∑
i=1

f(0)
(
m
(
E(i)

)−m
(
E(i+1)

))
+

n∑
i=n−k+1

f(1)
(
m
(
E(i)

)−m
(
E(i+1)

))

= f(0)
(
m
(
E(1)

)−m
(
E(n−k)

))
+ f(1)m

(
E(n−k+1)

)
= f(0)

(
1−m

(
E(n−k)

))
+ f(1)m(E).

Now, the sufficiency is clear.
For every y, z∈ [0, 1] there exists such capacitym∈Mn, thatm(E(n−k))=y
and m(E) = z. Therefore, supposing Cm

F (χE) = m(E), from the previous
equality it follows

f(0)(1− y) + f(1)z = z, for all y, z ∈ [0, 1]

or equivalently,

f(0)(1− y) = z
(
1− f(1)

)
, for all y, z ∈ [0, 1].

It implies f(0) = 0 and f(1) = 1, thus we have finished the proof.

�

Since an increasing function preserves ordering of an input vector and a de-
creasing one inverts it, we obtain the following propositions that show the con-
nection between Cm

F and the discrete Choquet integral.
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��������� 3.11� Let F : [0, 1]2 → [0, 1], F (x, y) = f(x)y, where f : [0, 1]→
[0, 1] is an increasing function. Then, for each m ∈ Mn and x ∈ [0, 1]n,

Cm
F (x) = Chm

(
f(x)

)
,

where f(x) =
(
f(x1), . . . , f(xn)

)
.

	
��������� 3.12� Let F : [0, 1]2→ [0, 1], F (x, y)=f(x)y, where f : [0, 1]→ [0, 1]
is a decreasing function. Then, for each m ∈ Mn and x ∈ [0, 1]n,

Cm
F (x) = 1− Chm

(
1− f(x)

)
= Chmd

(
f(x)

)
where

md ∈ Mn

is a capacity dual to m.

Note that the last property was already illustrated for a special function F
in Example 2.5.

4. Concluding remarks

We have generalized the formula (2) for the discrete Choquet integral re-
placing the standard product operator by a function F : [0, 1]2 → [0, 1]. Sev-
eral particular operators Cm

F were discussed, based either on a fixed capacity
m ∈ Mn or on a fixed function F. We have found the conditions under which
a fusion function F yields a well-defined functional Cm

F , with desirable prop-
erties of fuzzy integrals. It is worth mentioning that the class of functionals
Cm

F is much richer in the binary case than in the higher dimensions. Moreover,
for n > 2 the genuine properties of being translation invariant, idempotent or
a mean are fulfilled just for the Choquet integral itself. We expect applications
of our results in all domains where the generalizations of the discrete Choquet
integral are considered, for example in medicine.
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[3] MESIAR, R.—KOLESÁROVÁ, A.—BUSTINCE, G.—PEREIRA DIMURO, G.–
–BEDREGAL, B.: Fusion functions based discrete Choquet-like integrals, European J.
Oper. Res. 252 (2016), 601–609.

[4] MESIAR, R.: Choquet-like integrals, J. Math. Anal. Appl. 194 (1995), 477–488.

65
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SK–810-05 Bratislava

SLOVAKIA

E-mail : alexandra.siposova@stuba.sk

66


	1. Introduction
	2. Functionals CFm: definition and examples
	3. Properties of functionals CFm
	4. Concluding remarks
	REFERENCES

