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Abstract: We compile a quasigeoid model at the study area of New Zealand using the
boundary element method (BEM). The direct BEM formulation for the Laplace equation
is applied to obtain a numerical solution to the linearized fixed gravimetric boundary-
value problem in points at the Earth’s surface. The numerical scheme uses the colloca-
tion method with linear basis functions. It involves a discretisation of the Earth’s surface
which is considered as a fixed boundary. The surface gravity disturbances represent the
oblique derivative boundary condition. The geocentric positions of the collocation points
are determined combining the digital elevation data and the a priori quasigeoid model
(onshore) and the mean sea surface topography (offshore). In our numerical realization,
we use the global elevation data from SRTM30PLUS V5.0, the detailed DTM of New
Zealand, the EGM2008 quasigeoid heights, and the mean sea surface topography from
the DNSC08 marine database. The gravity disturbances are computed using two het-
erogeneous gravity data sets: the altimetry-derived gravity anomalies from the DNSC08
gravity database (offshore) and the observed ground gravity anomalies from the GNS
Science gravity database (onshore). The transformation of gravity anomalies to gravity
disturbances is realized using the quasigeoid heights calculated from the EGM2008 global
geopotential model. The new experimental quasigeoid model NZQM2010 is compiled at
the study area of New Zealand bounded by the parallels of 34 and 47.5 arc-deg southern
latitude and the meridians of 166 and 179 arc-deg eastern longitude. The least-squares
analysis is applied to combine the gravimetric solution with GPS-levelling data using a
7-parameter model. NZQM2010 is validated using GPS-levelling data and compared with
the existing regional and global quasigeoid models NZGeoid2009 and EGM2008. The val-
idation at GPS-levelling testing network in New Zealand shows a similar STD fit of all
investigated quasigeoid models with the geometric height anomalies computed from GPS-
levelling data between 7 cm (NZGeoid2009) and 8 cm (NZQM2010 and EGM2008). The
inaccuracies of the compiled quasigeoid models in New Zealand are expected to be mainly
due to the presence of large systematic errors and inconsistencies of levelling networks
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throughout the country. Another source of the inaccuracy is an insufficient coverage and
a low accuracy of gravity data especially over large parts of the South Island.

Key words: boundary element method, fixed gravimetric boundary-value problem, grav-
ity, numerical integration, quasigeoid

1. Introduction

The geodetic vertical reference system in New Zealand was realized by 13
major local vertical datums (LVDs) relative to the mean sea level (MSL) ob-
served at 12 different tide-gauge stations (cf., Amos and Featherstone, 2003;
Amos and Featherstone, 2009). The LVD Dunedin-Bluff 1960 was defined
by fixing the heights of two levelling benchmarks from the LVDs Dunedin
1958 and BLUFF 1955 instead of using the tide-gauge station as the origin.
Moreover, additional vertical datums were established for surveying pur-
poses throughout the country. Since gravity was not measured along the
precise levelling lines, the LVDs are defined in the system of the approximate
normal-orthometric heights. The cumulative normal-orthometric correction
to the levelled height differences was defined based on the GRS67 normal
gravity formula and computed approximately using a truncated form of
Rapp’s equation (Rapp, 1961). Amos and Featherstone (2009) applied the
iterative gravimetric approach to unify the LVDs in New Zealand using a
regional gravimetric quasigeoid model and GPS-levelling data on each LVD.
The principle of this method is based on an iterative quasigeoid modelling
where the LVD offsets computed from an earlier model are used to apply
additional gravity reductions from each LVD to that model. The result of
this procedure was the first detailed regional gravimetric quasigeoid model
of New Zealand NZGeoid05. NZGeoid05 was computed jointly by the Land
Information New Zealand (LINZ) and the Western Australian Centre for
Geodesy - Curtin University of Technology (Amos and Featherstone, 2009).
NZGeoid05 was calculated from different heterogeneous ground, seaborne
and altimetry-derived gravity data using the deterministic modification of
the Stokes kernel. NZGeoid05 was complied on a 2 × 2 arc-min geograph-
ical grid over New Zealand and its continental shelf (area bounded by the
parallels of 25 and 60 arc-deg southern spherical latitude and the merid-
ians of 160 and 190 arc-deg western spherical longitude). The estimated
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LVD offsets relative to the regional quasigeoid model NZGeoid05 are from
26 cm (One Tree Point 1964, Nelson 1955, and Dunedin-Bluff 1960 LVDs)
up to 59 cm (Gisborne 1926 LVD). The New Zealand quasigeoid model
NZGeoid2009 is the currently adopted official height reference surface for
New Zealand. NZGeoid2009 was computed using a similar approach as
NZGeoid05 (Claessens et al., 2009). The main difference in computing NZ-
Geoid05 and NZGeoid2009 is the use of different global geopotential models
(GGMs); NZGeoid05 was computed using EGM96 (Lemoine et al., 1998),
while EGM2008 (Pavlis et al., 2008) was used for the computation of NZ-
Geoid2009. NZGeoid2009 model is provided to users on a 1 × 1 arc-min
geographical grid over the same area as NZGeoid05. GPS-levelling data
were used to determine the LVD offsets in New Zealand relative to NZ-
Geoid2009. The estimated LVD offsets relative to NZGeoid09 are within
6 cm (One Tree Point 1964 LVD) and 49 cm (Dunedin 1958 LVD).

With the current development of high-performance computing facilities,
numerical methods such us the boundary element method (BEM), finite
element method (FEM), and finite volume method (FVM) are used more
often in precise global and regional gravity field modelling. The first appli-
cations of FEM to the gravity field modelling was given by Meissl (1981)
and Shaofeng and Dingbo (1991). Recently, FEM and FVM applied in
physical geodesy have been discussed in Fašková (2008) and Fašková et al.
(2009). The first application of BEM in physical geodesy was given by
Klees (1992). This approach, based on the indirect BEM formulation and
the Galerkin BEM, was further developed by Lehmann and Klees (1996),
Lehmann (1997), Klees (1998) and Klees et al. (2001). Čunderĺık et al.
(2008) formulated the direct BEM for the fixed gravimetric boundary-value
problem based on the collocation with linear basis functions. This approach
was later completed by developing an iterative procedure for the elimination
of far-zone interactions in Čunderĺık and Mikula (2009).

In this study, we apply the BEM approach developed by Čunderĺık et al.
(2008) and Čunderĺık and Mikula (2009) to determine the gravimetric quasi-
geoid model at the study area of New Zealand. The mathematical formu-
lation of the direct BEM approach is briefly reviewed in Section 2. Results
of the numerical realization are provided in Section 3. The combination
of the gravimetric solution with GPS-levelling data is done in Section 4.
The new experimental quasigeoid model is validated using GPS-levelling
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data and compared with the regional and global quasigeoid models NZ-
Geoid2009 and EGM2008 in Section 5. The summary and conclusions are
given in Section 6.

2. Direct BEM for the linearized fixed gravimetric boundary-
value problem

The linearized fixed gravimetric boundary-value problem represents an ex-
terior oblique derivative problem for the Laplace equation. It is defined as
(cf. Koch and Pope, 1972; Bjernhammar and Svensson, 1983; Grafarend,
1989)

∇2T (x) = 0 x ∈ �3 − Ω, (1)

〈∇T (x) , s (x) 〉 = −δg (x) x ∈ Γ, (2)

T (x) = O ( |x | )−1 x→∞, (3)

where T is the disturbing potential (i.e., difference between the actual grav-
ity potential W and the normal gravity potential U) at any point x, and
δg is the gravity disturbance. The domain Ω represents the body of the
Earth with its boundary Γ given by the Earth’s surface. 〈∇T, s 〉 is the
inner product of two vectors ∇T and s, where the unit vector s is defined
as follows

s (x) = − ∇U (x)
|∇U (x) | x ∈ Γ. (4)

Equation (2) represents the oblique derivative boundary condition as the
normal to the Earth’s surface Γ does not coincide with the vector s defined
in Eq. (4). The direct BEM formulation for the Laplace equation leads to
a boundary integral equation (BIE) that can be derived using the Green’s
third identity or through the method of weighted residuals (cf. Brebbia et
al., 1984; Schatz et al., 1990). A main advantage arises from the fact that
only the boundary of the solution domain requires a subdivision into its
elements. Thus, the dimension of the problem is effectively reduced by
one. The application of the direct BEM to the linearized fixed gravimetric
boundary-value problem (Eqs. 1–3) yields BIE in the following form (cf.
Čunderĺık et al., 2008)
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1
2
T (x) +

∫
Γ

T (y)
∂G

∂ nΓ
(x,y) dy =

∫
Γ

∂ T

∂ nΓ
(y) G (x,y) dy x,y ∈ Γ, (5)

where x and y are the geocentric position vectors of the computation and
moving (integration) points, respectively, nΓ is the normal to the boundary
Γ, and the kernel function G represents the fundamental solution to the
Laplace equation

G (x,y) =
1

4π |x− y | x,y ∈ �3. (6)

In order to handle the oblique derivative problem we use the same simpli-
fication as proposed by Čunderĺık et al. (2008). According to the oblique
derivative boundary condition in Eq. (2), the negative value of the grav-
ity disturbance δg is defined as a projection of the vector ∇T (x) onto the
direction of s (x). The normal derivative term ∂ T/∂ nΓ on the right-hand
side of BIE in Eq. (5) approximately equals ∂ T/∂ nΓ ∼= −δg (x) cosμ (x),
where μ (x) is the angle � (nΓ (x) , s (x)). This term represents the pro-
jection of the vector δg (x) s (x) onto the normal nΓ (x). In this way the
oblique derivative boundary condition in Eq. (2) is incorporated to the di-
rect BEM formulation in Eq. (5).

The boundary integral equation in Eq. (5) is discretised using the col-
location method. It involves a discretisation of the Earth’s surface by a
triangulation of the topography and approximations of the boundary func-
tions by linear functions on each triangular panel using linear basis functions
{ ψj : j = 1, 2, ..., N }. This is realized by the piece-wise linear polynomi-
als defined on the planar triangular panels, where vertices of this triangu-
lation represent the collocation points. BIE in Eq. (5) is then rewritten to
the following discrete form (Čunderĺık et al., 2008)

ci Ti ψi +
N∑
j=1

∫
suppψj

Tj
∂Gi,j

∂ nΓ
ψj dΓj =

=
N∑
j=1

∫
suppψj

δgjGi,j ψj dΓj (i = 1, 2, ..., N) , (7)

where ci represents the spatial segment bounded by the panels joined at the
i-th collocation point, and N is the total number of nodes. The discretised
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boundary integral equations in Eq. (7) form the linear system of observation
equations

Mt = L δg, (8)

where t is the vector of unknown values of the disturbing potential T at the
collocation points, and δg is the vector of observed gravity disturbances δg.
The elements of matrices M and L represent the integrals of the discrete
form of BIEs in Eq. (7). The discretisation of the integral operators is
affected by the weak singularity of the kernel functions. The integrals with
regular integrands which are approximated by the Gaussian quadrature and
non-regular integrands (singular elements) require a special treatment, for
more details see Čunderĺık et al. (2008). In case of the oblique derivative
boundary condition given by Eq. (2), or the Neumann boundary condition
based on using the aforementioned projection, the matrix M represents a
system matrix, while the known vector f = L δg is given on the right-hand
side of Eq. (8).

3. Numerical study

The BEM approach requires integration over the whole globe allowing lo-
cal refinements (cf. Čunderĺık et al., 2008). In our numerical study the
global rough triangulation over the whole Earth’s surface with the reso-
lution of about 0.2 arc-deg (1,215,002 collocation points) was successively
refined until the detailed resolution of 1.5 arc-min over New Zealand and
surrounding offshore areas was achieved (see Fig. 1). The total number of
all collocation points reached 1,374,658.

The geocentric positions of onshore collocation points were determined
from the topographical heights of detailed local and global elevation models
and from the quasigeoid heights evaluated using GGM. In our numerical
study we used the 30×30 arc-sec global elevation data of SRTM30PLUS
V5.0 (Becker et al., 2009) and the 1 × 1 arc-sec detailed DTM of New
Zealand. The quasigeoid heights at the collocation points were evaluated us-
ing the EGM2008 coefficients complete to degree and order 2160 of spherical
harmonics. The geocentric positions of offshore collocation points were de-
termined using the DNSC08 mean sea surface model (Andersen and Knud-
sen, 2008). The ellipsoidal heights of the collocation points at the study
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Fig. 1. The local refinement of the triangulation – an example at the southern part of
New Zealand.

area of New Zealand are shown in Fig. 2. They vary from –6.1 to 2,774.4 m
with a mean of 156.0 m, and a standard deviation is 317.1 m.

The gravity disturbances at the triangulation grid of collocation points
were used to determine the detailed gravimetric quasigeoid model. The
gravity disturbances δg at the collocation points were computed from the
corresponding grid of gravity anomalies Δg using the following well-known
expression (see e.g., Heiskanen and Moritz, 1967)

δg = Δg − ∂ γ

∂ h
ς, (9)

where ∂ γ/∂ h is the linear normal gravity gradient computed using the
parameters of the GRS80 reference ellipsoid. The height anomalies ς in
Eq. (9) were calculated using the EGM2008 coefficients complete to degree
and order 2160. The gravity anomalies were compiled from the GNS Sci-
ence gravity data (onshore) and extracted from the DNSC08 marine gravity
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Fig. 2. The ellipsoidal heights of the collocation points at the study area of New Zealand.

database (offshore) provided by the Danish National Space Centre (Ander-
sen et al., 2009). The map of the gravity disturbances at the study area of
New Zealand bounded by the parallels of 34 and 47.5 arc-deg southern lat-
itude and the meridians of 166 and 179 arc-deg eastern longitude is shown
in Fig. 3. The gravity disturbances at the Earth’s surface within the study
area vary from 204.9 to 307.5 mGal with a mean of 22.2 mGal, and a stan-
dard deviation is 48.7 mGal.

The final large-scale parallel computations were performed on the clus-
ter with 16 processors and 128 GB of distributed internal memory using
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Fig. 3. The gravity disturbances at the study area of New Zealand.

the standard MPI (Message Passing Interface) subroutines (Aoyama and
Nakano, 1999). In order to reduce the large memory requirements we elim-
inated the far-zones interactions using the ITG-GRACE03S satellite geopo-
tential model (Mayer-Gürr, 2007). The arisen long-wavelength error surface
was reduced after using 4 iterations. For more details of this iterative pro-
cedure we refer readers to Čunderĺık and Mikula (2009).

The new experimental gravimetric quasigeoid model NZQM2010 is shown
in Fig. 4. The computed values of the quasigeoid heights vary from –5.91
to 41.85 m with a mean of 18.29 m, and a standard deviation of 11.68 m.
Within onshore New Zealand, the quasigeoid heights are everywhere pos-
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Fig. 4. The new experimental gravimetric quasigeoid model NZQM2010 compiled at the
study area of New Zealand.

itive with the minima located at the Steward Island and along the south
coast of the South Island and the maxima at the upper part of the North
Island.

4. Combination of gravimetric solution with GPS-levelling
data

The GPS-levelling testing network in New Zealand consists of 2320 points
from the LINZ geodetic database. The ellipsoidal heights above the GRS80
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geocentric reference ellipsoid are defined in the New Zealand Geodetic Da-
tum 2000 (NZGD2000). The NZGD2000 is aligned to the International Ter-
restrial Reference Frame 1996 (ITRF1996) at the reference epoch of January
1st, 2000 (Blick et al., 2005). Since the normal-orthometric heights at the
points of GPS-levelling testing network in New Zealand are aligned to 18
different LVDs, we utilized the geopotential value approach (cf. Burša et al.,
1999, 2001, 2002) to estimate the average offsets of LVDs relative to the
World Height System (WHS). WHS is defined by the adopted value of the
geoidal geopotential W0 = 62636856 m2s−2. The estimated average offsets
of 18 LVDs in New Zealand relative to WHS are summarized in Table 1.
The LVD offsets within the South and North Islands of New Zealand are
positive and range from 1 cm (Wellington 1953 LVD) to 37 cm (One Tree
Point 1964 LVD).

Table 1. The offsets of 18 LVDs in New Zealand relative to WHS

The new gravimetric quasigeoid solution was further combined with GPS-
levelling data corrected for the average LVD offsets in order to reduce addi-
tional systematic distortions between the geometric and gravimetric quasi-
geoid heights. The systematic distortions were modelled by a 7-parameter
model (see Kotsakis and Sideris, 1999) formed for the observation equations
of differences between the geometric and gravimetric quasigeoid heights at
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GPS-levelling points and solved applying the least-squares analysis.

5. Validation of NZQM2010

NZQM2010 was validated at the GPS-levelling testing network in New
Zealand. The geometric quasigeoid heights were calculated from the
NZGD2000 ellipsoidal heights by subtracting the normal-orthometric heights
corrected for the average LVD offsets relative to WHS (see Table 1). The
same validation is done for the quasigeoid models NZGeoid2009 and
EGM2008. The average LVD offsets relative to WHS (see Table 1) were
applied for a validation of EGM2008. The average offsets of 12 major LVDs
relative to NZGeoid2009 (adopted from Claessens et al., 2009) were ap-
plied to the geometric quasigeoid heights for a validation of NZGeoid2009.
Statistics of the differences between the geometric and gravimetric quasi-
geoid heights at the GPS-levelling testing network are given in Table 2. The
differences between normal and normal-orthometric heights were not taken
into consideration.

Table 2. Statistics of the differences between the geometric and gravimetric quasigeoid
heights calculated for NZGeoid2009, NZQM2010 and EGM2008 at the GPS-levelling test-
ing network in New Zealand

As seen in Table 2 the STD fit of NZGeoid2009 with GPS-levelling data
is 7 cm. The STD fit of the quasigeoid models NZQM2010 and EGM2008
with GPS-levelling data is 8 cm.

6. Summary and conclusions

We have applied the direct BEM approach to determine the new exper-
imental quasigeoid model NZQM2010 at the study area of New Zealand.
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NZQM2010 was validated at the GPS-levelling testing network and com-
pared with the available regional and global quasigeoid models NZGeoid2009
and EGM2008.

Since the normal-orthometric heights at GPS-levelling testing network
in New Zealand are defined in 18 different LVDs, the average offsets of
LVDs relative to WHS were estimated and applied to the geometric quasi-
geoid heights. WHS is defined by the adopted geoidal geopotential value
W0 = 62636856 m2s−2. The new gravimetric quasigeoid solution was further
combined with GPS-levelling data (corrected for the average LVD offsets)
in order to reduce additional systematic distortions between the geometric
and gravimetric quasigeoid heights using a 7-parameter model.

The validation of the quasigeoid models NZQM2010, NZGeoid2009 and
EGM2008 at 2320 points of the GPS-levelling testing network in New Zea-
land revealed a similar STD fit with GPS-levelling data of 7 cm for NZ-
Geoid2009 and 8 cm for NZQM2010 and EGM2008. The largest systematic
differences between NZGeoid2009, NZQM2010 and EGM2008 up to several
decimeters are along the Southern Alps. These large differences are most
likely due to an insufficient coverage and a low accuracy of gravity data
(especially over large parts of the South Island) and due to large systematic
errors and inconsistencies of levelling networks throughout the country.
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termination of geopotential differences between local vertical datums and realization
of a World Height System. Stud. Geoph. Geod., 45, 127–132.
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