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EXPLICIT EVALUATION

OF SOME QUADRATIC EULER-TYPE SUMS

CONTAINING DOUBLE-INDEX

HARMONIC NUMBERS

Seán Mark Stewart
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ABSTRACT. In this paper a number of new explicit expressions for quadratic
Euler-type sums containing double-index harmonic numbersH2n are given. These
are obtained using ordinary generating functions containing the square of the har-
monic numbers Hn. As a by-product of the generating function approach used
new proofs for the remarkable quadratic series of Au-Yeung

∞∑
n=1

(
Hn

n

)2

=
17π4

360
,

together with its closely related alternating cousin are given. New proofs for other
closely related quadratic Euler-type sums that are known in the literature are also

obtained.

1. Introduction

In this paper, we find a number of explicit expressions for quadratic Euler-
-type sums containing double-index harmonic numbers. These are obtained using
(ordinary) generating functions containing the square of the harmonic numbers.
As a by-product of using a generating function approach, it provides new proofs
for some classic quadratic Euler sums including the remarkable quadratic series
of Au-Yeung, to be described in a moment’s time.
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Various types of harmonic numbers exist which we now define. The nth single-
-index or unitary harmonic number is defined by

Hn =

n∑
k=1

1

k
,

while what we term the nth double-index harmonic number is defined by

H2n =

2n∑
k=1

1

k
.

No simple, direct relationship between Hn and H2n exists though the Botez-
-Catalan identity [40, p. 338] of

H2n =

2n∑
k=1

(−1)k+1

k
= H2n −Hn,

comes tantalizingly close. Here Hn =
∑n

k=1(−1)k+1/k is the nth skew-harmonic
number [7]. A final harmonic number is the nth generalized harmonic number
of order p. It is defined by

H(p)
n =

n∑
k=1

1

kp
,

where p is a positive integer. Here H
(1)
n ≡ Hn, and by convention, H0 = H

(p)
0 =

H0 ≡ 0.

In responding to a letter sent by Goldbach to Euler in 1742, the latter con-
sidered infinite series of the form

∞∑
n=1

1

nq

n∑
k=1

1

kp
=

∞∑
n=1

H
(p)
n

nq
, (1)

where q � 2 is a positive integer. Since Euler’s time these infinite series have
been well studied and constitute what we now term linear Euler sums while many
modifications, extensions, and generalisations along the line of the basic linear
Euler sum have been considered. In this paper, we plan to consider quadratic
sums of the form ∞∑

n=1

(±1)nH2
a(n)

nq
, (2)

for the cases where a(n) = n and a(n) = 2n. The former gives rise to the familiar
and well studied quadratic Euler sums containing single-index harmonic numbers
while the latter gives rise to the far less common quadratic Euler-type sums
containing double-index harmonic numbers. Variations of these series arising
from such sums are also considered. We intend to do this for the cases q=0, 1,
and 2 by first finding generating functions for harmonic numbers containing the
term H2

n.
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The non-alternating case of (2) when a(n) = n and q = 2 is well known in the
literature. Indeed, ∞∑

n=1

(
Hn

n

)2

=
17

4
ζ(4) =

17π4

360
. (3)

Here ζ denotes the Riemann zeta function defined by ζ(s) =
∑∞

n=1
1
ns , Re(s) > 1.

After its more recent rediscovery, the series in (3) is usually referred to as the
quadratic series of Au-Yeung [39] (for an interesting account of its rediscovery,
see [1]). Regarding its evaluation, it seems to have been first given by Martin
Kneser [22] after having been initially proposed as a problem by H. F. Sandham
in The American Mathematical Monthly [32]. There, series manipulation fol-
lowed by the evaluation of a logarithmic integral was used to find its value. It is
listed in Hansen’s A Table of Series and Products [20, Entry 55.8.2, p. 366] and
in the NIST Handbook of Mathematical Functions [29, Entry 25.16.13, p. 614].
Since first appearing, many alternative proofs for (3) have appeared in the litera-
ture [3–6,11–16,18,34,39,45]. It also appears as a problem in [31, Problem 2.6.1.,
p. 110], [17, Problem 3.70, p. 150], and [40, Problem 4.22, p. 292] further confirm-
ing the important role this sum plays in the theory of non-linear Euler sums.
The proof we give for (3) in Section 3 using a generating function approach
represents a new proof to this most classic of quadratic Euler sums.

The alternating case of (2) when a(n) = n and q = 2, while considerably less
famous than its Au-Yeung cousin, is also known [1,13,42], [40, Problem 4.52 (iii),
p. 310]. Its value is

∞∑
n=1

(−1)n
(
Hn

n

)2

= 2Li4

(
1

2

)
− 41

16
ζ(4) +

7

4
log(2)ζ(3)

− 1

2
log2(2)ζ(2) +

1

12
log4(2).

(4)

Here Lis denotes the polylogarithm function of order s defined by
∑∞

n=1 z
n/ns

for |z| � 1 provided Re(s) > 1. Orders two, three, and four for the polylogarithm
function are referred to as the dilogarithm, trilogarithm, and tetralogarithm
respectively. Once again, the proof we give for (4) in Section 3 using a generating
function approach represents a new proof for this slightly less famous alternating
quadratic cousin of Au-Yeung.

Compared to Euler sums containing harmonic numbers with the usual uni-
tary index, Euler sums containing harmonic numbers with non-unitary indices
have been much less studied in the literature. Those which have appeared have
mainly been confined to a linear term containing double-index harmonic numbers
[30, 37], multi-index linear sums containing the term Hkn where k is a positive
integer [10,23], or in the study of so-called Jordan sums [2,4,8,12,13,21,35,45],
[9, pp. 189–199] a variant Euler-type sum where the harmonic number term
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appearing in the linear Euler sum of (1) is replaced with the term

Λn = 1 +
1

3
+ · · ·+ 1

2n− 1
=

n∑
k=1

1

2k − 1
= H2n − 1

2
Hn.

In investigating quadratic sums containing double-index harmonic numbers ex-
plicit expressions for the following six quadratic Euler-type sums will be given:

∞∑
n=1

(−1)n
H2

2n

n
,

∞∑
n=1

(−1)nH2
2n

2n+ 1
,

∞∑
n=1

(
H2n

n

)2

,

∞∑
n=1

(−1)n
(
H2n

n

)2

, (5)

∞∑
n=1

H2
2n

(2n+ 1)2
,

∞∑
n=1

(−1)nH2
2n

(2n+ 1)2
.

These are given in Section 4. A number of these sums appear to be new results
in the literature.

2. Generating functions containing the square
of the harmonic numbers

In this section, we find a number of generating functions that contain the
square of the harmonic numbers H2

n. These are then used to find a number
of quadratic Euler and Euler-types sums.

We start by recalling the generating function for the sequence {Hn}n�1,
namely [19, 1.513 (6), p. 52]

∞∑
n=1

Hnz
n = − log(1− z)

1− z
, |z| < 1. (6)

Integrating (6) from 0 to z immediately yields
∞∑

n=1

Hnz
n

n+ 1
=

log2(1− z)

2z
. (7)

The generating function for the sequence {H2
n}n�1 is now given in the following

lemma.

����� 2.1� For |z| < 1 the generating function for the sequence {H2
n}n�1 is

∞∑
n=1

H2
nz

n =
Li2(z) + log2(1− z)

1− z
. (8)
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EXPLICIT EVALUATION OF SOME QUADRATIC EULER-TYPE SUMS

P r o o f. Noting that

H2
n+1 −H2

n = (Hn+1 −Hn) (Hn+1 +Hn) =
2Hn

n+ 1
+

1

(n+ 1)2
,

where the recurrence relation of Hn+1 = Hn + 1
n+1 for the harmonic numbers

has been used, we have
∞∑

n=1

H2
n+1z

n −
∞∑

n=1

H2
nz

n = 2

∞∑
n=1

Hnz
n

n+ 1
+

∞∑
n=1

zn

(n+ 1)2
,

or
∞∑

n=1

H2
nz

n−1 −
∞∑

n=1

H2
nz

n = 2

∞∑
n=1

Hnz
n

n+ 1
+

∞∑
n=1

zn−1

n2
, (9)

after the index in the left-most sum on the left of the equality and the right-most
sum on the right of the equality have been shifted by n �→ n− 1. The first sum
to the right of the equality in (9) is (7) while the second sum is Li2(z)/z. Thus(

1− z

z

) ∞∑
n=1

H2
nz

n =
log2(1− z)

z
+

Li2(z)

z
,

from which the required result follows. �

The generating function appearing in Lemma 2.1 seems to have been first
given without proof in [5]. For an alternative proof, see [26].

����� 2.2� For |z| � 1, z �= 1 the generating function for the sequence
{H2

n/n}n�1 is

∞∑
n=1

H2
n

n
zn = Li3(z)− Li2(z) log(1− z)− 1

3
log3(1− z). (10)

P r o o f. Replacing z with t in the result given in Lemma 2.1, dividing the result
by t before integrating from 0 to z yields

∞∑
n=1

H2
n

n
zn =

z∫
0

log2(1− t)

t(1− t)
dt+

∫ z

0

Li2(t)

t(1− t)
dt.

For the first of the integrals
z∫

0

log2(1− t)

t(1 − t)
dt = −2 Li3(1− z) + 2 Li2(1− z) log(1− z)

− 1

3
log3(1− z) + log(z) log2(1− z) + 2ζ(3).
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This can be seen directly by differentiation. The constant of integration −2ζ(3)
comes on letting z → 0. For the second of the integrals

z∫
0

Li2(t)

t(1 − t)
dt = 2Li3(1− z) + Li3(z)− 2 Li2(1− z) log(1− z)

− Li2(z) log(1− z)− log(z) log2(1− z)− 2ζ(3).

This can again be seen by direct differentiation. The constant of integration
2ζ(3) comes on letting z → 0. Adding together the two results found delivers
the desired result. �

A result closely related to the generating function given in Lemma 2.2 can
be found in [27]. We now come to the main result of this section, a generating
function for the sequence {H2

n/n
2}n�1. We give this in the following theorem.

����	�� 2.3� For |z| � 1 the generating function for the sequence {H2
n/n

2}n�1

is
∞∑
n=1

H2
n

n2
zn = Li4(z)− 2 Li4(1− z) + 2 Li3(1− z) log(1− z) +

1

2
Li22(z)

− Li2(1− z) log2(1− z)− 1

3
log(z) log3(1− z) + 2ζ(4).

(11)

P r o o f. From the result given in Lemma 2.2, replacing z with t, dividing by t
before integrating from 0 to z yields

∞∑
n=1

H2
n

n2
zn =

z∫
0

Li3(t)

t
dt−

z∫
0

Li2(t) log(1− t)

t
dt− 1

3

z∫
0

log3(1− t)

t
dt.

The first and second integrals are elementary. Here
z∫

0

Li3(t)

t
dt = Li4(z) and

z∫
0

Li2(t) log(1− t)

t
dt = −1

2
Li22(z).

For the third integral, we have
z∫

0

log3(1− t)

t
dt = 6Li4(1− z)− 6 Li3(z) log(1− z)

+ 3 Li2(1− z) log2(1− z) + log(z) log3(1− z)− 6ζ(4),

a result that can be confirmed by differentiation. The constant of integration
6ζ(4) comes on letting z → 0. Gathering the results for the three integrals,
the desired result then follows. �
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EXPLICIT EVALUATION OF SOME QUADRATIC EULER-TYPE SUMS

3. Some series as consequences
of Lemmas 2.1 and 2.2 and Theorem 2.3

From the generating functions (8), (10), and (11) found in Lemmas 2.1 and
2.2 and Theorem 2.3, a number of quadratic Euler sums, both alternating
and non-alternating, together with some closely related variants can be found.
As these are going to rely on a number of special values for the polylogarithmic
functions, these can be found listed in the Appendix.

We give first several quadratic Euler-type sums. Here each contains a factor
of 2n in the denominator of the summand and comes about from setting z = ±1

2

in (8), (10), and (11). When z = 1
2 one has

∞∑
n=1

H2
n

2n
= ζ(2) + log2(2),

∞∑
n=1

H2
n

2nn
=

7

8
ζ(3), (12)

∞∑
n=1

H2
n

2nn2
= −Li4

(
1

2

)
+

37

16
ζ(4)− 7

4
ζ(3) log(2) +

1

4
ζ(2) log2(2)

− 1

24
log4(2),

(13)

where the special values for the dilogarithm and trilogarithm given in (27) have
been used. Alternative derivations for (12) and (13) can be found in [11, 43].
When z = −1

2
one has

∞∑
n=1

(−1)nH2
n

2n
=

1

3
Li2

(
1

4

)
− 1

3
ζ(2) + log2(2)− 4

3
log(2) log(3) +

2

3
log2(3)

∞∑
n=1

(−1)nH2
n

2nn
=

1

4
Li3

(
1

4

)
+

1

2
log

(
2

3

)
Li2

(
1

4

)
− 7

8
ζ(3) +

1

2
ζ(2) log(3)

+
2

3
log3(2)− 1

3
log3(3)− 3

2
log2(2) log(3) + log(2) log2(3),

where the special values for the dilogarithm and trilogarithm given in (28) have
been used.

Classic quadratic Euler sums are obtained from their respective generating
functions by setting z = ±1 in (8), (10), and (11) whenever the resultant series
converge. For the non-alternating case, setting z = 1 in (8) and (10) sees each
series diverge while setting z = 1 into (11) immediately yields (3), thereby
providing a new proof for this most remarkable of quadratic Euler sums.
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SEÁN M. STEWART

For the alternating case, setting z = −1 in (8) sees the series diverge, substi-
tuting z = −1 into (10) is straight forward, while substituting z = −1 into (11)
forces one to deal with imaginary quantities. In all cases where these occur, the
principal branch is selected. The imaginary parts will naturally enough cancel, as
they should, leaving behind a real value. The simplest of these is log(−1) = iπ.
For the others, the values found in (29), (30), and (31) of the Appendix are
required. Thus

∞∑
n=1

(−1)nH2
n diverges,

∞∑
n=1

(−1)n
H2

n

n
= −3

4
ζ(3) +

1

2
ζ(2) log(2)− 1

3
log3(2), (14)

∞∑
n=1

(−1)n
H2

n

n2
= 2Li4

(
1

2

)
− 41

16
ζ(4) +

7

4
ζ(3) log(2)− 1

2
ζ(2) log2(2)

+
1

12
log4(2).

(15)

Alternative proofs for (14) can be found in [12,36,41], [17, Problem 3.57, p. 207]
while our proof of (15) using a generating function approach represents a new
proof for this less famous Au-Yeung cousin. Other proofs for the latter result
can be found in [1,13,42].

4. Some series containing
the square of the double-index harmonic numbers

We now give evaluations for six quadratic Euler-type sums that contain
double-index harmonic numbers found listed in (5). Some of these results for the
sums given we believe are new to the literature. We consider first sums which are
non-alternating as these are far simpler to deal with. In such cases the following
Lemma concerning convergent series is very useful.

����� 4.1� For absolutely convergent series

∞∑
n=1

a2n =
1

2

∞∑
n=1

an +
1

2

∞∑
n=1

(−1)nan.

P r o o f. A rearrangement of terms in an absolutely convergent series immedi-
ately delivers the result. �
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Two quadratic Euler-type sums containing double-index harmonic numbers
immediately follow from the application of Lemma 4.1. The first is a quadratic
Euler-type sum analogous to the Au-Yeung series where the ordinary unitary
harmonic number is replaced with its double-index counterpart.


	������� 4.2�
∞∑

n=1

(
H2n

n

)2

= 4Li4

(
1

2

)
+

27

8
ζ(4) +

7

2
ζ(3) log(2)− ζ(2) log2(2) +

1

6
log4(2).

P r o o f. Employing the result in Lemma 4.1 on the series to the left which
converges absolutely, one obtains

∞∑
n=1

(
H2n

n

)2

= 4

∞∑
n=1

H2
2n

(2n)2
= 2

∞∑
n=1

(
Hn

n

)2

+ 2

∞∑
n=1

(−1)n
(
Hn

n

)2

.

Combining with the results given in (3) and (15), the desired result immediately
follows. �

The second non-alternating sum is a quadratic Euler-type sum containing a
double-index harmonic number with the denominator in the summand modified
from n2 to (2n+ 1)2.


	������� 4.3�
∞∑

n=1

H2
2n

(2n+ 1)2
= Li4

(
1

2

)
+

11

32
ζ(4) +

7

8
ζ(3) log(2)− 1

4
ζ(2) log2(2) +

1

24
log4(2).

P r o o f. Applying the result given in Lemma 4.1 to the series on the left which
converges absolutely, we have

∞∑
n=1

H2
2n

(2n+ 1)2
=

1

2

∞∑
n=1

H2
n

(n+ 1)2
+

1

2

∞∑
n=1

(−1)n
H2

n

(n+ 1)2
,

or
∞∑
n=1

H2
2n

(2n+ 1)2
=

1

2

∞∑
n=1

H2
n

n2
− 1

2

∞∑
n=1

(−1)nH2
n

n2
−

∞∑
n=1

Hn

n3
+

∞∑
n=1

(−1)n
Hn

n3

+
1

2

∞∑
n=1

1

n4
− 1

2

∞∑
n=1

(−1)n

n4

=
1

2

∞∑
n=1

H2
n

n2
− 1

2

∞∑
n=1

(−1)nH2
n

n2
−

∞∑
n=1

Hn

n3
+

∞∑
n=1

(−1)n
Hn

n3

+
15

16
ζ(4).

(16)
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after shifting the indices by n �→ n − 1 before applying the recurrence relation
for the nth harmonic numbers of Hn−1 = Hn − 1

n . The first and second sums
appearing in (16) are just the quadratic series of Au-Yeung and its alternating
cousin, values for which were given in (3) and (15) respectively. The third and
fourth series that appear are linear Euler sums with their values being well
known in the literature (see, for example [14, p. 16, 32]). Here

∞∑
n=1

Hn

n3
=

5

4
ζ(4), (17)

and
∞∑

n=1

(−1)nHn

n3
= 2Li4

(
1

2

)

− 11

4
ζ(4) +

7

4
ζ(3) log(2)− 1

2
ζ(2) log2(2)

+
1

12
log4(2).

(18)

For a rather simple proof of the second of these sums the interested reader
is referred to [25]. Combining all values found into (16) leads to the desired
result. �

Remark 1� From Propositions 4.2 and 4.3 we have an interesting relation be-
tween two quadratic Euler-type sums containing double-index harmonic numbers
and ζ(4). It is

2

∞∑
n=1

H2
2n

(2n)2
− 2

∞∑
n=1

H2
2n

(2n+ 1)2
= ζ(4).

The final four quadratic Euler-type series containing double-index harmonic
numbers we give are of the alternating type. To find their values we make use
of the various generating functions we have given in Lemmas 2.1 and 2.2, and
Theorem 2.3. Before presenting these we give a useful result for convergent series
and two generating functions for sequences containing terms linear in Hn.

����� 4.4� If an > 0 and all series converge, then

∞∑
n=1

(−1)na2n= Re

∞∑
n=1

inan ,

where i is the imaginary unit and Re denotes the real part.

P r o o f. The result can be directly seen by writing out the terms in the series
appearing on the right before taking the real part. �
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����� 4.5� For |z| � 1 the generating function for the sequence {Hn/n
2}n�1

is ∞∑
n=1

Hn

n2
zn = Li3(z)− Li3(1− z) + Li2(1− z) log(1− z)

+
1

2
log(z) log2(1− z) + ζ(3).

P r o o f. Starting with the generating function for the sequence {Hn}n�1 given
in (6), replacing z with t, dividing by t throughout before integrating from 0 to
z yields ∞∑

n=1

Hnz
n

n
= −

z∫
0

log(1− t)

t(1 − t)
dt

= −
z∫

0

log(1− t)

t
dt−

z∫
0

log(1− t)

1− t
dt,

following a partial fraction decomposition, or
∞∑

n=1

Hnz
n

n
= Li2(z) +

1

2
log2(1− z), (19)

where in the first integral we have recognised the integral representation for the
dilogarithm. Continuing, replacing z with t in (19), dividing throughout by t
before integrating from 0 to z yields

∞∑
n=1

Hnz
n

n2
=

z∫
0

Li2(t)

t
dt+

1

2

z∫
0

log2(1− t)

t
dt. (20)

Since
z∫

0

Li2(t)

t
dt = Li3(z),

and
z∫

0

log2(1− t)

t
dt = log(z) log2(1− z)

+ 2 Li2(1− z) log(1− z)

− 2 Li3(1− z) + 2ζ(3),

a result that can be confirmed by differentiation with the constant of integration
−2ζ(3) found on letting z → 0, combining the values found into (20), the result
immediately follows. �
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����� 4.6� For |z| � 1 the generating function for the sequence {Hn/n
3}n�1 is

∞∑
n=1

Hn

n3
zn = 2Li4(z) + Li4

(
z

z − 1

)
− Li4(1− z)− Li3(z) log(1− z)

+
1

24
log4(1− z)− 1

6
log(z) log3(1− z)

+
1

2
ζ(2) log2(1− z) + ζ(3) log(1− z) + ζ(4).

P r o o f. Let g(z) =
∑∞

n=1Hnz
n/n3. Observing that

1∫
0

tn−1 log2(t) dt =
2

n3
, n ∈ N,

then

g(z) =
1

2

∞∑
n=1

Hnz
n

1∫
0

tn−1 log2(t) dt

=
1

2

1∫
0

log2(t)

t

∞∑
n=1

Hn(zt)
n dt,

where the interchange made between the summation and the integration is per-
missible due to Fubini’s theorem. Recognising the series as (6) with z replaced
with zt, we have

−2g(z) =

1∫
0

log2(t) log(1− zt)

t(1− zt)
dt,

or

−2g(z) =

z∫
0

log2(u) log(1− u)

u
du+

z∫
0

log2(u) log(1− u)

1− u
du

− 2 log(z)

z∫
0

log(u) log(1− u)

u
du− 2 log(z)

z∫
0

log(u) log(1− u)

1− u
du

(21)

+ log2(z)

z∫
0

log(1− u)

u
du+ log2(z)

z∫
0

log(1− u)

1− u
du,

after a partial fraction decomposition and a substitution of u = zt have been
made. For the first, and third through to sixth integrals appearing in (21),
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we have

z∫
0

log2(u) log(1− u)

u
du = −2 Li4(z)− Li2(z) log

2(z) + Li3(z) log(z) + 2ζ(4),

z∫
0

log(u) log(1− u)

u
du = −Li2(z) log(z) + Li3(z),

z∫
0

log(u) log(1− u)

1− u
du = −Li3(1− z) + Li2(1− z) log(1− z) + ζ(3),

z∫
0

log(1− u)

u
du = −Li2(z),

z∫
0

log(1− u)

1− u
du = −1

2
log2(1− z).

Each of the above integrals can be readily confirmed by differentiation and the
constant of integration found by letting z → 0. For the remaining integral,
the second one which will we call I2, this can be found by taking advantage
of the following algebraic identity

a2b =
1

3

(
a3 − b3 − (a− b)3 + 3ab2

)
.

Setting a = log(u) and b = log(1− u) we see that

log2(u) log(1− u) =
1

3
log3(u)− 1

3
log3(1− u)− 1

3
log3

(
u

1− u

)
+ log(u) log2(1− u).

Thus

I2 =
1

3

z∫
0

log3(u)

1− u
du− 1

3

z∫
0

log3(1− u)

1− u
du

− 1

3

z∫
0

log3
(

u

1− u

)
du

1− u

+

z∫
0

log(u) log2(1− u)

1− u
du .
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For the first, second, and fourth integrals we have

z∫
0

log3(u)

1− u
du = −6 Li4(z)− Li2(z) log

2(z) + 6 Li3(z) log(z),

− log3(z) log(1− z) + 6ζ(4),
z∫

0

log3(1− u)

1− u
du = −1

4
log4(1− z),

z∫
0

log(u) log2(1− u)

1− u
du = 2Li4(1− z) + Li2(1− z) log2(1− z)

− 2 Li3(1− z) log(1− z)− 2ζ(4).

Again each of the above integrals can be confirmed by differentiation with the
constant of integration found by letting z → 0. For the third integral appearing
in I2, making a substitution of t = u/(1− u) leads to

z∫
0

log3
(

u

1− u

)
du

1− u
=

z
1−z∫
0

log3 t

1 + t
dt

=
[
6 Li4(−t)− 6 Li3(−t) log(t)+

3 Li2(−t) log2(t) + log(1 + t) log3(t)
] z

1−z

0

= 6Li4

(
z

z − 1

)
− 6 Li3

(
z

z − 1

)
log

(
z

1− z

)

+ 3Li2

(
z

z − 1

)
log2

(
z

1− z

)
−log3

(
z

1− z

)
log(1− z).

Thus

I2 = −2 Li4(z) + 2 Li4(1− z)− 2 Li4

(
z

z − 1

)
+ 2Li3(z) log(z)

− 2 Li3(1− z) log(1− z) + 2 Li3

(
z

z − 1

)
log

(
z

1− z

)

+ Li2(1− z) log2(1− z)− Li2(z) log
2(z)− Li2

(
z

z − 1

)
log2

(
z

1− z

)

+
1

3
log3

(
z

1− z

)
log(1− z) +

1

3
log3(z) log(1− z)

+
1

12
log4(1− z)− 2ζ(4).
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Piecing all the results together we find

∞∑
n=1

Hnz
n

n3
= 2Li4(z)− Li4(1− z) + Li4

(
z

z − 1

)
− Li3(1− z) log(z)

− Li3(z) log(z) + Li3(1− z) log(1− z)− Li3

(
z

z − 1

)
log

(
z

1− z

)

+ Li2(1− z) log(z) log(1− z)− 1

2
Li2(1− z) log2(1− z)

+
1

2
Li2(z) log

2(z) +
1

2
Li2

(
z

z − 1

)
log2

(
z

1− z

) (22)

+
1

4
log2(z) log2(1− z) + ζ(3) log(z)− 1

6
log3

(
z

1− z

)
log(1− z)

+
1

6
log3(z) log(1− z)− 1

24
log4(1− z) + ζ(4).

Further simplification leading to the desired result is possible by expanding each
of the logarithmic terms appearing in (22) containing z/(1 − z) in its argu-
ment followed by applying the following three polylogarithmic identities to the
expression that results:

(i) Euler’s reflexion formula for the dilogarithm, namely (41);

(ii) Landen’s dilogarithm identity of [24, (1.12), p. 5]

Li2(z) + Li2

(
z

z − 1

)
= −1

2
log2(1− z),

and;

(iii) Landen’s trilogarithm identity of [24, (6.10), p. 155]

Li3(z) + Li3(1− z) + Li3

(
z

z − 1

)
=

1

6
log3(1− z)− 1

2
log(z) log2(1− z)

+ ζ(2) log(1− z) + ζ(3). �

Remark 2� Substituting z = −1 and allowing z → 1− in the generating function
given in Lemma 4.6 immediately provides one with alternate derivations for the
results quoted in (18) and (17) respectively.


	������� 4.7�

∞∑
n=1

(−1)nH2
2n

n
= − 3

16
ζ(3) +

1

2
ζ(2) log(2)− 1

2
πG− 1

12
log3(2),

where G is Catalan’s constant
∑∞

n=0(−1)n/(2n+ 1)2.
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P r o o f. Applying the result given in Lemma 4.4 on the series to the left we
have

∞∑
n=1

(−1)nH2
2n

n
= 2

∞∑
n=1

(−1)nH2
2n

(2n)
= 2Re

∞∑
n=1

in
H2

n

n
.

From the generating function given in Lemma 2.2, substituting z = i into (10)
gives

∞∑
n=1

in
H2

n

n
= Li3(i)− Li2(i) log(1− i)− 1

3
log3(1− i),

or
∞∑

n=1

in
H2

n

n
= − 3

32
ζ(3) +

1

4
ζ(2) log(2)

− 1

4
πG− 1

24
log3(2) +

iπ

8
ζ(2)

− i

2
G log(2) +

iπ

16
log2(2),

(23)

where values quoted in (33), (35), and (37) have been used. Taking the real
part of (23) before multiplying throughout by a factor of 2 delivers the desired
result. �

A recent alternate derivation for this result can be found in [38, Eq. (23)].

A double-index harmonic number series analogous to Au-Yeung’s alternating
quadratic series cousin is given in the next Proposition.


	������� 4.8�
∞∑

n=1

(−1)n
(
H2n

n

)2

=
5

2
Li4

(
1

2

)
+

21

8
ζ(4)

− 2G2 +
1

8
ζ(2) log2(2) +

5

48
log4(2)

+ πG log(2) +
35

16
ζ(3) log(2) + 2π ImLi3(1− i).

Here Im denotes the imaginary part.

P r o o f. Applying the result given in Lemma 4.4 on the series to the left we
have

∞∑
n=1

(−1)n
(
H2n

n

)2

= 4

∞∑
n=1

(−1)n
H2

2n

(2n)2
= 4Re

∞∑
n=1

in
H2

n

n2
.
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From the generating function given in Theorem 2.3, substituting z = i into (11)
gives

∞∑
n=1

in
H2

n

n2
= Li4(i) +

1

2
Li22(i)− 2 Li4(1− i)− Li2(1− i) log2(1− i)

+ 2 Li3(1− i) log(1− i)

− 1

3
log(i) log3(1− i) + 2ζ(4),

or ∞∑
n=1

in
H2

n

n2
=

653

256
ζ(4)− 1

2
G2 − 2 Li4(1− i) +

3

32
ζ(2) log2(2) +

1

4
πG log(2)

+ 2 Li3(1− i) log(1− i) + iβ(4)− i

2
Gζ(2) +

i

4
G log2(2) (24)

+
iπ

24
log3(2) +

3πi

32
ζ(2) log(2),

after substituting for the values (33), (34), (36), (37), and (42) given in the
Appendix. Taking the real part of (24), the value for ReLi4(1− i) given in (46)
is needed and we are left with the term Re [Li3(1− i) log(1− i)] to deal with.
As

Re [Li3(1− i) log(1− i)] = ReLi3(1− i) ·Re log(1− i)

− ImLi3(1− i) · Im log(1− i)

=
35

128
ζ(3) log(2) +

3

32
ζ(2) log2(2)

+
π

4
ImLi3(1− i),

where the values (35) and (44) quoted in the Appendix have been used, one finds

Re
∞∑

n=1

in
H2

n

n2
=

5

8
Li4

(
1

2

)
+

21

32
ζ(4)− 1

2
G2 +

1

32
ζ(2) log2(2)

+
5

192
log4(2) +

π

4
G log(2) +

35

64
ζ(3) log(2)

+
π

2
ImLi3(1− i).

The desired result for the sum follows on multiplication throughout by a fac-
tor of 4. �
Remark 3� The constant ImLi3(1−i) needed here and the constant ImLi4(1−i)
that we will have a need for shortly, involving the imaginary part of the tri-
logarithm and tetralogarithm, are believed to be in the simplest form. While
currently not known, it seems highly unlikely either of these constants is re-
ducible to more fundamental constants such as those in terms of π, log(2), ζ(3),
Catalan’s constant, or in the case of the latter constant, Li4

(
1
2

)
.
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	������� 4.9�

∞∑
n=1

(−1)nH2
2n

2n+ 1
=

5

16
πζ(2) +

1

2
G log(2) +

3

16
π log2(2) + 2 ImLi3(1− i).

P r o o f. Applying the result given in Lemma 4.1 to the series on the left we
have

∞∑
n=1

(−1)nH2
2n

2n+ 1
= Re

∞∑
n=1

in
H2

n

n+ 1
,

or
∞∑

n=1

(−1)nH2
2n

2n+ 1
= Im

∞∑
n=2

in
H2

n−1

n
,

after a shift in the index of n �→ n−1 has been made. Applying the nth harmonic
number recurrence relation of Hn−1 = Hn − 1

n , one obtains

∞∑
n=1

(−1)nH2
2n

2n+ 1
= Im

[ ∞∑
n=1

in
H2

n

n
− 2

∞∑
n=1

in
Hn

n2
+

∞∑
n=1

in

n3

]
. (25)

The first of the sums appearing in (25) is given in (23) while the third corresponds
to Li3(i) whose value is given by (33). The second of the sums can be found
by substituting z = i into the generating function given in Lemma 4.5. Doing so
yields

∞∑
n=1

in
Hn

n2
= Li3(i)− Li3(1− i) + Li2(1− i) log(1− i)

+
1

2
log(i) log2(1− i) + ζ(3),

or
∞∑

n=1

in
Hn

n2
=

29

32
ζ(3) +

3

16
ζ(2) log(2)− 1

4
πG− Li3(1− i)

− iπ

16
log2(2)− i

2
G log(2),

after having substituted for the values given in (33), (35), (36), and (42). Com-
bining the three results into (25), after taking their imaginary part, the desired
result follows. �

A slightly different approach used to find this sum to the one given above can
be found in [33].
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	������� 4.10�
∞∑

n=1

(−1)nH2
2n

(2n+ 1)2
=

35

128
πζ(3)− 2β(4)− 1

2
Gζ(2) +

1

4
G log2(2) +

1

24
π log3(2)

+ log(2) ImLi3(1− i)− 2 ImLi4(1− i),

where β(s) is the Dirichlet beta function
∑∞

n=0(−1)n/(2n + 1)s of order s,
Re(s) � 1.

P r o o f. Applying the result given in Lemma 4.4 to the series on the left we
have ∞∑

n=1

(−1)nH2
2n

(2n+ 1)2
= Re

∞∑
n=1

in
H2

n

(n+ 1)2
,

or
∞∑

n=1

(−1)nH2
2n

(2n+ 1)2
= Im

∞∑
n=2

in
H2

n−1

n2
,

after a shift in the index of n �→ n−1 has been made. Applying the nth harmonic
number recurrence relation of Hn−1 = Hn − 1

n , one obtains
∞∑

n=1

(−1)nH2
2n

(2n+ 1)2
= Im

[ ∞∑
n=1

in
H2

n

n2
− 2

∞∑
n=1

in
Hn

n3
+

∞∑
n=1

in

n4

]
. (26)

The third of the sums appearing in (26) corresponds to Li4(i) whose value is
given by (34). It imaginary part is just β(4).

The first of the sums appearing in (26) is given in (24). After taking its
imaginary part the term Im [Li3(1− i) log(1− i)] remains. In dealing with this
term we have

Im [Li3(1− i) log(1− i)] = Re Li3(1− i) · Im log(1− i)

+ ImLi3(1− i) ·Re log(1− i)

= − 35

256
πζ(3)− 3

64
πζ(2) log(2)

+
1

2
log(2) ImLi3(1− i),

where the values (35) and (44) found in the Appendix have been used. Thus

Im

∞∑
n=1

in
H2

n

n2
= log(2) ImLi3(1− i)− 2 ImLi4(1− i) + β(4)

− 35

128
πζ(3)− 1

2
Gζ(2) +

1

4
G log2(2) +

1

24
π log3(2).
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The second of the sums appearing in (26) can be found by substituting z = i
into the generating function given in Lemma 4.6. Doing so we have

∞∑
n=1

in
Hn

n3
= 2Li4(i) + Li4

(
1− i

2

)
− Li4(1− i)− Li3(i) log(1− i)

+
1

24
log4(1− i)− 1

6
log(i) log3(1− i) +

1

2
ζ(2) log2(1− i)

+ ζ(3) log(1− i) + ζ(4),
or ∞∑

n=1

in
Hn

n3
=

5

8
Li4

(
1

2

)
− 195

256
ζ(4)− 5

32
ζ(2) log2(2) +

35

64
ζ(3) log(2)

+
5

192
log4(2) + 2iβ(4)− 35iπ

128
ζ(3),

after substituting in the values found in (33), (34), (35), (36), (37), (38), and (45).
Further reduction here has been possible since the sum between the two tetralog-
arithmic terms that appeared, namely

Li4(1− i) + Li4(1 + i),

reduces to 2ReLi4(1− i), a value which is known (see (46)). Its imaginary part
is therefore simply 2β(4)− 35

128πζ(3). Combining the three results found for the
sums into (26), the desired result follows. �
Remark 4� Two quadratic Euler-type sums containing quadruple-index har-
monic numbers immediately follow from Propositions 4.2, 4.3, 4.8, and 4.10.
The first is

∞∑
n=1

(
H4n

n

)2

= 13Li4

(
1

2

)
+ 12ζ(4) +

91

8
ζ(3) log(2)− 7

4
ζ(2) log2(2)

+
13

24
log4(2)− 4G2 + 2πG log(2) + 4π ImLi3(1− i),

and is obtained on application of Lemma 4.1 to the given quadruple-index har-
monic sum together with the results established in Propositions 4.2 and 4.8.
The second is

∞∑
n=1

(
H4n

4n+ 1

)2

=
1

2
Li4

(
1

2

)
+

11

64
ζ(4) +

7

16
ζ(3) log(2)− 1

8
ζ(2) log2(2)

+
1

48
log4(2) +

35

256
πζ(3)− β(4)− 1

4
Gζ(2) +

1

8
G log2(2)

+
1

48
π log3(2) +

1

2
log(2) ImLi3(1− i)− ImLi4(1− i),

and is obtained on application of Lemma 4.1 to the given quadruple-index
harmonic sum together with the results established in Propositions 4.3 and 4.10.
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5. Appendix

In this Appendix, we list a number of special values that will be needed for the
logarithmic function at complex arguments and the polylogarithmic functions
of orders two, three, and four at both real and complex values. In all cases where
complex values occur for these functions, the principal value is taken. For those
containing polylogarithms we briefly indicate how these can be found.

Recall for Re(s) > 1, Lis(1) = ζ(s). Also Lis(−1) = (1−21−s)ζ(s), Re(s) > 1,
giving us

Li2(−1) = −1

2
ζ(2), Li3(−1) = −3

4
ζ(3), Li4(−1) = −7

8
ζ(4).

Special values for the dilogarithm and trilogarithm at z = 1
2 are known

[24, (1.16), p. 6; (6.12), p. 155]. They are

Li2

(
1

2

)
=

1

2
ζ(2)− 1

2
log2(2),

Li3

(
1

2

)
=

1

6
log3(2)− 1

2
ζ(2) log(2) +

7

8
ζ(3).

(27)

From the polylogarithmic identity [24, (7.42), p. 197]

Lis(−z) + Lis(z) =
1

2s−1
Lis(z

2),

we have

Li2

(
−1

2

)
=

1

2
Li2

(
1

4

)
− Li2

(
1

2

)
,

Li3

(
−1

2

)
=

1

4
Li3

(
1

4

)
− Li3

(
1

2

)
.

(28)

Both these results can be further simplified using the values given in (27).

Values for Lin(2) where n = 2, 3, 4 can be found by reference to formulae
found in Lewin’s book [24]. From (1.10) on page 5, (6.7) on page 154, and (7.81)
on page 209, we have

Li2(2) =
3

2
ζ(2)− iπ log(2), (29)

Li3(2) =
7

8
ζ(3) +

3

2
ζ(2) log(2)− 1

2
iπ log2(2), (30)

Li4(2) = −Li4

(
1

2

)
+ 2ζ(4) + ζ(2) log2(2)− 1

24
log4(2)− 1

6
iπ log3(2). (31)

Here we have made use of the special values for the dilogarithm and trilogarithm
at arguments of one-half given in (27).
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For an argument equal to the imaginary unit, the polylogarithm of order s
reduces as follows

Lis(i) =

∞∑
n=1

cos
(
nπ
2

)
ns

+ i

∞∑
n=1

sin
(
nπ
2

)
ns

= 2−s
∞∑

n=1

(−1)n

ns
+ i

∞∑
n=0

(−1)n

(2n+ 1)s

= −2−sη(s) + iβ(s).

Here η(s) = (1− 21−s)ζ(s) is the Dirichlet eta function while β(s) is the Dirich-
let beta function. Both expressions given for the Dirichlet functions are valid
for Re(s) > 1. Special values for the Dirichlet beta function at positive integer
arguments are also known [28, (3:7:1), p. 33]. Those that will be needed are

β(2) = G, β(3) =
π3

32
=

3π

16
ζ(2). (32)

Here G denotes Catalan’s constant
∑∞

n=0(−1)n/(2n+ 1)2. Thus

Li2(i) = −1

8
ζ(2) + iG, Li3(i) = − 3

32
ζ(3) +

3iπ

16
ζ(2), (33)

where further simplification has been achieved using (32), and

Li4(i) = − 7

128
ζ(4) + iβ(4). (34)

Next, we give some functional values for the logarithm with complex arguments.

log(i) =
iπ

2
, log(1− i) =

1

2
log(2)− iπ

4
, (35)

allowing us to readily find

log2(1− i) = −3

8
ζ(2) +

1

4
log2(2)− iπ

4
log(2), (36)

log3(1− i) =
1

8
log3(2)− 9

16
ζ(2) log(2) +

3iπ

32
ζ(2)− 3iπ

16
log2(2), (37)

log4(1− i) =
45

128
ζ(4)− 9

16
ζ(2) log2(2)

1

16
log4(2)

+
3iπ

16
ζ(2) log(2)− iπ

8
log3(2). (38)

Also there is a need for the value

log(−1− i) =
1

2
log(2)− 3iπ

4
,
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allowing us to readily find

log2(−1− i) = −27

8
ζ(2) +

1

4
log2(2)− 3iπ

4
log(2), (39)

log4(−1− i) =
3645

128
ζ(4) +

1

16
log4(2)− 81

16
ζ(2) log2(2)

− 3iπ

8
log3(2) +

81iπ

16
ζ(2) log(2). (40)

Finally, some functional values for the polylogarithms at complex arguments
are needed. We briefly indicate how these can be found. From Euler’s reflexion
formula for the dilogarithm [24, (1.11), p. 5], namely

Li2(z) + Li2(1− z) = ζ(2)− log(z) log(1− z), (41)

setting z = i leads to

Li2(1− i) =
3

8
ζ(2)− iG− iπ

4
log(2), (42)

and from the following known identity for the trilogarithm [24, (6.53), p. 164],

Li3(z) + Li3(1− z) + Li3

(
1− 1

z

)
= ζ(3) + ζ(2) log(z) +

1

6
log3(z)

− 1

2
log2(z) log(1− z),

(43)

setting z = i in (43) yields

ReLi3(1− i) =
35

64
ζ(3) +

3

16
ζ(2) log(2), (44)

where Re denotes the real part. From the following inversion identity for the
tetralogarithm [24, (7.81), p. 209]

Li4(−z) + Li4

(
−1

z

)
= −7

4
ζ(4)− 1

24
log4

(
1

z

)
− 1

2
ζ(2) log2

(
1

z

)
,

setting z = (i − 1)/2, as 1/z = −1 − i from the above tetralogarithm identity
together with the values listed in (39) and (40) we find

Li4

(
1− i

2

)
= −Li4(1 + i) +

1313

1024
ζ(4)− 1

384
log4(2) +

11

128
ζ(2) log2(2)

+
iπ

64
log3(2) +

21iπ

128
ζ(2) log(2).

(45)

A more difficult value for the real part of the tetralogarithm is (see [44, p. 70])

Re Li4(1− i) = − 5

16
Li4

(
1

2

)
+

485

512
ζ(4) +

1

8
ζ(2) log2(2)− 5

384
log4(2). (46)
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[40] VĂLEAN, C. I.: (Almost) Impossible Integrals, Sums, and Series. (With a foreword
by Paul J. Nahin.) In: Problem Books in Mathematics. Springer, Cham, 2019.

97
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