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ABSTRACT. In this paper we investigate Fibonacci type sequences defined
by kth order linear recurrence. Based on their companion matrix and its graph
interpretation we determine multinomial and binomial formulas for these se-
quences. Moreover we present a graphical rule for calculating the words of these

sequences from the Pascal’s triangle.

1. Introduction

Fibonacci numbers are defined recursively by Fn = Fn−1+Fn−2 for n ≥ 2 with
initial conditions F0 = 0, F1 = 1. Using Fn−2 = Fn − Fn−1, Fibonacci numbers
can be extended to negative integers and F−n = (−1)n+1Fn. Consequently,
the sequence {Fn} has the form . . . ,−8, 5,−3, 2,−1, 1, 0, 1, 1, 2, 3, 5, 8, . . . Many
generalizations of Fibonacci numbers were studied, see for example the list given
in [1]. In [9] k–Fibonacci numbers were defined by gn = gn−1+gn−2+ · · ·+gn−k

for n ≥ k ≥ 2 with g0 = g1 = · · · = gk−2 = 0 and gk−1 = 1. Some properties
of the sequence {gn} were studied in [9] and next in [8]. More general case
of sequence {gn} was studied by Kalman, see for details [5]. In [2] Er introduced
a family of k sequences of generalized Fibonacci numbers in the following way.

Let k ≥ 2, cj , j ∈ {1, . . . , k} be integers. Then for an integer 1 ≤ i ≤ k
generalized Fibonacci numbers f i

n are defined as

f i
n =

k∑
j=1

cjf
i
n−j for n > 0 (1)
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with initial conditions f i
n =

{
1 if i = 1− n,

0 otherwise,
for 1− k ≤ n ≤ 0.

The number f i
n is the nth term of the ith sequence. If k = 2 and c1 = c2 = 1,

then Fn = f1
n−1 = f2

n for n ≥ 0.

Based on an approach taken by Kalman [5], Er used for these sequences a
k × k matrix A of the form

A =

⎡
⎢⎢⎢⎣

c1 c2 . . . ck
1 0 . . . 0
...

. . .
. . .

...
0 0 1 0

⎤
⎥⎥⎥⎦

and showed that

An =

⎡
⎢⎢⎢⎢⎣

f1
n f2

n . . . fk
n

f1
n−1 f2

n−1 . . . fk
n−1

...
...

. . .
...

f1
n−k+1 f2

n−k+1 . . . fk
n−k+1

⎤
⎥⎥⎥⎥⎦ . (2)

In this paper, we consider a generalization of Fibonacci numbers which relates
to sequences (1).

Let k ≥ 2, ci ≥ 0, i ∈ {1, . . . , k} be integers such that there are at least two
positive integers cp, cq where p �= q and 1 ≤ p, q ≤ k. Generalized Fibonacci
numbers are defined recursively by the kth order linear recurrence relation

fn = c1fn−1 + c2fn−2 + · · ·+ ckfn−k for n > 0 (3)

with given nonnegative integers f1−k, . . . , f−1, f0, and there is 1 − k ≤ j ≤ 0
such that fj > 0.

For special values of k, ci, and f1−i, i ∈ {1, . . . , k}, the formula (3) gives the
well-known classical sequences of the Fibonacci type, see the Table 1.

Table 1. Generalized Fibonacci numbers for special values k, ci and fi.

Sequence k c1 c2 c3 -2 -1 0 Recursion

Fibonacci 2 1 1 0 1 Fn=Fn−1 + Fn−2 for n≥1

Lucas 2 1 1 2 1 Ln=Ln−1 + Ln−2 for n≥1

Pell 2 2 1 0 1 Pn=2Pn−1 + Pn−2 for n≥1

Jacobsthal 2 1 2 0 1 Jn=Jn−1 + 2Jn−2 for n≥1

Padovan 3 0 1 1 1 1 1 Pv(n)=Pv(n−2)+Pv(n−3), n≥1

Tribonacci 3 1 1 1 0 0 1 Tn=Tn−1 + Tn−2 + Tn−3 for n≥1
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Apart from the recurrence relations for Fibonacci type sequences, binomial for-
mulas were determined. We recall some of them:

1. F. E.A. Lucas [7]

Fn−1 =

�n−1
2 �∑

i=0

(
n− i− 1

i

)
,

2. H.W. Gould [10]

Ln−1 = n

�n
2 �∑

i=0

(
n− i

i

)
1

n− i
,

3. A. F. Haradam [4]

Pn−1 =

�n
2 �∑

i=0

(
n

2i+ 1

)
2i,

4. S. Falcon Santana, J. L. Diaz-Barrero [3]

Pn =

�n
2 �∑

i=0

(
n− i

i

)
2n−2i,

5. E. Kilic, H. Prodinger [6]

Pn =
∑

0≤i≤j≤n

(
n− i

j

)(
j

i

)
,

6. B. Cloitre [10]

Jn−1 =

�n
2 �∑

i=0

2i
(
n− i

i

)
,

7. E. Kilic, H. Prodinger [6]

Tn =
∑

0≤j≤i≤n

(
n− i

i− j

)(
i− j

j

)
.

Other binomial formulas for integer sequences can be found in [10]. Inspired
by these results, we looked for a general binomial formula for all sequences
defined by the recurrence (3).

The purpose of this paper is to investigate the connections between sequences,
matrices and directed multigraphs. This leads to the discovery of a method of de-
riving multinomial and binomial formulas for these sequences. Obtained formulas
allow us to formulate a graphical rule for calculating generalized Fibonacci num-
bers from the Pascal’s triangle. Consequently, we present new binomial formulas
for these numbers.
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2. Main results

Firstly, we give dependencies between nth generalized Fibonacci number fn
and nth term of the ith sequence.

������� 2.1� Let k ≥ 2 and n ≥ 1− k be integers. Then fn =
∑k

i=1 f1−if
i
n.

P r o o f. (by the induction on n) If 1− k ≤ n ≤ 0, then from the definition of f i
n

we obtain
k∑

i=1

f1−if
i
n = f0f

1
n+f−1f

2
n+ · · ·+fnf

1−n
n + · · ·+f1−kf

k
n = fnf

1−n
n = fn ·1 = fn.

Assume that n > 0 and let fn =
∑k

i=1 f1−if
i
n. We shall show that

fn+1 =

k∑
i=1

f1−if
i
n+1.

Using the equation (3) we have that
k∑

i=1

f1−if
i
n+1 = f0(c1f

1
n + c2f

1
n−1 + · · ·+ ckf

1
n−k+1)

+f−1(c1f
2
n + c2f

2
n−1 + · · ·+ ckf

2
n−k+1)

...
+f1−k(c1f

k
n + c2f

k
n−1 + · · ·+ ckf

k
n−k+1)

= c1

k∑
i=1

f1−if
i
n + c2

k∑
i=1

f1−if
i
n−1 + · · ·+ ck

k∑
i=1

f1−if
i
n−k+1.

Then from the induction’s hypothesis
k∑

i=1

f1−if
i
n+1 = c1fn + c2fn−1 + · · ·+ ckfn−k+1 = fn+1

and by the induction’s rule the Theorem is proved. �

������� 2.2� Let k ≥ 2, n ≥ 1, 1 ≤ i ≤ k be integers. Then

f i
n =

k−i∑
t=0

∑
α1,α2,...,αk

α1+2α2+···+kαk=n−t−i

ci+t · cα1
1 · cα2

2 · · · cαk

k

(
α1 + · · ·+ αk

α1, . . . , αk

)

for ci > 0, i ∈ {1, . . . , k}, (4)

f i
n =

∑
0≤t≤k−i
ci+t>0

∑
α1,α2,...,αk

α1+2α2+···+kαk=n−t−i

ci+t ·
∏
ci>0

cαi
i ·

(
α1 + · · ·+ αk

α1, . . . , αk

)

for ci ≥ 0, i ∈ {1, . . . , k} (5)

if n =
k∑

j=1
αj · j, where αj = 0 if cj = 0 or αj ≥ 0 if cj > 0.
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P r o o f. The companion matrix A of the sequence {f i
n} can be considered as

an adjacency matrix of a special multidigraph. For convenience, lets consider
a multidigraph D defined by AT presented on the Fig. 1, where ci denotes the
multiplicity of the arc viv1.

� � � � �

v1 v2 v3

. . .
vk

c1
c2 c3

ck−1 ck

vk−1

D

Figure 1. Digraph D.

Elements of the matrix (An)T = (AT )n give the number of all different paths
of the length n between corresponding vertices in the digraph D. For a fixed
1 ≤ i ≤ k, the element ai,1 of the matrix (An)T is equal to the total number
of different paths from vi to v1. By (2), it holds that ai,1 = f i

n. Each such path
consists of a path vi − · · · − vi+t − v1, t ∈ {0, . . . k − i}, of the length t+ 1 and
the finite sequence C of elementary cycles in random order. Cycles have the form
Ci = v1 − v2 − · · · − vi − v1 and lengths i, i ∈ {1, 2, . . . , k}. Suppose that the
path consists of αi-times cycle Ci. Clearly, αi ≥ 0, i ∈ {1, 2, . . . , k}. Then the
length of this path can be written as 1α1 + 2α2 + · · · + kαk + t + 1 = n and
by rewriting 1α1 +2α2 + · · ·+ kαk = n− t− 1. To calculate the number of such
paths observe that the arc vi+tv1 can be chosen in ci+t ways. The remaining
part of this path consists of α1 + α2 + · · ·+ αk cycles Ci, i ∈ {1, 2, . . . , k}. The
position of the cycle C1 in the sequence C can be chosen in

(
α1+α2+···+αk

α1

)
ways,

the position of the cycle C2 in
(
α2+···+αk

α2

)
ways, and so on. Consequently, we

have
(
α1+α2+···+αk

α1

)(
α2+···+αk

α2

) · · · (αk

αk

)
possibilities that create a path of length

n− t− 1, which can be rewritten as a multinomial coefficient
(
α1+···+αk

α1,...,αk

)
.

Since the cycle Ci, i ∈ {1, 2, . . . , k}, which appears αi times in the sequence C,
can go through one of ci multiple arcs viv1, by the multiplicity of it the number
of sequences has to be multiplied by cα1

1 · cα2
2 · · · cαk

k .

Summing over all possible collections α1, α2, . . . , αk satisfying the equality
1α1 + 2α2 + · · ·+ kαk = n− t− 1, we obtain that the number of sequences C is
equal to k−i∑

t=0

∑
α1,α2,...,αk

α1+2α2+···+kαk=n−t−1

ci+t · cα1
1 · cα2

2 · · · cαk

k

(
α1 + · · ·+ αk

α1, . . . , αk

)
= f i

n.

To prove (5), observe that if there is 1 ≤ i ≤ k such that ci = 0 in (3),
then the cycle Ci does not exist in the path from vi to v1 in the digraph D.
Consequently αi = 0 and we put cαi

i = 1 in the formula (4). Moreover we can
omit terms which are equal to zero. Then the formula (5) follows. �
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Using Theorem 2.1 and Theorem 2.2 we obtain

����		
�� 2.3� Let k ≥ 2, n ≥ 1, 1 ≤ i ≤ k be integers. Then

fn =

k∑
i=1

k−i∑
t=0

∑
α1,α2,...,αk

α1+2α2+···+kαk=n−t−1

fi · ci+t · cα1
1 · cα2

2 · · · cαk

k

(
α1 + · · ·+ αk

α1, . . . , αk

)

for ci > 0, i ∈ {1, . . . , k}, (6)

fn =
∑

1≤i≤k
fi>0

∑
0≤t≤k−i
ci+t>0

∑
α1,α2,...,αk

α1+2α2+···+kαk=n−t−1

fi · ci+t ·
∏
ci>0

[
cαi
i

(
αi + · · ·+ αk

αi

)]

for ci ≥ 0, i ∈ {1, . . . , k} (7)

if n =

k∑
j=1

αj · j, where αj = 0 if cj = 0 or αj ≥ 0 if cj > 0.

It is well known that classical Fibonacci numbers can be calculated from the
Pascal’s triangle as a sum of binomials on special diagonals and this rule is
described by the formula 1. The same sums can be obtained from the Pascal’s
triangle using staircase method, see Fig. 2. The step has a height 1 and length 1.

1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0
1 3 3 1 0 0 0 0 0 0 0
1 4 6 4 1 0 0 0 0 0 0
1 5 10 10 5 1 0 0 0 0 0
1 6 15 20 15 6 1 0 0 0 0
1 7 21 35 35 21 7 1 0 0 0
1 8 28 56 70 56 28 8 1 0 0
1 9 36 84 126 126 84 36 9 1 0
1 10 45 120 210 252 210 120 45 10 1

Figure 2. Stairs method of calculating Fibonacci numbers from the
Pascal’s triangle.

The Corollary 2.3 gives direct formula for an arbitrary sequence defined by kth
order linear recurrence. We use this formula as a tool for determining other
binomial formulas for these sequences. It also gives a possibility to discover
graphical rules (called staircase method) for calculating these numbers from the
Pascal’s triangle.
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For explanation, consider as an example Fibonacci numbers and n = 11.
Then from (7) we have that

F11 =

(
10

0

)
+

(
9

0

)
+

(
9

1

)
+

(
8

1

)
+

(
8

2

)
+

(
7

2

)
+

(
7

3

)
+

(
6

3

)
+

(
6

4

)
+

(
5

4

)
+

(
5

5

)
.

These binomials marked on the Pascal’s triangle give simple and elegant rule
(stairs) of calculating F11, see Fig. 3. We can generalize this rule by extending

1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0
1 3 3 1 0 0 0 0 0 0 0
1 4 6 4 1 0 0 0 0 0 0
1 5 10 10 5 1 0 0 0 0 0
1 6 15 20 15 6 1 0 0 0 0
1 7 21 35 35 21 7 1 0 0 0
1 8 28 56 70 56 28 8 1 0 0
1 9 36 84 126 126 84 36 9 1 0
1 10 45 120 210 252 210 120 45 10 1

Figure 3. Stairs method of calculating F11 from the Pascal’s triangle.

staircases in two directions. Moving such infinite staircases downwards, we can
calculate the next Fibonacci number.

Based on such graphical rule, we can give a new formula for Fibonacci numbers

Fn =

�n
2 �∑

i=0

1∑
j=0

(
n− 1− i− j

i

)
(8)

We have two binomials adjacent in a row on each step of a staircase. Using the
basic formula (

n

k

)
+

(
n

k + 1

)
=

(
n+ 1

k + 1

)
. (9)

we immediately obtain that

Fn =

�n
2 �∑

i=0

(
n− i

i

)
.

Let us consider now Padovan numbers defined by

Pv(n)=Pv(n−2)+Pv(n−3) for n ≥ 0 with Pv(−2) = Pv(−1) = Pv(0) = 1.
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According to Theorem 2.1 we have that

Pv(n) =

3∑
i=1

Pv(1− i)Pvi(n) = Pv1(n) + Pv2(n) + Pv3(n).

For example, let n = 11. By (7) we have that

Pv1(11) =
(
4
0

)
+

(
4
1

)
+
(
3
2

)
+
(
3
3

)
(solid line on the Fig. 4),

Pv2(11) =
(
5
0

)
+

(
4
1

)
+
(
4
2

)
+
(
3
3

)
(dashed line),

Pv3(11) =
(
4
0

)
+

(
3
1

)
+
(
3
2

)
(dotted line).

These binomials marked in the Pascal’s triangle form stairs. By extending them
we obtain a rule for calculating Pv1(n), Pv2(n), Pv3(n), see the Fig. 4.

1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0
1 3 3 1 0 0 0 0 0 0 0
1 4 6 4 1 0 0 0 0 0 0
1 5 10 10 5 1 0 0 0 0 0
1 6 15 20 15 6 1 0 0 0 0
1 7 21 35 35 21 7 1 0 0 0
1 8 28 56 70 56 28 8 1 0 0
1 9 36 84 126 126 84 36 9 1 0
1 10 45 120 210 252 210 120 45 10 1

Figure 4. Calculating Pv1(11), Pv2(11), Pv3(11) by (5).

Consequently,

Pv1(n) =

�n−4
2 �∑

i=0

(�n−2−i
2 �
i

)
.

Moreover,

Pv2(n) = Pv1(n+ 1) and Pv3(n) = Pv1(n− 1).

Using (9) in each step for adjacent binomials we obtain a new pattern for cal-
culating these numbers, see Fig. 5. This leads to

Pv1(n) =

� �n
2

�−1

3 �∑
i=0

( �n2 � − i

n (mod 2) + 2i

)
. (10)
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Analogously,

Pv2(n) = Pv1(n+ 1) and Pv3(n) = Pv1(n− 1).

1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0
1 3 3 1 0 0 0 0 0 0 0
1 4 6 4 1 0 0 0 0 0 0
1 5 10 10 5 1 0 0 0 0 0
1 6 15 20 15 6 1 0 0 0 0
1 7 21 35 35 21 7 1 0 0 0
1 8 28 56 70 56 28 8 1 0 0
1 9 36 84 126 126 84 36 9 1 0
1 10 45 120 210 252 210 120 45 10 1

Figure 5. Calculating Pv1(11), Pv2(11), Pv3(11) by(5) and (9).

Using twice the formula (9) we obtain

Pv(n) =

� � n+4
2

�−1

3 �∑
i=0

( �n+4
2

� − i

n (mod 2) + 2i

)
(11)

and the corresponding stairs are presented on the Fig. 6.

1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0
1 3 3 1 0 0 0 0 0 0 0
1 4 6 4 1 0 0 0 0 0 0
1 5 10 10 5 1 0 0 0 0 0
1 6 15 20 15 6 1 0 0 0 0
1 7 21 35 35 21 7 1 0 0 0
1 8 28 56 70 56 28 8 1 0 0
1 9 36 84 126 126 84 36 9 1 0
1 10 45 120 210 252 210 120 45 10 1

Figure 6. Calculating Pv(11) by (11).
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