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ON SOME COMBINATORIAL PROPERTIES

OF P (r, n)-PELL QUATERNIONS

Dorota Bród — Anetta Szynal-Liana

Rzeszow University of Technology, Rzeszow, POLAND

ABSTRACT. In this paper we introduce a new one parameter generalization of
the Pell quaternions – P (r, n)-Pell quaternions. We give some of their properties,
among others the Binet formula, convolution identity and the generating function.

1. Introduction

Let H be the set of quaternions q of the form

q = a+ bi+ cj + dk,

where a, b, c, d ∈ R and i, j, k are complex operators such that

i2 = j2 = k2 = ijk = −1 (1)

and
ij = −ji = k, jk = −kj = i, ki = −ik = j. (2)

Quaternions were introduced by W. Hamilton in 1843 as an extension of the
complex numbers. The addition, the subtraction and the multiplication of quater-
nions were defined analogously to the complex numbers.

Let q1 = a1+ b1i+c1j+d1k and q2 = a2+ b2i+c2j+d2k be two quaternions.
Then the addition and the subtraction of them is defined as follows

q1 ± q2 = (a1 ± a2) + (b1 ± b2)i+ (c1 ± c2)j + (d1 ± d2)k.

The quaternion multiplication is also defined analogously to the complex num-
bers multiplication using the rules (1) and (2). Unlike the multiplication of real
numbers and complex numbers the multiplication of quaternions is not commu-
tative.
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The conjugate of a quaternion is defined by

q = a+ bi+ cj + dk = a− bi− cj − dk.

The norm of a quaternion is defined by

N(q) = q · q = q · q = a2 + b2 + c2 + d2.

For the quaternion theory see [14].

Let Fn be the nth Fibonacci number defined recursively by Fn = Fn−1+Fn−2

for n ≥ 2 with the initial terms F0 = 0, F1 = 1. There are many numbers defined
by the linear recurrence relations and they are also called the numbers of the
Fibonacci type, for example Lucas numbers, Pell numbers, Pell-Lucas numbers,
Jacobsthal numbers, Jacobsthal-Lucas numbers. These numbers have many ap-
plications in distinct areas of mathematics and also in quaternions theory.

In 1963 Horadam [6] introduced Fibonacci and Lucas quaternions. For the
properties of Fibonacci quaternions see [5, 9]. In 1993 Horadam [8] mentioned
the possibility of introducing Pell quaternions. Interesting results concerning
Pell quaternions, Pell-Lucas quaternions have been obtained quite recently
(in 2016) and can be found in [4, 13]. Jacobsthal quaternions and Jacobsthal-
Lucas quaternions were introduced in 2016, see [12].

Motivated by mentioned concepts, we introduce and study the P (r, n)-Pell
quaternions in this paper.

2. The P (r, n)-Pell numbers

The Pell sequence {Pn}
0, 1, 2, 5, 12, 29, 70, 169, 408, 985, . . . , Pn, . . .

is defined recursively by Pn = 2Pn−1 + Pn−2, for n ≥ 2 with P0 = 0, P1 = 1.
The nth Pell number for n ≥ 0 is explicitly given by the Binet-type formula

Pn =
(1 +

√
2)n − (1−√

2)n

2
√
2

.

Moreover, the Pell numbers are defined by the following formula

Pn =

[n−1
2 ]∑

k=0

(
n

2k + 1

)
2k.

Some interesting properties of the Pell numbers can be found in [7].

In the literature, there are some generalizations of the Pell numbers, see
[2, 3, 10, 11]. In [1], a one parameter generalization of the Pell numbers was
investigated. We recall this generalization.
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Let n ≥ 0, r ≥ 1 be integers, the r-Pell sequence {P (r, n)} is defined by the
following recurrence relation

P (r, n) = 2rP (r, n− 1) + 2r−1P (r, n− 2) for n ≥ 2 (3)

with initial conditions P (r, 0) = 2, P (r, 1) = 1 + 2r+1.
It is easily seen that P (1, n) = Pn+2.

By (3) we obtain:
P (r, 0) = 2,

P (r, 1) = 1 + 2r+1,

P (r, 2) = 2r+1 + 2 · 4r,
P (r, 3) = 2r−1 + 3 · 4r + 2 · 8r,
P (r, 4) = 3

2 · 4r + 4 · 8r + 2 · 16r,
P (r, 5) = 1

4 · 4r + 3 · 8r + 5 · 16r + 2 · 32r.

(4)

In [1], it was proved that the r-Pell numbers can be used for counting the
independent sets of special classes of graphs.

We will recall some properties of the r-Pell numbers, which will be useful
in the next section.

������� 2.1 ([1] Binet formula)� Let n ≥ 0, r ≥ 1 be integers. Then

P (r, n) =

(
1 +

2r + 1√
4r + 2r+1

)
rn1 +

(
1− 2r + 1√

4r + 2r+1

)
rn2 ,

where

r1 =
1

2

(
2r +

√
4r + 2r+1

)
, r2 =

1

2

(
2r −

√
4r + 2r+1

)
.

���	�
���� 2.2 ([1])� Let n ≥ 4, r ≥ 1 be integers. Then

P (r, n) = (8r + 4r)P (r, n− 3) + (23r−1 + 22r−2)P (r, n− 4).

������� 2.3 ([1])� Let n, r be positive integers. Then

n−1∑
l=0

P (r, l) =
P (r, n) + 2r−1P (r, n− 1)− 3

3 · 2r−1 − 1
.

������� 2.4 ([1] Cassini identity)� Let n, r be positive integers. Then

P (r, n+ 1)P (r, n− 1)− P 2(r, n) = (−1)n2(r−1)(n−1). (5)

������� 2.5 ([1] Convolution identity)� Let n,m, r be integers m ≥ 2, n ≥ 1,
r ≥ 1. Then

P (r,m+ n) = 2r−1P (r,m− 1)P (r, n) + 22r−2P (r,m− 2)P (r, n− 1). (6)

������� 2.6 ([1])� The generating function of the sequence {P (r, n)} has the
following form

f(t) =
2 + t

1− 2rt− 2r−1t2
.
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3. The P (r, n)-Pell quaternions

For n ≥ 0, we define the nth P (r, n)-Pell quaternion PQr
n as

PQr
n = P (r, n) + iP (r, n+ 1) + jP (r, n+ 2) + kP (r, n+ 3), (7)

where P (r, n) is the nth r-Pell number.

By (4) and (7) we obtain:

PQr
0 = 2 + i(1 + 2r+1) + j(2r+1+ 2 · 4r) + k(2r−1+ 3 · 4r+ 2 · 8r),

PQr
1 = 1 + 2r+1+ i(2r+1+ 2 · 4r) + j(2r−1+ 3 · 4r+ 2 · 8r)

+ k(
3

2
· 4r+ 4 · 8r+ 2 · 16r),

PQr
2 = 2r+1 + 2 · 4r + i(2r−1+ 3 · 4r+ 2 · 8r) + j(

3

2
· 4r+ 4 · 8r + 2 · 16r)

+ k (
1

4
· 4r+ 3 · 8r+ 5 · 16r+ 2 · 32r).

(8)

Remark 1� For r = 1 we obtain PQ1
n = PQn+2, where PQn denotes the nth

Pell quaternion.

By the definition of P (r, n)-Pell quaternions we get the following results.

������� 3.1� Let n ≥ 0, r ≥ 1 be integers. Then

2rPQr
n+1 + 2r−1PQr

n = PQr
n+2.

P r o o f. Using (3) and (7), we have

2rPQr
n+1 + 2r−1PQr

n

= 2r
(
P (r, n+ 1) + iP (r, n+ 2) + jP (r, n+ 3) + kP (r, n+ 4)

)
+ 2r−1

(
P (r, n) + iP (r, n+ 1) + jP (r, n+ 2) + kP (r, n+ 3)

)
= P (r, n+ 2) + iP (r, n+ 3) + jP (r, n+ 4) + kP (r, n+ 5)

= PQr
n+2,

which ends the proof. �

Remark 2� If r = 1 and n ≥ 0, then we obtain the basic equality for the Pell
quaternions

PQn+2 = 2PQn+1 + PQn.

���	�
���� 3.2� Let n ≥ 4, r ≥ 0 be integers. Then

PQr
n = (8r + 4r)PQr

n−3 + (23r−1 + 22r−2)PQr
n−4.
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P r o o f. Using Proposition 2.2, we obtain:

PQr
n = P (r, n) + iP (r, n+ 1) + jP (r, n+ 2) + kP (r, n+ 3)

= (8r + 4r)P (r, n− 3) + (23r−1 + 22r−2)P (r, n− 4)

+ i
(
(8r + 4r)P (r, n− 2) + (23r−1 + 22r−2)P (r, n− 3)

)
+ j

(
(8r + 4r)P (r, n− 1) + (23r−1 + 22r−2)P (r, n− 2)

)
+ k

(
(8r + 4r)P (r, n) + (23r−1 + 22r−2)P (r, n− 1)

)
= (8r + 4r)

(
P (r, n− 3) + iP (r, n− 2) + jP (r, n− 1) + kP (r, n)

)
+ (23r−1 + 22r−2)

· (P (r, n− 4) + iP (r, n− 3) + jP (r, n− 2) + kP (r, n− 1)
)
.

Hence we have

PQr
n = (8r + 4r)PQr

n−3 + (23r−1 + 22r−2)PQr
n−4,

which ends the proof. �

Remark 3� If r = 1 and n ≥ 4, then we obtain the well-known equality for the
Pell quaternions

PQn = 12PQn−3 + 5PQn−4.

������� 3.3� Let n ≥ 0, r ≥ 1 be integers. Then

PQr
n − iPQr

n+1 − jPQr
n+2 − kPQr

n+3

= P (r, n) + P (r, n+ 2) + P (r, n+ 4) + P (r, n+ 6).

P r o o f. Using multiplication rules (1) and (2), we obtain:

PQr
n − iPQr

n+1 − jPQr
n+2 − kPQr

n+3

= P (r, n) + iP (r, n+ 1) + jP (r, n+ 2) + kP (r, n+ 3)

− i
(
P (r, n+ 1) + iP (r, n+ 2) + jP (r, n+ 3) + kP (r, n+ 4)

)
− j

(
P (r, n+ 2) + iP (r, n+ 3) + jP (r, n+ 4) + kP (r, n+ 5)

)
− k

(
P (r, n+ 3) + iP (r, n+ 4) + jP (r, n+ 5) + kP (r, n+ 6)

)
= P (r, n) + P (r, n+ 2) + P (r, n+ 4) + P (r, n+ 6)

− (ij + ji)P (r, n+ 3)− (ik + ki)P (r, n+ 4)− (jk + kj)P (r, n+ 5)

= P (r, n) + P (r, n+ 2) + P (r, n+ 4) + P (r, n+ 6). �
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������� 3.4� Let n ≥ 0, r ≥ 1 be integers. Then

(i) PQr
n + PQr

n = 2P (r, n),

(ii) (PQr
n)

2 = 2P (r, n)PQr
n −N(PQr

n).

P r o o f.
(i) By the definition of the conjugate of a quaternion we get the result.
(ii) By formula (7) we get:

(PQr
n)

2 = P 2(r, n)− P 2(r, n+ 1)− P 2(r, n+ 2)− P 2(r, n+ 3)

+ 2
(
iP (r, n)P (r, n+ 1) + jP (r, n)P (r, n+ 2) + kP (r, n)P (r, n+ 3)

)
+ (ij + ji)P (r, n+ 1)P (r, n+ 2) + (ik + ki)P (r, n+ 1)P (r, n+ 3)

+ (jk + kj)P (r, n+ 2)P (r, n+ 3)

= 2
(
iP (r, n)P (r, n+ 1) + jP (r, n)P (r, n+ 2) + kP (r, n)P (r, n+ 3)

)
+ P 2(r, n)− P 2(r, n+ 1)− P 2(r, n+ 2)− P 2(r, n+ 3)

= 2P (r, n)
(
P (r, n) + iP (r, n+ 1) + jP (r, n+ 2) + kP (r, n+ 3)

)
− (

P 2(r, n) + P 2(r, n+ 1) + P 2(r, n+ 2) + P 2(r, n+ 3)
)

= 2P (r, n)PQr
n −N(PQr

n). �

Now, we will give the Binet formula for the P (r, n)-Pell quaternions.

������� 3.5 (Binet formula)� Let n ≥ 0, r ≥ 1 be integers. Then

PQr
n = C1r

n
1

(
1 + ir1 + jr21 + kr31

)
+ C2r

n
2

(
1 + ir2 + jr22 + kr32

)
,

where

r1 =
2r +

√
4r + 2r+1

2
, r2 =

2r −√
4r + 2r+1

2
,

C1 = 1 +
2r + 1√
4r + 2r+1

, C2 = 1− 2r + 1√
4r + 2r+1

.

P r o o f. By Theorem 2.1 we get

PQr
n = P (r, n) + iP (r, n+ 1) + jP (r, n+ 2) + kP (r, n+ 3)

= C1r
n
1 + C2r

n
2 + i

(
C1r

n+1
1 + C2r

n+1
2

)
+j

(
C1r

n+2
1 + C2r

n+2
2

)
+ k

(
C1r

n+3
1 + C2r

n+3
2

)
= C1r

n
1

(
1 + ir1 + jr21 + kr31

)
+ C2r

n
2

(
1 + ir2 + jr22 + kr32

)
. �
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Remark 4� For r = 1 we obtain the Binet formula for the Pell quaternions
(see [4])

PQn =
(1 +

√
2)nA− (1−√

2)nB

2
√
2

,

where
A = 1 + i(1 +

√
2) + j(1 +

√
2)2 + k(1 +

√
2)3,

B = 1 + i(1−√
2) + j(1−√

2)2 + k(1−√
2)3.

The next theorem presents a summation formula for the P (r, n)-Pell quater-
nions.

������� 3.6� Let n ≥ 0, r ≥ 1 be integers. Then
n∑

l=0

PQr
l =

PQr
n+1 + 2r−1PQr

n − 3(1 + i+ j + k)

3 · 2r−1 − 1

− (
2i+ (3 + 2r+1)j + (3 + 2 · 4r + 2r+2)k

)
.

P r o o f. By the definition of the P (r, n)-Pell quaternions we have
n∑

l=0

PQr
l = PQr

0 + PQr
1 + · · ·+ PQr

n

= P (r, 0) + iP (r, 1) + jP (r, 2) + kP (r, 3)

+ P (r, 1) + iP (r, 2) + jP (r, 3) + kP (r, 4) + · · ·
+ P (r, n) + iP (r, n+ 1) + jP (r, n+ 2) + kP (r, n+ 3)

= P (r, 0) + P (r, 1) + · · ·+ P (r, n)

+ i
(
P (r, 1) + P (r, 2) + · · ·+ P (r, n+ 1) + P (r, 0)− P (r, 0)

)
+ j

(
P (r, 2) + P (r, 3) + · · ·+ P (r, n+ 2) + P (r, 0) + P (r, 1)

− P (r, 0)− P (r, 1)
)

+ k
(
P (r, 3) + P (r, 4) + · · ·+ P (r, n+ 3)+P (r, 0)+P (r, 1) + P (r, 2)

− P (r, 0)− P (r, 1)− P (r, 2)
)
.

Using Theorem 2.3, we obtain
n∑

l=0

PQr
l =

1

3 · 2r−1 − 1

[
P (r, n+ 1) + 2r−1P (r, n)− 3

+ i
(
P (r, n+ 2) + 2r−1P (r, n+ 1)− 3

)
+ j

(
P (r, n+ 3) + 2r−1P (r, n+ 2)− 3

)
+ k

(
P (r, n+ 4) + 2r−1P (r, n+ 3)− 3

)]
− P (r, 0)i− (

P (r, 0) + P (r, 1)
)
j

− (
P (r, 0) + P (r, 1) + P (r, 2)

)
k.

7
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Hence we have
n∑

l=0

PQr
l =

1

3 · 2r−1 − 1

[
P (r, n+ 1) + iP (r, n+ 2)+jP (r, n+3) + kP (r, n+4)

+ 2r−1
(
P (r, n) + iP (r, n+ 1) + jP (r, n+ 2) + kP (r, n+ 3)

)
− 3(1 + i+ j + k)

]
− 2i− (3 + 2r+1)j − (3 + 2 · 4r + 2r+2)k

=
PQr

n+1 + 2r−1PQr
n − 3(1 + i+ j + k)

3 · 2r−1 − 1

− (
2i+ (3 + 2r+1)j + (3 + 2 · 4r + 2r+2)k

)
. �

������� 3.7� If r = 1 and n ≥ 0, then we obtain the summation formula
for the Pell quaternions (see [4])

n∑
l=0

PQl =
PQn+1 + PQn − PQ1 + PQ0

2
.

P r o o f. For r = 1 we have
n∑

l=0

PQ1
l =

PQ1
n+1 + PQ1

n − 3(1 + i+ j + k)

2
− (2i+ 7j + 19k)

=
PQ1

n+1 + PQ1
n − (1 + 2i+ 5j + 12k)− (2 + 5i+ 12j + 29k)

2

=
PQ1

n+1 + PQ1
n − PQ1 − PQ2

2
.

On the other hand, using PQ1
n = PQn+2, we obtain

n∑
l=0

PQl = PQ0 + PQ1 + · · ·+ PQn = PQ0 + PQ1 +

n−2∑
l=0

PQ1
l

= PQ0 + PQ1 +
PQ1

n−1 + PQ1
n−2 − PQ1 − PQ2

2

=
PQn+1 + PQn − PQ1 − PQ2 + 2PQ0 + 2PQ1

2

=
PQn+1 + PQn − PQ1 − PQ2 + (PQ0 + 2PQ1) + PQ0

2

=
PQn+1 + PQn − PQ1 + PQ0

2
. �

������� 3.8 (Convolution identity)� Let m ≥ 2, n ≥ 1, r ≥ 1. Then

2PQr
m+n = 2r−1PQr

m−1PQr
n + 22r−2PQr

m−2PQr
n−1 + P (r,m+ n)

+P (r,m+ n+ 2) + P (r,m+ n+ 4) + P (r,m+ n+ 6).
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P r o o f. Using (1) and (2), we have

2r−1PQr
m−1PQr

n + 22r−2PQr
m−2PQr

n−1

= 2r−1(P (r,m− 1) + iP (r,m) + jP (r, m+ 1) + kP (r,m+ 2)
)

· (P (r, n) + iP (r, n+ 1) + jP (r, n+ 2) + kP (r, n+ 3)
)

+ 22r−2(P (r,m− 2) + iP (r,m− 1) + jP (r,m) + kP (r, m+ 1)
)

· (P (r, n− 1) + iP (r, n) + jP (r, n+ 1) + kP (r, n+ 2)
)

= 2r−1(P (r,m− 1)P (r, n) + iP (r,m− 1)P (r, n+ 1)

+ jP (r,m− 1)P (r, n+ 2) + kP (r,m− 1)P (r, n+ 3)

+ iP (r,m)P (r, n)− P (r,m)P (r, n+ 1) + kP (r,m)P (r, n+ 2)

− jP (r,m)P (r, n+ 3) + jP (r, m+ 1)P (r, n)− kP (r, m+ 1)P (r, n+ 1)

+ P (r,m+ 1)P (r, n+ 2) + iP (r,m+ 1)P (r, n+ 3)

+ kP (r,m+ 2)P (r, n) + jP (r,m+ 2)P (r, n+ 1)

− iP (r,m+ 2)P (r, n+ 2)− P (r,m+ 2)P (r, n+ 3)
)

+ 22r−2(P (r,m− 2)P (r, n− 1) + iP (r,m− 2)P (r, n)

+ jP (r,m− 2)P (r, n+ 1) + kP (r,m− 2)P (r, n+ 2)

+ iP (r,m− 1)P (r, n− 1)− P (r,m− 1)P (r, n)

+ kP (r,m− 1)P (r, n+ 1)− jP (r,m− 1)P (r, n+ 2)

+ jP (r,m)P (r, n− 1)− kP (r,m)P (r, n)− P (r,m)P (r, n+ 1)

+ iP (r,m)P (r, n+ 2) + kP (r,m+ 1)P (r, n− 1)

+ jP (r,m+ 1)P (r, n)− iP (r,m+ 1)P (r, n+ 1)

− P (r,m+ 1)P (r, n+ 2)
)
.

By simple calculations and formula (6) we get

2r−1PQr
m−1PQr

n + 22r−2PQr
m−2PQr

n−1

= 2r−1P (r,m− 1)P (r, n) + 22r−2(P (r, m− 2)P (r, n− 1)

+ i
(
2r−1P (r,m− 1)P (r, n+ 1) + 22r−2P (r,m− 2)P (r, n)

)
+ j

(
2r−1P (r,m− 1)P (r, n+ 2) + 22r−2P (r,m− 2)P (r, n+ 1)

)
+ k

(
2r−1P (r,m− 1)P (r, n+ 3) + 22r−2P (r,m− 2)P (r, n+ 2)

)
+ i

(
2r−1P (r,m)P (r, n) + 22r−2P (r,m− 1)P (r, n− 1)

)
+ j

(
2r−1P (r,m+ 1)P (r, n) + 22r−2P (r,m)P (r, n− 1)

)
+ k

(
2r−1P (r,m)P (r, n+ 2) + 22r−2P (r,m− 1)P (r, n+ 1)

)
− 2r−1P (r,m)P (r, n+ 1)− 22r−2P (r,m− 1)P (r, n)

− 2r−1P (r,m+ 1)P (r, n+ 2)− 22r−2P (r,m)P (r, n+ 1)

− 2r−1P (r,m+ 2)P (r, n+ 3)− 22r−2P (r,m+ 1)P (r, n+ 2).

9
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Using formula (6) again, we obtain

2r−1PQr
m−1PQr

n + 22r−2PQr
m−2PQr

n−1

= 2
(
P (r,m+ n) + iP (r,m+ n+ 1) + jP (r,m+ n+ 2) + kP (r,m+ n+ 3)

)
− (

P (r,m+ n) + P (r,m+ n+ 2) + P (r,m+ n+ 4) + P (r,m+ n+ 6)
)

= 2PQr
m+n − P (r,m+ n)− P (r,m+ n+ 2) − P (r,m+ n+ 4)− P (r,m+ n+ 6).

Hence we get the result. �

The next theorem presents the ordinary generating functions for the P (r, n)-
-Pell quaternions.

������� 3.9� The generating function for the P (r, n)-Pell quaternion sequence
{PQr

n} is

g(t) =
PQr

0 + (PQr
1 − 2rPQr

0)t

1− 2rt− 2r−1t2
.

P r o o f. Let g(t) =
∑∞

n=0 PQr
nt

n. Then, by (3.1), we get

(1− 2rt− 2r−1t2)g(t) = (1− 2rt− 2r−1t2) · (PQr
0 + PQr

1t+ PQr
2t

2 + · · · )
= PQr

0 + PQr
1t+ PQr

2t
2 + · · ·

− 2rPQr
0t− 2rPQr

1t
2 − 2rPQr

2t
3 − · · ·

− 2r−1PQr
0t

2 − 2r−1PQr
1t

3 − 2r−1PQr
2t

4 − · · ·
Because the coefficients of tn for n ≥ 2 are equal to zero, we have

(1− 2rt− 2r−1t2)g(t) = PQr
0 + (PQr

1 − 2rJP r
0 )t.

Hence

g(t) =
PQr

0 + (PQr
1 − 2rPQr

0)t

1− 2rt− 2r−1t2
.

By (3) we obtain

PQr
0 = 2 + i(1 + 2r+1) + j(2r+1 + 2 · 4r)

+ k(2r−1 + 3 · 4r + 2 · 8r),

PQr
1 − 2rPSQr

0 = 1 + i2r + j(4r + 2r−1) + k(8r + 4r).

�
Remark 5� The generating function for the Pell quaternion sequence {PQn} is

g(t) =
PQ0 + (PQ1 − 2PQ0)t

1− 2t− t2
.

At the end, we give the matrix representation of the P (r, n)-Pell quaternions.
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ON SOME COMBINATORIAL PROPERTIES OF P (r, n)-PELL QUATERNIONS

������� 3.10� Let n ≥ 1, r ≥ 1 be integers. Then[
PQr

n+1 PQr
n

PQr
n PQr

n−1

]
=

[
PQr

2 PQr
1

PQr
1 PQr

0

]
·
[

2r 1

2r−1 0

]n−1

. (9)

P r o o f. (by induction on n) For n = 1 the result is obvious. Assume that the
formula (9) is true for n ≥ 1. We shall show that[

PQr
n+2 PQr

n+1

PQr
n+1 PQr

n

]
=

[
PQr

2 PQr
1

PQr
1 PQr

0

]
·
[

2r 1

2r−1 0

]n
.

Using induction’s hypothesis and formula (3.1), we have
[

PQr
2 PQr

1

PQr
1 PQr

0

]
·
[

2r 1

2r−1 0

]n−1

·
[

2r 1

2r−1 0

]

=

[
PQr

n+1 PQr
n

PQr
n PQr

n−1

]
·
[

2r 1

2r−1 0

]

=

[
2rPQr

n+1 + 2r−1PQr
n PQr

n+1

2rPQr
n + 2r−1PQr

n−1 PQr
n

]

=

[
PQr

n+2 PQr
n+1

PQr
n+1 PQr

n

]
,

which ends the proof. �

In the same way one can easily give the matrix representation of the r-Pell
numbers.

������� 3.11� Let n ≥ 1, r ≥ 1 be integers. Then[
P (r, n+ 1) P (r, n)

P (r, n) P (r, n− 1)

]
=

[
P (r, 2) P (r, 1)

P (r, 1) P (r, 0)

]
·
[

2r 1

2r−1 0

]n−1

.

Calculating the above determinants, we obtain Cassini’s identity (5) for the
r-Pell numbers. We have

det

[
P (r, n+ 1) P (r, n)

P (r, n) P (r, n− 1)

]
= P (r, n+ 1)P (r, n− 1)− P 2(r, n),

det

[
P (r, 2) P (r, 1)

P (r, 1) P (r, 0)

]
= det

[
2r+1 + 2 · 4r 1 + 2r+1

1 + 2r+1 2

]
= −1,

det

[
2r 1

2r−1 0

]n−1

=
(−2r−1

)n−1
.

Hence,
P (r, n+ 1)P (r, n− 1)− P 2(r, n) = (−1)n2(r−1)(n−1).
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