

ON THE DIOPHANTINE EQUATION $a^x + (a+2)^y = z^2$ WHERE $a \equiv 5 \pmod{42}$

Rakporn Dokchann¹ — *Apisit Pakapongpun^{1,2}

¹Department of Mathematics, Faculty of Science Burapha University, Chon buri, THAILAND

 $^2\mathrm{Centre}$ of Excellence in Mathematics, CHE, Sri Ayutthaya Road, Bangkok, THAILAND

ABSTRACT. In this paper, we show that the Diophantine equation

$$a^x + (a+2)^y = z^2,$$

where $a \equiv 5 \pmod{42}$ and $a \in \mathbb{N}$ has no solution in non-negative integers.

1. Introduction

In 1844, Catalan [1] conjectured that (3, 2, 2, 3) is a unique solution (a, b, x, y) for the Diophantine equation $a^{x} - b^{y} = 1,$

where a, b, x and y are integers such that $\min\{a, b, x, y\} > 1$.

In 2004, The Catalan's conjecture was proved by P. Mihailescu [2].

In 2011, A. Suvarmani [3] studied the Diophantine equation

$$2^x + p^y = z^2$$

where p is a prime number such that x, y and z are non-negative integers.

In 2013, B. Sroysang [4] showed that the Diophantine equation

$$5^x + 7^y = z^2$$

has no non-negative integer solution, where x, y and z are non-negative integers.

Later that same year, he proved [5,6] that the Diophantine equations

$$47^x + 49^y = z^2$$
 and $89^x + 91^y = z^2$

have no non-negative integer solution, where x, y and z are non-negative integers.

^{© 2020} Mathematical Institute, Slovak Academy of Sciences.

²⁰¹⁰ Mathematics Subject Classification: 11D61.

Keywords: Diophantine equation.

^{*}The corresponding author.

Licensed under the Creative Commons Attribution-NC-ND 4.0 International Public License.

RAKPORN DOKCHANN — *APISIT PAKAPONGPUN

In this paper, we will prove that the Diophantine equation

 $a \equiv 5 \pmod{42}$ and $a \in \mathbb{N}$,

has no solution in non-negative integers.

2. Preliminaries

LEMMA 2.1. If $5^x \equiv 5 \pmod{6}$, then x is odd.

Proof. Since $5 \equiv -1 \pmod{6}$, thus $5^{2n-1} \equiv -1 \pmod{6}$. Hence x = 2n - 1 is odd for all $n \in \mathbb{N}$.

LEMMA 2.2. If $a \equiv 5 \pmod{42}$ and x is odd, then

 $a^x \equiv 3 \pmod{7}$ or $a^x \equiv 5 \pmod{7}$ or $a^x \equiv 6 \pmod{7}$.

Proof. Since $a \equiv 5 \pmod{42}$, thus $a \equiv 5 \pmod{7}$ and x is odd, we can write x = 6n - 5 or x = 6n - 3 or x = 6n - 1, where $n \in \mathbb{N}$.

If x = 6n - 1 and since $a \equiv -2 \pmod{7}$, thus $a^{6n-6} \equiv 1 \pmod{7}$, hence $a^{6n-1} \equiv a^5 \equiv (-2)^5 \equiv 3 \pmod{7}$.

If x = 6n - 5 and since $a \equiv -2 \pmod{7}$, thus $a^{6n-6} \equiv 1 \pmod{7}$,

hence $a^{6n-5} \equiv a \equiv 5 \pmod{7}$.

If x = 6n - 3 and since $a \equiv -2 \pmod{7}$, thus $a^{6n-6} \equiv 1 \pmod{7}$,

hence $a^{6n-3} \equiv a^3 \equiv -8 \equiv 6 \pmod{7}$.

3. Main Results

THEOREM 3.1. The Diophantine equation $a^x + (a+2)^y = z^2$, where $a \equiv 5 \pmod{42}$ and $a \in \mathbb{N}$ has no non-negative integer solution such that x, y and z are nonnegative integers.

Proof. CASE I:

If y = 0, then we have the Diophantine equation $a^x + 1 = z^2$.

If x = 0, then $z^2 = 2$ which is impossible.

If x = 1, then $a + 1 = z^2 \equiv 6 \pmod{42}$ which is impossible.

If x > 1, then the Diophantine equation $z^2 - a^x = 1$ has no non-negative solution by the Catalan's conjecture.

CASE II:

If x = 0, then we have the Diophantine equation $(a + 2)^y + 1 = z^2$. If y = 0, then $z^2 = 2$ which is impossible. If y = 1, then $a + 3 = z^2 \equiv 8 \pmod{42}$ which is impossible. If y > 1, then the Diophantine equation $z^2 - (a + 2)^y = 1$ has no non-negative solution by the Catalan's conjecture.

CASE III:

If $x \ge 1$ and $y \ge 1$, then z is even. Thus

 $z^2 \equiv 0 \pmod{6}$ or $z^2 \equiv 4 \pmod{6}$.

Since $a+2 \equiv 1 \pmod{6}$. It follows that $a^x + (a+2)^y = z^2$ thus $a^x + 1 \equiv z^2 \pmod{6}$. Hence

$$a^x \equiv 5 \pmod{6}$$
 or $a^x \equiv 3 \pmod{6}$.

Note that $a \equiv 5 \pmod{6}$ thus $a^x \equiv 5^x \pmod{6}$ but $5 \equiv -1 \pmod{6}$, then $5^x \equiv \pm 1 \pmod{6}$. So,

 $5^x \equiv 1 \pmod{6}$ or $5^x \equiv 5 \pmod{6}$.

This implies that

 $a^x \equiv 5^x \equiv 5 \pmod{6}.$

Thus by Lemma 2.1 x is odd. Hence by Lemma 2.2 $a^x \equiv 3, 5, 6 \pmod{7}$. Since $(a+2)^y \equiv 0 \pmod{7}$ it follows that

$$z^2 \equiv 3, 5, 6 \pmod{7}.$$

This is a contradiction since

$$z^2 \equiv 0, 1, 2, 4 \pmod{7}$$
.

COROLLARY 3.2. The Diophantine equation

 $a^x + (a+2)^y = w^4$, where $a \equiv 5 \pmod{42}$ and $a \in \mathbb{N}$

has no non-negative integer solution such that x, y and w are non-negative integers.

Proof. Let $z = w^2$, then $a^x + (a+2)^y = z^2$. By theorem 3.1 the Diophantine equation $a^x + (a+2)^y = z^2$ has no non-negative integer solution. This implies that the Diophantine equation $a^x + (a+2)^y = w^4$ has no non-negative integer solution.

Acknowledgement. I would like to give thanks to Jatupat for helping with the submission process. This work is supported by Faculty of Science, Burapha University, Thailand.

RAKPORN DOKCHANN — *APISIT PAKAPONGPUN

REFERENCES

- CATALAN, E.: Note extraite d'une lettre adressée à l'éditeur par Mr. E. Catalan, Répétiteur à l'école polytechnique de Paris, Journal für die reine und angewandte Mathematik 27 (1844), 192–192.
- [2] MIHAILESCU, P.: Primary cyclotomic units and a proof of Catalan's conjecture, Journal für die reine und angewandte Mathematik 572 (2004), 167–196.
- [3] SUVARNAMANI, A.: Solutions of the Diophantine equation $2^x + p^y = z^2$, Int. J. Math. Sci. Appl 1 (2011), no. 3, 1415–1419.
- [4] SROYSANG, B.: On the Diophantine equation 5^x + 7^y = z², Int. J. Pure Appl. Math. 89 (2013), no. 1, 115–118.
- [5] SROYSANG, B.: On the Diophantine equation $47^x + 49^y = z^2$, Int. J. Pure Appl. Math. **89** (2013), no. 2, 279–282.
- [6] SROYSANG, B.: On the Diophantine equation $89^x + 91^y = z^2$, Int. J. Pure Appl. Math. 89 (2013), no. 2, 283–286.

Received October 7, 2019

Rakporn Dokchann Apisit Pakapongpun* Department of Mathematics Faculty of Science Burapha University postal 20130 THAILAND E-mail: rakporn@buu.ac.th

Apisit Pakapongpun* Department of Mathematics Faculty of Science Burapha University postal 20130 THAILAND E-mail: apisit.buu@gmail.com