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ON THE DIOPHANTINE EQUATION ax + (a+ 2)y = z2

WHERE a ≡ 5 (mod 42)
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ABSTRACT. In this paper, we show that the Diophantine equation

ax + (a+ 2)y = z2,

where a ≡ 5 (mod 42) and a ∈ N has no solution in non-negative integers.

1. Introduction

In 1844, Catalan [1] conjectured that (3, 2, 2, 3) is a unique solution (a, b, x, y)
for the Diophantine equation

ax − by = 1,
where a, b, x and y are integers such that min{a, b, x, y} > 1.

In 2004, The Catalan’s conjecture was proved by P. Mihailescu [2].

In 2011, A. Suvarmani [3] studied the Diophantine equation

2x + py = z2,

where p is a prime number such that x, y and z are non-negative integers.

In 2013, B. Sroysang [4] showed that the Diophantine equation

5x + 7y = z2

has no non-negative integer solution, where x, y and z are non-negative integers.

Later that same year, he proved [5,6] that the Diophantine equations

47x + 49y = z2 and 89x + 91y = z2

have no non-negative integer solution, where x, y and z are non-negative integers.
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In this paper, we will prove that the Diophantine equation

a ≡ 5 (mod 42) and a ∈ N,

has no solution in non-negative integers.

2. Preliminaries

����� 2.1� If 5x ≡ 5 (mod 6), then x is odd.

P r o o f. Since 5 ≡ −1 (mod 6), thus 52n−1 ≡ −1 (mod 6). Hence x = 2n− 1 is
odd for all n ∈ N. �
����� 2.2� If a ≡ 5 (mod 42) and x is odd, then

ax ≡ 3 (mod 7) or ax ≡ 5 (mod 7) or ax ≡ 6 (mod 7).

P r o o f. Since a ≡ 5 (mod 42), thus a ≡ 5 (mod 7) and x is odd, we can write

x = 6n− 5 or x = 6n− 3 or x = 6n− 1, where n ∈ N.

If x = 6n− 1 and since a ≡ −2 (mod 7), thus a6n−6 ≡ 1 (mod 7),

hence a6n−1 ≡ a5 ≡ (−2)5 ≡ 3 (mod 7).

If x = 6n− 5 and since a ≡ −2 (mod 7), thus a6n−6 ≡ 1 (mod 7),

hence a6n−5 ≡ a ≡ 5 (mod 7).

If x = 6n− 3 and since a ≡ −2 (mod 7), thus a6n−6 ≡ 1 (mod 7),

hence a6n−3 ≡ a3 ≡ −8 ≡ 6 (mod 7).

�

3. Main Results

����	�� 3.1� The Diophantine equation ax+(a+2)y=z2, where a ≡ 5 (mod 42)
and a ∈ N has no non-negative integer solution such that x, y and z are non-
negative integers.

P r o o f. Case I:

If y = 0, then we have the Diophantine equation ax + 1 = z2.

If x = 0, then z2 = 2 which is impossible.

If x = 1, then a+ 1 = z2 ≡ 6 (mod 42) which is impossible.

If x > 1, then the Diophantine equation z2 − ax = 1 has no non-negative
solution by the Catalan’s conjecture.
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Case II:

If x = 0, then we have the Diophantine equation (a+ 2)y + 1 = z2.

If y = 0, then z2 = 2 which is impossible.

If y = 1, then a+ 3 = z2 ≡ 8 (mod 42) which is impossible.

If y > 1, then the Diophantine equation z2 − (a+ 2)y = 1 has no
non-negative solution by the Catalan’s conjecture.

Case III:

If x≥1 and y≥1, then z is even. Thus

z2≡0 (mod 6) or z2≡4 (mod 6).

Since a+2 ≡ 1 (mod 6). It follows that ax+(a+2)y = z2 thus ax+1 ≡ z2

(mod 6). Hence
ax ≡ 5 (mod 6) or ax ≡ 3 (mod 6).

Note that a ≡ 5 (mod 6) thus ax ≡ 5x (mod 6) but 5 ≡ −1 (mod 6),
then 5x ≡ ±1 (mod 6). So,

5x ≡ 1 (mod 6) or 5x ≡ 5 (mod 6).

This implies that
ax ≡ 5x ≡ 5 (mod 6).

Thus by Lemma 2.1 x is odd. Hence by Lemma 2.2 ax ≡ 3, 5, 6 (mod 7).
Since (a+ 2)y ≡ 0 (mod 7) it follows that

z2 ≡ 3, 5, 6 (mod 7).

This is a contradiction since

z2 ≡ 0, 1, 2, 4 (mod 7).

�


�	����	� 3.2� The Diophantine equation

ax + (a+ 2)y = w4, where a ≡ 5 (mod 42) and a ∈ N

has no non-negative integer solution such that x, y and w are non-negative inte-
gers.

P r o o f. Let z = w2, then ax + (a + 2)y = z2. By theorem 3.1 the Diophantine
equation ax + (a + 2)y = z2 has no non-negative integer solution. This implies
that the Diophantine equation ax + (a + 2)y = w4 has no non-negative integer
solution. �
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