DOI: 10.2478/tmmp-2020-0030
Tatra Mt. Math. Publ. 77 (2020), 39-42

ON THE DIOPHANTINE EQUATION $a^{x}+(a+2)^{y}=z^{2}$ WHERE $a \equiv 5(\bmod 42)$

Rakporn Dokchann ${ }^{1}$ - *Apisit Pakapongpun ${ }^{1,2}$
${ }^{1}$ Department of Mathematics, Faculty of Science Burapha University, Chon buri, THAILAND
${ }^{2}$ Centre of Excellence in Mathematics, CHE, Sri Ayutthaya Road, Bangkok, THAILAND

ABSTRACT. In this paper, we show that the Diophantine equation

$$
a^{x}+(a+2)^{y}=z^{2}
$$

where $a \equiv 5(\bmod 42)$ and $a \in \mathbb{N}$ has no solution in non-negative integers.

1. Introduction

In 1844, Catalan [1 conjectured that $(3,2,2,3)$ is a unique solution (a, b, x, y) for the Diophantine equation

$$
a^{x}-b^{y}=1,
$$

where a, b, x and y are integers such that $\min \{a, b, x, y\}>1$.
In 2004, The Catalan's conjecture was proved by P. Mihailescu [2].
In 2011, A. Suvarmani [3] studied the Diophantine equation

$$
2^{x}+p^{y}=z^{2}
$$

where p is a prime number such that x, y and z are non-negative integers.
In 2013, B. Sroysang [4] showed that the Diophantine equation

$$
5^{x}+7^{y}=z^{2}
$$

has no non-negative integer solution, where x, y and z are non-negative integers.
Later that same year, he proved [5, 6] that the Diophantine equations

$$
47^{x}+49^{y}=z^{2} \quad \text { and } \quad 89^{x}+91^{y}=z^{2}
$$

have no non-negative integer solution, where x, y and z are non-negative integers.

[^0]In this paper, we will prove that the Diophantine equation

$$
a \equiv 5 \quad(\bmod 42) \quad \text { and } \quad a \in \mathbb{N}
$$

has no solution in non-negative integers.

2. Preliminaries

Lemma 2.1. If $5^{x} \equiv 5(\bmod 6)$, then x is odd.
Proof. Since $5 \equiv-1(\bmod 6)$, thus $5^{2 n-1} \equiv-1(\bmod 6)$. Hence $x=2 n-1$ is odd for all $n \in \mathbb{N}$.

Lemma 2.2. If $a \equiv 5(\bmod 42)$ and x is odd, then

$$
a^{x} \equiv 3 \quad(\bmod 7) \quad \text { or } \quad a^{x} \equiv 5 \quad(\bmod 7) \quad \text { or } \quad a^{x} \equiv 6 \quad(\bmod 7)
$$

Proof. Since $a \equiv 5(\bmod 42)$, thus $a \equiv 5(\bmod 7)$ and x is odd, we can write $x=6 n-5 \quad$ or $\quad x=6 n-3 \quad$ or $\quad x=6 n-1, \quad$ where $n \in \mathbb{N}$.

If $x=6 n-1$ and since $a \equiv-2(\bmod 7)$, thus $a^{6 n-6} \equiv 1(\bmod 7)$, hence $a^{6 n-1} \equiv a^{5} \equiv(-2)^{5} \equiv 3(\bmod 7)$.
If $x=6 n-5$ and since $a \equiv-2(\bmod 7)$, thus $a^{6 n-6} \equiv 1(\bmod 7)$, hence $a^{6 n-5} \equiv a \equiv 5(\bmod 7)$.
If $x=6 n-3$ and since $a \equiv-2(\bmod 7)$, thus $a^{6 n-6} \equiv 1(\bmod 7)$, hence $a^{6 n-3} \equiv a^{3} \equiv-8 \equiv 6(\bmod 7)$.

3. Main Results

Theorem 3.1. The Diophantine equation $a^{x}+(a+2)^{y}=z^{2}$, where $a \equiv 5(\bmod 42)$ and $a \in \mathbb{N}$ has no non-negative integer solution such that x, y and z are nonnegative integers.

Proof. CASE I:
If $y=0$, then we have the Diophantine equation $a^{x}+1=z^{2}$.
If $x=0$, then $z^{2}=2$ which is impossible.
If $x=1$, then $a+1=z^{2} \equiv 6(\bmod 42)$ which is impossible.
If $x>1$, then the Diophantine equation $z^{2}-a^{x}=1$ has no non-negative solution by the Catalan's conjecture.

ON THE DIOPHANTINE EQUATION $a^{x}+(a+2)^{y}=z^{2}$ WHERE $a \equiv 5(\bmod 42)$

Case II:

If $x=0$, then we have the Diophantine equation $(a+2)^{y}+1=z^{2}$.
If $y=0$, then $z^{2}=2$ which is impossible.
If $y=1$, then $a+3=z^{2} \equiv 8(\bmod 42)$ which is impossible.
If $y>1$, then the Diophantine equation $z^{2}-(a+2)^{y}=1$ has no non-negative solution by the Catalan's conjecture.

Case III:
If $x \geq 1$ and $y \geq 1$, then z is even. Thus

$$
z^{2} \equiv 0 \quad(\bmod 6) \quad \text { or } \quad z^{2} \equiv 4 \quad(\bmod 6) .
$$

Since $a+2 \equiv 1(\bmod 6)$. It follows that $a^{x}+(a+2)^{y}=z^{2}$ thus $a^{x}+1 \equiv z^{2}$ $(\bmod 6)$. Hence

$$
a^{x} \equiv 5 \quad(\bmod 6) \quad \text { or } \quad a^{x} \equiv 3 \quad(\bmod 6) .
$$

Note that $a \equiv 5(\bmod 6)$ thus $a^{x} \equiv 5^{x}(\bmod 6)$ but $5 \equiv-1(\bmod 6)$, then $5^{x} \equiv \pm 1(\bmod 6)$. So,

$$
5^{x} \equiv 1 \quad(\bmod 6) \quad \text { or } \quad 5^{x} \equiv 5 \quad(\bmod 6) .
$$

This implies that

$$
a^{x} \equiv 5^{x} \equiv 5 \quad(\bmod 6)
$$

Thus by Lemma $2.1 x$ is odd. Hence by Lemma $2.2 a^{x} \equiv 3,5,6(\bmod 7)$. Since $(a+2)^{y} \equiv 0(\bmod 7)$ it follows that

$$
z^{2} \equiv 3,5,6 \quad(\bmod 7)
$$

This is a contradiction since

$$
z^{2} \equiv 0,1,2,4 \quad(\bmod 7)
$$

Corollary 3.2. The Diophantine equation

$$
a^{x}+(a+2)^{y}=w^{4}, \quad \text { where } \quad a \equiv 5 \quad(\bmod 42) \quad \text { and } \quad a \in \mathbb{N}
$$

has no non-negative integer solution such that x, y and w are non-negative integers.
Proof. Let $z=w^{2}$, then $a^{x}+(a+2)^{y}=z^{2}$. By theorem 3.1 the Diophantine equation $a^{x}+(a+2)^{y}=z^{2}$ has no non-negative integer solution. This implies that the Diophantine equation $a^{x}+(a+2)^{y}=w^{4}$ has no non-negative integer solution.

Acknowledgement. I would like to give thanks to Jatupat for helping with the submission process. This work is supported by Faculty of Science, Burapha University, Thailand.

RAKPORN DOKCHANN — *APISIT PAKAPONGPUN

REFERENCES

[1] CATALAN, E.: Note extraite d'une lettre adressée à l'éditeur par Mr. E. Catalan, Répétiteur à l'école polytechnique de Paris, Journal für die reine und angewandte Mathematik 27 (1844), 192-192.
[2] MIHAILESCU, P.: Primary cyclotomic units and a proof of Catalan's conjecture, Journal für die reine und angewandte Mathematik 572 (2004), 167-196.
[3] SUVARNAMANI, A.: Solutions of the Diophantine equation $2^{x}+p^{y}=z^{2}$, Int. J. Math. Sci. Appl 1 (2011), no. 3, 1415-1419.
[4] SROYSANG, B.: On the Diophantine equation $5^{x}+7^{y}=z^{2}$, Int. J. Pure Appl. Math. 89 (2013), no. 1, 115-118.
[5] SROYSANG, B.: On the Diophantine equation $47^{x}+49^{y}=z^{2}$, Int. J. Pure Appl. Math. 89 (2013), no. 2, 279-282.
[6] SROYSANG, B.: On the Diophantine equation $89^{x}+91^{y}=z^{2}$, Int. J. Pure Appl. Math. 89 (2013), no. 2, 283-286.

Rakporn Dokchann
Apisit Pakapongpun*
Department of Mathematics
Faculty of Science
Burapha University
postal 20130
THAILAND
E-mail: rakporn@buu.ac.th
Apisit Pakapongpun*
Department of Mathematics
Faculty of Science
Burapha University
postal 20130
THAILAND
E-mail: apisit.buu@gmail.com

[^0]: (C) 2020 Mathematical Institute, Slovak Academy of Sciences.

 2010 Mathematics Subject Classification: 11D61.
 Keywords: Diophantine equation.
 *The corresponding author.
 Licensed under the Creative Commons Attribution-NC-ND 4.0 International Public License.

