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ABSTRACT. The paper deals with independent sequences with continuous as-
ymptotic distribution functions. We construct a compact metric space with Borel
probability measure. We use its properties to prove the central limit theorem for
independent sequences with continuous distribution functions.

Let N be the set of positive integers. We say that a set A ⊂ N has an asymp-
totic density if the limit

lim
N→∞

1

N
|A ∩ [1, N ]| := d(A) exists.

(|B| denotes the cardinality of the set B.) In this case, the value d(A) will be
called the asymptotic density of the set A. We shall denote D the system of all
subsets of N having an asymptotic density. If {v(n)} is a sequence, then for each
set S, we denote v−1(S) = {n ∈ N; v(n) ∈ S}. We say that real valued sequence
{v(n)} has an asymptotic distribution function if for each real number x the set
v−1((−∞, x)) belongs to D. In this case, the function

F (x) = d
(
v−1((−∞, x))

)
is called the asymptotic distribution function of the sequence {v(n)} (see [9],
[22] and [23]).
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Consider N ∈ N and a real sequence {v(n)}. Put

EN (v) =
1

N

N∑
n=1

v(n).

We say that {v(n)} has a mean value if the proper limit

E(v) := lim
N→∞

EN (v) exists.

E(v) is in this case called the mean value of {v(n)}. If {v(n)} is a bounded
sequence having asymptotic distribution function F , then the Weyl criterion
provides that {v(n)} has a mean value and

E(v) =

x2∫
x1

xdF (x).

Analogously in this case, there exists the dispersion of {v(n)}

D2(v) = E
(
(v −E(v))2

)
=

x2∫
x1

x2dF (x)−E(v)2.

The sequences {v1(n)}, {v2(n)}, {v3(n)}, . . . of elements of some interval
[x1, x2] are called statistically independent if for each k ∈ N we have

EN

(
f1(v1) . . . fk(vk)

)−EN

(
f1(v1)

)
. . . EN

(
fk(vk)

)→ 0

for N → ∞ for every real function f1, . . . , fk continuous on [x1, x2],
(see [21], [23]).

The aim of this paper is to prove the following

������� 1� Let {vi(n)}, i = 1, 2, 3, . . . be statistical independent sequences
of elements from the interval [0, 1]. Suppose that each of these sequences has con-
tinuous asymptotic distribution function F. Let E be the mean value of {vi(n)},
i = 1, 2, 3, . . . and D2 be the dispersion of these sequences. Denote

SN (x) =

{
n ∈ N;

∑N
i=1 vi(n)−NE√

ND
≤ x

}
, for N = 1, 2, 3, . . . (1)

Then for every x,N the set SN (x) has an asymptotic density and

lim
N→∞

d
(
SN (x)

)
=

1√
2π

x∫
−∞

e−
t2

2 dt.
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In the first part, we recall some facts on the uniform distribution in compact
spaces. Then, we define a metric on the set N such that the completion is a
compact space equipped with Borel probability measure. This metric will be
defined in a manner providing the uniform continuity of sequences {vi(n)}, i ∈ N.
These sequences can be extended to a continuous real function which allows
us to study them as random variables. Then, we apply the classical central
limit theorem. The definition of mentioned metric is inspired by the Novoselov’s
construction of the ring of polyadic numbers, (see [10], [11]).

Example 1.

1) If {vi(n)}, i ∈ N are van der Corput sequences with relatively prime bases,
then they are statistically independent. This result is proved in [20].

2) If 1 and θi, i ∈ N are algebraically independent over the field of rational
numbers, then the sequences of fractional parts {{θin}} are statistically
independent. This leads to the special case

3) If θ is a transcendent number, then the sequences {{θin}} are statistically
independent.

We start by a characterisation of statistical independence. Consider a se-
quence of vectors

{(
u1(n), . . . , uN(n)

)}
, where {ui(n)} are sequences of real

numbers. We say that this sequence has asymptotic distribution function if
for arbitrary real numbers x1, . . . , xN the set ∩N

i=1u
−1
i (−∞, xi) belongs to D

and in this case the function

F (x1, . . . , xN) = d

(
N⋂
i=1

u−1
i (−∞, xi)

)

is called the asymptotic distribution function of the vector sequence{(
u1(n), . . . , uN (n)

)}
.

By straight forward transcription of proof of Theorem 1 in [20], we get

���	�
���� 1� Assume that {u1(n)}, . . . , {uN(n)} are bounded sequences hav-
ing continuous asymptotic distribution function Fi, i = 1, . . .N, respectively.
Then these sequences are statistically independent if the vector sequence{(

u1(n), . . . , uN (n)
)}

has asymptotic distribution function

F (x1, . . . , xn), where F (x1, . . . , xN ) =

N∏
i=1

Fi(xi) for real numbers x1, . . . , xN .

In the following text, {vi(n)}, i = 1, 2, 3, . . . will be sequences fulfilling the
assumption of Theorem 1.
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From [20, Theorem 2 and Proposition 15] we can deduce

���	�
���� 2� For every N = 1, 2, 3, . . . , the sequence {v1(n) + · · ·+ vN (n)}
has a continuous asymptotic distribution function.

For the proof, we use the properties of sequences uniformly distributed in com-
pact space.

Uniform distribution on compact spaces

Let X be a compact metric space equipped with Borel probability measure P.
A sequence {x(n)} of elements of X is called uniformly distributed with respect
to P if and only if

lim
N→∞

EN

(
f(x)

)
=

∫
fdP

for each continuous real function f(x) defined on X, (see [9]).

Let N be the set of positive integers and (Ω, d) a compact metric space con-
taining N as a dense subset. Suppose that P is a Borel probability measure
defined on this metric space. Denote for S ⊂ N

ν∗(S) = P
(
cl(S)

)
,

where cl(·) is the topological closure in (Ω, d).

The set function ν∗ is a measure density, (see [18]), with the algebra of ν∗mea-
surable sets

Dν = {S ⊂ N; ν∗(S) + ν∗(N \ S) = 1}.

We recall that a sequence of real numbers {v(n)} is called uniformly continuous
with respect to the metric d if

∀ε > 0 ∃ δ > 0; d(n1, n2) < δ ⇒ |v(n1)− v(n2)| < ε.

In this case the sequence {v(n)} can be extended to a continuous real function ṽ
defined on Ω in the following way

ṽ(α) = lim
n→∞ v(sn),

where {sn} is a sequence of positive integers where sn → α with respect to the
metric d. We obtain from the continuity of ṽ that ṽ is measurable and so it can
be considered a random variable in the probability space Ω.

We say that a real valued sequence {v(n)} is ν∗measurable if and only for each
real number x the set v−1((−∞, x)) belongs to Dν∗ . In this case, the function
F (x) = ν

(
v−1((−∞, x))

)
is called ν∗-distribution function of {v(n)}.
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Analogously to the proof of Theorem 6, it can be proved that

������� 2� Let {v(n)} be a real valued sequence uniformly continuous with
respect to the metric d and F a continuous function defined on the real line.
The following assertions are equivalent:

i) {v(n)} is ν∗ measurable and its ν∗-distribution function is F.

ii) For each real number x we have ν∗
({n ∈ N; v(n) < x}) = F (x).

iii) F is the distribution function of the random variable ṽ.

As usual, we denote XS the indicator function of a given set S. Analogously,
as in [18, Theorem 6 on page 151], it can be proved

���	�
���� 3� A set S ⊂ N is ν∗ measurable if and only if the mean value
E
(XS(k)

)
exists for each sequence of positive integers {kn} uniformly distributed

in Ω with respect to P. In this case E
(XS(k)

)
= ν(S).

We can derive the Weyl criterion from this in a standard way

���	�
���� 4� A bounded real sequence {v(n)}, contained in the interval
[x1, x2] has ν

∗-distribution function F, where F is a continuous function on the
real line if for each sequence of positive integers {kn} uniformly distributed in Ω
with respect to P we have

lim
N→∞

EN

(
g
(
v(kn)

))
=

x2∫
x1

g(x)dF (x)

for each continuous real function g defined on [x1, x2].

This leads to

���	�
���� 5� Let F be a continuous function defined on the real line. If
the sequence {n} is uniformly distributed in Ω with respect to P, then uniformly
continuous real sequence {v(n)} has ν∗-distribution function F if and only if it
has asymptotic distribution function F.

Theorem 2 implies

���	�
���� 6� Under the assumptions of Proposition 5, we have that the
random variable ṽ has distribution function F.
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As usual, we say that ν∗-measurable sequences {v1(n)}, . . . , {vN (n)} are
ν∗-independent if and only if for arbitrary real numbers x1, . . . , xN we have that

v−1
1 ((−∞, x1)) ∩ · · · ∩ v−1

N ((−∞, xN )) ∈ Dν

and

ν

⎛
⎝ N⋂

j=1

v−1
j ((−∞, xj))

⎞
⎠ =

N∏
j=1

ν(v−1
j ((−∞, xj)). (2)

A ν∗measurable sequence {v(n)} such that its ν∗ distribution function is con-
tinuous is called continuously distributed.

������� 3� Let {vj(n)}, j = 1, . . . , N be ν∗-continuously distributed sequences
uniformly continuous with respect to d. Then these sequences are ν∗-independent
if and only if random variables ṽ1, . . . , ṽN are independent.

Construction of a compact space

Let {v1(n)}, . . . , {vj(n)}, . . . be statistically independent sequences of ele-
ments of [0, 1] having continuous asymptotic distribution function F. Without
loss of generality, we can assume that it holds for n, n′ ∈ N

n = n′ ⇐⇒ ∀j ∈ N; vj(n) = vj(n
′). (3)

Denote

I
(m)
i =

[
i

2m
,
i+ 1

2m

)
, i = 1, . . . , 2m − 2, I

(m)
2m−1 =

[
2m − 1

2m
, 1

]
,

where m = 1, 2, 3, . . .

Denote

E
(m)
i1,...,im

=

m⋂
k=1

v−1
k

(
I
(m)
ik

)
, 0 ≤ i1, . . . , im ≤ 2m − 1. (4)

Clearly, every set E
(m)
i1,...,im

has an asymptotic density and

d
(
E

(m)
i1,...,im

)
=

m∏
j=1

(
F

(
ij + 1

2m

)
− F

(
ij
2m

))
, 0 ≤ i1, . . . , im ≤ 2m − 1. (5)

Let Em be the system of all sets of the form (4) for m ∈ N. This system of sets
forms a decomposition of N. Put ψm(a, b) = 0 if a, b belong to the same set from

Em and ψm(a, b) = 1, otherwise.

Put

d(a, b) =

∞∑
m=1

ψm(a, b)

2n
. (6)
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P r o o f o f T h e o r e m 1. It is proved in [8] that:

1� (N, d) is a totally bounded metric space.

Denote (Ω, d) the completion of (N, d). Let us remark that we denote the
extension of metric d by the same symbol. We have

2� The metric space (Ω, d) is compact.

���	�
���� 7� Each sequence {vm(n)},m ∈ N is uniformly continuous with
respect to the metric d.

P r o o f. Let n > m. If d(a, b) < 1
2n , then (6) implies that a, b ∈ E for suitable

E ∈ En+1 thus a, b ∈ v−1
m (I

(n+1)
j ) for some j and so

vm(a), vm(b) ∈ I
(n+1)
j therefore |vm(a)− vm(b)| ≤ 1

2n+1
. �

Let Y be the set algebra generated by
∞⋃

m=1

Em,

then Y ⊂ D and Δ = d|Y is a finitely additive probability measure on Y.
Put ν∗(S) = inf{Δ(A);S ⊂ A ∧A ∈ Y}.
The following is proved in [8] (see also [18])

3� For S ⊂ N, there exists such Borel probability measure P defined on Ω that

ν∗(S) = P
(
cl(S)

)
.

Clearly,

4� Dν ⊂ D and ν(S) = d(S) for S ∈ Dν .

For each set E ∈ Em,m = 1, 2, 3, . . . the set cl(E) is closed and open (see [8])
and so

5� cl(E) ∩ N = E.

This yields

6� E(Xcl(E)) = d(E).

Since every continuous real function ṽ can be uniformly approximated by the
step functions 2m∑

j=1

cjXcl(Ej), where Ej ∈ Em,
from 6, we get that

lim
N→∞

EN (ṽ) =

∫
ṽdP.
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Thus

7� The sequence {n} is uniformly distributed in Ω with respect to P.

Let us define the sequence {wN (n)}, where

wN (n) =

∑N
i=1 vi(n)−NE√

ND
for N = 1, 2, 3, . . .

The sequences {vi(n)} are uniformly continuous with respect to the metric d
and so {wN (n)} is uniformly continuous, too. Clearly,

w̃N =

∑N
i=1 ṽi −NE√

ND

The random variables ṽi, i = 1, 2, 3, . . . are independent and have the same
distribution function F. The classic central limit theorem gives

lim
N→∞

P (w̃N ≤ x) =
1√
2π

x∫
−∞

e−
t2

2 dt. (7)

Clearly,
SN (x) = {n ∈ N; wN (n) ≤ x}.

Proposition 2 yields that the sequence {wN (n)} has continuous asymptotic dis-
tribution function for N = 1, 2, 3, . . . And so, from Proposition 5 we have that
the set SN (x) is ν∗-measurable and its ν∗-distrubution function coincides with
its asymptotic distribution function and so

ν
(
SN (x)

)
= d
(
SN (x)

)
.

Theorem 2 yields d
(
SN (x)

)
= P

(
w̃N ≤ x

)
. And so from (7) we get Theorem 1.

�
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