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FUZZY SETS AND PROBABILITY THEORY

RADKO MESIAR

1. Introduction

The background of classical probability theory is based on the axiomatic
model of Kolmogorov, where events are understood as Cantorian subsets of
a given universe X . These events form a ¢-algebra .A. The probability P
is presented as a real-valued set function defined on A fulfilling the bound-
ary conditions, P(#) = 0 and P(X) = 1, and the o-additivity property, i.e.
P(|JA.) = ZP(A,) for any sequence of mutually exclusive events {An} C 4.
Generalizing the boundary condition P(X) = 1 we get the notion of a measure.
One important branch of the “fuzzy” theory deals with further generalizations
of the probability P (and possibly of the o-algebra A), while the concept of
Cantorian subsets remains unchanged. This direction is not the main topic of
this paper. However, we discuss some of such generalizations in Section 2.

Fuzzy sets were introduce by Zadeh in 1965 [40] as a generalization of
Cantorian sets (represented by their characteristic functions) to be functions
from the universe X into the unit interval [0,1]. We will omit the other possible
generalizations (for a deeper review on fuzzy set theory and its applications see,
e.g., [27]). The extension of operations of intersection, union and complementa-
tion in ordinary set theory to fuzzy sets is usually done pointwise - one considers
two twoplace functions T : [0,1] x [0,1] — [0,1], S : [0,1] x [0,1] — [0,1] and
a oneplace function ¢: [0,1] — [0, 1] and extend them in the usual way:

if A,B are two fuzzy subsets of X , then for any z € X we put

(AN B)(z) = T(A(z), B(z)),
(AU B)(=) = S(A(x), B(2)),
A(z) = c(A(z)).
According to some natural requirements T becomes a triangular norm of
Schweizer and Sklar [30]. Similarly S is a triangular conorm. T and

S are discussed in Section 3. The complementation function ¢ and its connec-
tions with T' and S are discussed in Section 4. Note that element dependent
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intersections and unions were studied by Klement [12] in a category frame-
work; similarly L o w en [16] studied the element-dependent complementations.
Throughout this paper, we deal with pointwise defined fuzzy connectives only.

A couple (X, A), where A is a o-algebra of Cantorian subsets of the uni-
verse X , forms a classical measurable space. In Section 5, we discuss several
fuzzy generalizations of a measurable space such as generated fuzzy algebras
(tribes), fuzzy o -algebras, T -tribes or g- T -tribes. After a short review of this
topic we present some recent results and open problems.The last Section 6 deals
with measures of fuzzy events (fuzzy probability measures, T -measures, L-
decomposable measures etc.). Again it includes a historical review, some latest
results and some open problems. '

2. Fuzzy measures

Fuzzy measures were first introduced by Sugeno [35] in 1974 in his Ph.D.
thesis. A fuzzy measure is a set function defined on a system D of Cantorian
subsets of a universe X (for X finite, D is usually taken to be the power set of
X, D = 2% ). The only necessary condition for D is that it includes the empty
set, § € D.Often D is supposed to be a o -algebra. A fuzzy measure m : D — R
(R is the real line) fulfills the following conditions:

1) m()=0,

2) AJBeD,ACB=m(A) <m(B), :

3) for monotone sequences {Ap}nen C D,limA, = A € D implies
limm(4,) = m(4). ’

Condition 3) is rather strong—e.g., a lot of possibility measures do not fit
the continuity from above. This is the main reason why in later papers the con-
tinuity condition is omitted, see, e.g., [22, 23, 24]. Hence now a fuzzy measure
is a monotone set function on D vanishing in the empty set, i.e. a fuzzy mea-
sure fulfills 1) and 2). If additionally the condition 3) is fulfilled, m is called a
continuous fuzzy measure. The integration with respect to a fuzzy measure is
provided using the Choquet integral,

©)- [ sim= 7m(f > r)dr,

where f is a nonnegative D-measurable function and the right-hand side inte-
gral is an ordinary Lebesque integral. Note that in 1978, Sip o 5 [32] introduced
an integration theory with respect to a pre-measure, which is independent of both
Lebesque and Choquet integrals. A premeasure coincides with a fuzzy measure
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and the Sipos integral is a generalizﬁtion of the Choquet integral (it is defined
for any measurable function under some natural restrictions). For more details
see, e.g., [32, 33, 34].

A large class of fuzzy measures posses some pseudo-additivity property, i.e.,
there is a pseudo-addition @ such that for disjoint events 4 and B, A, B,
AUB € D, we have m(A U B) = m(A) ® m(B). Often the continuity from
below is supposed to be satisfied by m. Take, e.g., ® = sup (supremum). Then
we get a possibility measure. Pseudo-additive measures in a general framework
were studied, e.g., by Murofushi and Sugeno [23] in 1987. Their integral
is built similarly as the Lebesque integral, starting from simple functions and
using the usual limit procedure. Some interesting result concerning this topic
can be found, e.g., in [14].

If a pseudo-addition @ is generated by an additive generator g, then (fol-
lowing Weber [38]) we will denote it by L (see also Sections 4 and 6). The corre-
sponding pseudo-additive measures are called | -decomposablée measures. They
form a proper subfamily of pseudo-additive measures and they were introduced
by Weber [38] in 1984. Weber’s integral with respect to a L -decomposable
measure is based on the Lebesque integral with respect to gom. If gom is
an ordinary finite ¢ -additive measure, then Weber’s approach coincides with
that of Murofushi and Sugeno. Some more details can be found, e.g., in [22]. A
similar but slightly modified approach was used also by P ap [28].

The last, most general integral with respect to a fuzzy measure was introduced
by Murofushi and Sugeno in 1991 [26]. Under some restrictions on the range of
furictions and measures this integral includes both the Choquet integral and the
Sugeno integral [35].

3. Triangular norms and conorms

The problem of finding appropriate connectives for the union and intersection
of fuzzy sets has turned out to be an important issue from several points of view.
At the fundamental level it must be solved in order to provide a sound basis
to fuzzy set theory. The choice of a functional representation of a set-theoretic
operation must be justified not only empirically but also axiomatically. Actually,
most results on fuzzy set-theoretic operations are nothing but reinterpretation
of results on functional equations (especially the associativity equations).

Let the intersection N and the union U of fuzzy sets be defined pointwise
by means of binary operations T' and S on the unit interval [0,1]. It is natu-
ral to require the commutativity, the associativity and the monotonicity (non-
decreasingness) of both intersection and union, and hence of both T and S.
Further, we put T'(a,1) = e (this corresponds to ANX = A in the ordinary set
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theory) and S(0,a) =a (from AU@ = A) for any a € [0,1]. But then T isa
triangular norm, shortly a t-norm. Similarly, S is a triangular conorm, shortly
a t-conorm. Note that the concept of a triangular norm goes back to 1942 to
Menger [17], and it was introduced in the present form by Schweizer
and Sklar in 1960 [30].

Let T be a given t-norm. Then
St(a,b) =1-T(1-aqa,1-1b)

defines a t-conorm St . In the same way, any t-conorm S induces a t-norm T
There holds T T and ST = §, i.e., there is a one-to-one correspondence
between t—norms and t-conorms. A couple (T',S), where S = Sr (or equiv-
alently T = %‘) is called a pair of dual t-norm and t-conorm. Given a t-norm

T and its dual t-conorm S their associativity allows to extend them to n-ary

operations on the unit interval. There holds that ST a; =1 — T { 1 - a;). For

any sequence {a;}nen in [0,1] the sequence {T1 a;} is nonincreasing; therefore
i=
its limit '.E'N an always exists. Again the duality of T and S is preserved. If no
n B
confusion is possible, we will use a shorter notation form T a, and Sa,.

In what follows we will deal only with (Borel-)measurable t-norms and t-
conorms. A t-norm T is called strict if it is continuous and strictly increasing,
ie. T(a,b) < T(a,c) for any a € ]0,1] whenever 0 < b < c < 1. T is called

n
Archimedean if for any a,b € ]0,1[ there is an integer n such that T1 a; < b,
=

where a¢; = @, i = 1,2,1..,n. I T is continuous, then it is Archimedean if
and only if T(a,a) < a for any a € ]0,1[. A dual of a strict (Archimedean)
t-norm is called a strict (Archimedean) t-conorm. It is evident that any strict t-
norm is Archimedean t-norm, too (the opposite implication is false). Continuous
Archimedean t-norms which are not strict are called nilpotent. Note that t-norms
and t-conorms are widely used not only in the probabilistic metric theory and
the fuzzy set theory, but also in the evaluation procedures for weights in the
artificial intelligence.

There are many examples of t-norms and t-conorms. A most complete list of
them is contained in Mizumoto’s paper [21] from 1989. As dual t-conorms
are easy to be derived from their corresponding t-norms, we give some examples
of t-norms only.

A most important family of t-norms is the Frank family of fundamental t-
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norms {fg",s € [0, 00]}, see [6]:

T(a,b) = min(a,b), if s=0,
= a.b, it 5=,
=max(0,a + b - 1), if i g =0,

=log(l+(s® = 1)-(s* = 1)/(s — 1)), otherwise.

Note that Slo‘ and its dual Sy lead to the originally Zadeh fuzzy intersection and
union. f{' is product and 8, is the probabilistic sum (5,(a,b) = a+b—a-b), g;
is the bounded (bold) product and S, is the bounded (bold) sum. All '.'E“ are
continuous, %” is the only non-Archimedean fundamental t-norm, ‘_;l; is the only
nilpotent (i.e. Archimedean nonstrict) fundamental t-norm, all 13" for s €]0,00[
are strict t-norms. Frank’s family is continuous in the sense that 11_132" = 1: :

Further, this family is decreasing, i.e., T > fi:‘ whenever s < t. Each dual pair
a

(T, S,) satisfies the functional equation

T(a,b)+ 8(a,8) = a+b° . farany a,bel0,1]. (1)

Another important t-norm is T,
w

Z}’(a', b) = min(a,b), if max(a,b)=1,

=0, otherwise.

T is Archimedean, but it is not continuous. It is the “smallest” t-norm, and the
w
fundamental t-norm %‘ is the “largest” t-norm, i.e., for any t-norm 7' we have

Tgng.

w

The only strict t-norms which can be expressed as rational functions were found
by Hamacher [7]:

a.b

LGMJ)=T+(1—7Xa+b—awY

¥ 20.

Note that H; = ‘.'F and that lim H,=T.
w

y—+co
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Other interesting families of t-norms are, e.g., Yager’s nilpotent t-norms [39],
Y,(a,b) = max(ﬂ,l —(1-a)?+(1- b)ﬂ)%) , . 0<g<eo

(hete Yi =T, ¥o = lim¥, = T, Yoo = lim ¥, = T), and the family of
co g—0 w g—o00 " 1]

Dubois and Prade [5] of non-Archimedean continuous t-norms

D —aa,b) =a-bja if a,b<a

=min(a,b)  otherwise ,a €[0,1]

(here Dy =T and D, = hm D, = T)

The only dlstnbutwe duai pair (T, S) (i.e. for any triple A, B, C of fuzzy
subsets of a universe X there holds AU(BNC) = (AUB)N(AUC) and
AN(BUC)=(ANB)U(ANC), where N and U are induced by T and §)is
( %‘, So). It means that only the original Zadeh’s fuzzy intersection (=min) and

union (=max ) satisfy the distributivity properties.
The following results on the structure of t-norms (and by duality of t-
conorms) are based mostly on the resultsof Aczel [1]and Ling [15].

THEOREM 3.1. Any strict t-norm T is isomorphic to the product %‘, ie.,

there is a continuous strictly increasing function (a multiplicative generator)
$:[0,1] = [0,1], $(0) =0, $(1) =1, such that

T(a,b) = 47 (¢(a) - ¢(b))-

Similarly any strict t-conorm S is isomorphic to the probabilistic sum S, _
" Si(a,b)=a+b—a-b. . (I

Note that ¢", r > 0, induces the same T as ¢ does. If we put f(z) =
—log(#(z))., then any stnct t-norm T can be represented in the following form:

T(a,b) = f7'(f(a) + £(b)) ,

where f : [0,1] — [0,c0] (continuous, strictly decreasing, f(0) = +o0, f(1) =
0) is called an additive generator of 7. Similarly any strict t-conorm § is
generated by an additive generator h : [0,1] — [0,00] (continuous, strictly
increasing, h(0) =0, A(l) = +o0), S(a,b) = A~ (h(a) + h(b)).

If T and S form a dual pair and if f is an additive generator of T, then
h(z) = f(1—=2) is an additive generator of S. Note that the additive generators
are determined uniquely by T'(S) up to a positive multiplicative constant.
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Some examples:
1) for Frank’s family {‘.'.:’} we have ¢s(z) = (s* —1)/(s — 1) ; fo(z) =
log((s — 1)/(s® = 1)) for s €10,1[U]1,00[; ¢1(z) = = and fi(z) =
—logz.

2) for Hamacher’s family {H,} we have ¢,(z) = —; Folz) =

'r+( — ) .
log(v/z +1~7) for v €]0,00[; do(z) = exp(==L) and fo(z) = ——

THEOREM 3.2. Nilpotent t-norms (t-conorms) are isomorphic to the bold
(bounded) product T (bold (bounded) sum S ). O

Similarly as strict operations are, also nilpotent operations are generated by
additive generators. While for strict operations these generators are unbounded,
for the nilpotent operations the additive generators are bounded. But then we
have to replace the inverses of generators by their quasi-inverses. Any nilpotent
t-norm T is generated by a continuous strictly decreasing generator f: [0,1] —
[0,M], M €]0,00[, via

——1

T(a,b) = f (f(a) + f(3)),
where f~1(z) = f~!(min(M, :r)) for z € ]0, co[. Note that the bounded product
g; is generated by f(z) =1—=z, z € [0,1]. Similarly any nilpotent t-conorm S

is generated by an increasing continuous generator h : [0,1] — [0, M] via
S(a,b) = k7 (h(a) + h(D)),

where h~(z) = h~!(min(M, z)), z € ]0,00[. The bounded sum S, is gener-
ated by h(z) =z, z € [0,1]. Again the generators are unique up to a positive
multiplicative constant and the duality of t-norms and t-conorms corresponds
to the duality of generators (h(z) = f(1 — z)).

EXAMPLE. For the Yager family of nilpotent t-norms {¥,} we have

fq("-') — (1 % z)q=z € [011]=g € ]0700[ .

Of course, non-Archimedean t-norms (t-conorms) are not generated—this is,
e.g., the case of {Dys}, a € [0,1[. The same is true for non-continuous t-norms
(t-conorms), such as T'. From the practical point of view, the most important

w

t-norms and t-conorms are those which are continuous. Their structure is fully
described by the follovnng result of Alsina, Trillas and Valverde [2]
from 1983. :
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THEOREM 3.3. T is a continuous t-norm if and only if T' is an ordinal sum
of continuous Archimedean t-norms {(’{;},—E;, i.e., there is a mutually disjoint

system {]e,Bi[},., of open subintervals of the unit interval [0,1] such that

T(a,b) = ai + (i — i) - T((a - @i)/(Bi — i), (b= @) [ (Bi = ), (2)
if both a and b are contained in some a;, B,
= min(a, b), otherwise.
O

Let f; be an additive generator of T' for ¢ € I'. Denote by p; a continuous

1
strictly decreasing function on [a;, #;] defined through

pi(z) = fi((z — i) /(Bi — @),

and by ;™!

its inverse (quasi-inverse) defined through
B, (z) = ai + (B — ai) - f7 (min(z, £:(0)), = € [0,00].
Then the ordinal sum (2) can be rewritten in the next form:
T(a,b) = 5; '(p(a) + p(b)),  if a,b € Jai, Bi] for some i € I,

= min(a, b), otherwise.

The representation of continuous t-norms (or by duality of continuous t-conorms)
allows to extend T'(S) even for uncountably many arguments {a, }uev ,

L= ot Ulensl
* = ay, if i‘éﬁ“" € Jei, B for some : € I and

Ui={ueU,ay € ]a;,fi[} isuncountable |,

u_’gu ay, if '}xét[; ay € |a;, 5[ and U; is countable . .

Remark 3.1. Frank [6] proved that the only dual pairs (T, S) of con-
tinuous t-norms and t-conorms solving Eq.(1) are the fundamental t-norms T'
. 3

and their ordinal sums together with corresponding dual t-conorms. The only
continuous Archimedean solutions of Eq.(1) are just (T, S,) for s €]0,00].
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"4. Complementations

Let a complementation operation on fuzzy sets be pointwisely defined by
a mapping ¢ : [0,1] — [0,1]. Bellman and Giertz [3] suggested the
following axioms as being natural for mapping ¢, which will be also called a
complementation:

(C1) ¢(1) =0 and ¢(0)=1

(C2) c is a strictly decreasing continuous mapping

(C3) c is involution, i.e. ¢(c(a)) = a for any a € [0,1].

If only (C1) and (C2) are fulfilled, then ¢ is called a negation. Trillas [36] in
1979 has solved the functional equations (C1)-(C3).

THEOREM 4.1. A mapping ¢: [0,1] — [0,1] is a complementation if and only
if there is a continuous increasing generator g : [0,1] — [0,1], ¢(0) = 0 and
. g(1) =1, such that .
c(a)=97'(1-g(a)),a €[0,1].

O

Hence any complementation ¢ is isomorphic to ¢*, ¢*(a) = 1 — a, which
induces the original Zadeh fuzzy complementation A" = 1—A. Note hat any con-
tinuous increasing function g with g(0) = 0 can be taken as a complementation

_generator. If g(1) differs from 1, we use the formula ¢(a) = g7*(g(1) —g(a)) . A
complementation generated by a generator g will be denoted by ¢, . Hence ¢* =
¢i, where i is the identity on [0,1]. The crossover point s, (co(se,) =5c,)is
defined by g=(1/2) (or by g7*(g(1)/2)). For a given complementation ¢, the
corresponding generator ¢ may be chosen arbitrarily on [0,s.] (g(0) =0, g-is
continuous and increasing). On |s¢, 1], ¢ is defined by g(z) = 1 — g(c(z)) . For

. example, Zadeh’s complementation ¢* is generated not only by the identity ¢
on [0,1], but also by g(z) =1 — cos(Ilz). '

Sugeno [36] introduced a class of complementations {cx}a>-1, €x(a) =

,1_;';‘, : N?te that these are the unique rational complementations. Sugeno’s com-

plementations are generated, e.g., by - _
ga(z) =log(1 + Az)/log(l+A), A>-1, A0, =ze]0,1].
If we take g(z) = z?, then the corresponding complementation is
cy(a) =(1-a?)'/2,

Any complementation ¢ establishes a one-to-one correspondence between
t-norms and t-conorms in a similar way as Zadeh’s complementation e*. A
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couple (T, S) is called a pair of g-dual t-norm and t-conorm, if § = S[f.’) , L.e.
S(a,b) = ¢, (T(cg(a,),cg(b))) for any a,b € [0,1]. It is evident that then T =

(a)
J;", ie. T(a,b) = ¢, (S(cg(a),cy(b}}). Further note that ¢-duality preserves

continuity, strictness and Archimedean property. Hence a given couple (T, S)
need not be a g-dual pair for any g. The same is true.even if both T and
S are strict. On the other hand, there are some T' and S, which are dual for
more complementations. The pairs (%‘, Sg) and (%’,Sw) (i.e. the limit cases)

are g-dual for any g. Hamacher’s t-norm Hj induces the same t-conorm using
any of Sugeno’s complementations ey, A > —1.

From now, if we will speak about fuzzy sets, we will define the fuzzy con-
nectives pointwisely by a complementation operator ¢, and by a pair of g-
dual t-norm T and t-conorm S. Hence the De Morgan laws will be fulfilled,
(AUB)°=A°NB° and (ANB)° = A°U B°.

Let g be an additive generator on [0,00], i.e. g is a continuous strictly in-
creasing function, ¢(0) = 0 and g(co) = co. Then ¢/[0,1] is a complementation
generator, ¢g(a) = g7'(g(1) — g(a)) for a € [0,1]. Further, ¢ induces a pseudo-
addition @, On [0,00] via

udyv=g"(g(u) +9(v)), u,v € [0,00].

If g = i is the identity, then this pseudo-addition turns to be an ordinary
addition on [0, c0]. We have proved the following result [19]:

THEOREM 4.2. The only continuous ¢ -dual solutions (T, S) of the functional
equation,

T(a,b) ®, S(a,b)=adyb
are the pairs of g -findamental t-norms and t-conorms {(T,S,,)}, s € [0,0],
8,9

and their ordinal sums,where ;l;(a,'b) = g_l(f.‘l:(g(a),g(b))) and
Sas(a,8) = 97 (Sa(9(a),9(®)) . D

Recall that 1; = ?, , € [0,00], are Frank’s fundamental t-norms. Further,
él; = f‘l]‘ and So,4 =Sy for any g.

The majority of notions and results for a general complementation ¢ = Cq
differs from those for Zadeh's complementation ¢* = ¢; only by the transforma-
tion g (see, e.g., [18]). This is the reason why the mostly used complementation
is original Zadeh’s c*.
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5. Fuzzy tribes

The generalization of Cantorian subsets to the fuzzy subsets (of a universe
X ) have brought on the problem of generalization of the measurability concept.
In short, how to generalize the ¢-algebras in the fuzzy theory? In his pioneer
work from 1965 [40], Zad eh dealt with the system F(X) of all fuzzy subsets
of X, i.e. with the power set, F(X) = [0,1]% . In 1968 [41], Zadeh introduced
a generated fuzzy o -algebra. Let (X,.A) be a classical measurable space, i.e.
A is a o -algebra of crisp subsets of X . The system F(A) of all .A-measurable
fuzzy subsets of X is called a generated fuzzy o-algebra, or a generated tribe.
Its members are called fuzzy events. It is obvious that F(A) is closed under any
complementation of fuzzy subsets. However, it might not be closed under fuzzy
unions (intersections) induced by a t-conorm § (t-norm T'), see e.g [11]. The
measurability of S ( and hence of its dual T') excludes this failure. This is the
reason why we will deal with 'measurable t-conorms and t-norms only.
In 1979, Khalili [8] defined first axiomatically a fuzzy o-algebra T C
F(X) as a system of fuzzy subsets of X fulfilling the next axioms:
Al) Ox e,
A2) A€r7 implies A'=1-Aer,

A3) {An}nen C 7 implies sup A, (= Sed.) €.
neN

Note that for a constant a € [0,1], ax denotes a constant fuzzy subset of
X, ax(z) = a for any ¢ € X. It is evident that the Khalili approach is a
straightforward generalization of the notion of a o -algebra.

Klement [9]in 1980 defined a fuzzy o -algebra in a similar way as Khalili,
only the first axiom was stronger, namely i

Al *) for any @ € [0,1], ax € 7. Note that after some time, Khalili’s ap-
proach was adopted in the fuzzy probability theory. In 1982, Klement [11] in-
troduced a notion of a T'-fuzzy o -algebra. Nowadays, it is called a T -#ribe,
see, e.g., [4]. Let T' be a t-norm and let § be its dual t-conorm. A fuzzy o-
algebra 7 is closed under Zadeh's fuzzy unions (i.e. under, Sy ) and hence under
the corresponding fuzzy intersection (i.e. under %’ ). Let T' be a t-norm and let

S be its dual t-conorm. A T'-tribe 7 C F(X) fulfills the axioms A1) and A2)
and is closed under (countable) fuzzy intersection induced by T' (we will denote
this fuzzy intersection also by T'). By the duality and A2), 7 is closed under
(countable) fuzzy union S, too. Hence a T'-tribe  fulfills A1), A2) and A3*),

A3*) {An}nen C 7 implies (S4,)erT.
In this notation, Khalili’s fuzzy o -algebras correspond to the 'IU"—tribes.

The second axiom A2) can be generalized replacing Zadeh’s complementation
¢* by a general complementation ¢ = ¢, (then T and S are supposed to be
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g-dual),

A2*) Aer implies A°=¢(A)ET .

A system r C F(X) fulfilling A1), A2*) and A3*) is called a g-T -tribe, see,
e.g., [19]. :

In 1985, Piasecki [29] introduced the concept of a soft fuzzy o -algebra
M. M is supposed to be Khalili’s fuzzy o -algebra, i.e., it fulfills A1) — A3).
Piasecki defined a W-empty set A € M as a fuzzy subset fulfilling A < A’ (i.e.,
A is contained in its complement). Similarly a W-universe B € M contains its
complement, i.e. B > B’. It wouldn’t be sound to admit the existence of such
elements in M, which are simultaneously a W -empty set and a W-universe.
This idea led Piasecki to the fourth axiom for soft fuzzy o -algebras, namely

A4) (1/2)x ¢ M. _
Now, we recall some results for T-tribes. They can be found, e.g., in
[4, 11, 19, 20].

THEOREM 5.1.
a) Let T be a T -tribe for some s € |0,00[. Then 1 is a T -tribe, too.
b) Any g-trib": T is also a %‘-tribe, ie. a fuzzy a-algeb:;.
c) Let 7 C F(X) bea T -tribe for some s €]0,00] and let T contain

all constant fuzzy subsets of X (i.e. v fulfills (A1*))). Then 7 isa
generated tribe, T = F(A) fore soine o -algebra A.

O

It is obvious that a generated tribe is a T -tribe for any (measurable) t-norm
T' . The opposite assertion is not true. In [20], we have introduced a semigenerated
iribe 7 C F(X) as a %‘«tribe whose restriction 7/Y (for some crisp subset

Y C X) is a generated tribe on ¥ and 7/(X — Y') is a o-algebra of crisp
subsets of X — Y . It is evident that any semigenerated tribe 7 is a T -tribe,
too, and that the generated tribes form a proper subfamily of semigenerated
tribes. Our last result on this topic is the following (see [20]):

THEOREM 5.2. Let X be a denumerable universe. Let 7 C F(X). Then the

following statements are equivalent:

i) 7 is a semigenerated tribe
i) 7 is a T -tribe for any (measurable) t-norm T
i) 7isa Td"-tn'be and a T -tribe for some strict t-norm T

iv) T is a T -tribe for some s € )0, 00].
g
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For a general universe X , the structure of subfamilies 7 C (X ), which are
T -tribes for any T, is an open problem.

EXAMPLE 5.1. Let X = {z} be a singleton.Then F(X) = [0,1] is the only
generated tribe. There are two semigenerated tribes, [0,1] and {0,1}. These
semigenerated tribes are the only T -tribes, s € ]0,00[. There are countably

many z-tribes: [0,1],{0,1} and {0,1,2,...,1}, n = 2,3,... . There are un-

PR I

countably many %’-tribes:

Fyg={a€0,l,aeH or (1—a)€H},
where H is any subset of [0, 3] containing zero.

EXAMPLE 5.2. [11] Let X =[0,1], 7 = {ax,a € [0,1]} U[1/3,2/3]%X . Then
7 is both a %’-tribe and a T -tribe, it contains all constant fuzzy subsets of X,
w
but it is not a T -tribe for any s €]0, co]. If we require further the continuity of
a
elements of 7, then 7 is only a T -tribe, but it is not more a %” -tribe. Hence

there are T'-tribes, containing all constant fuzzy subsets, which are not closed
under inf and sup.

6. Measures of fuzzy events

The first step in defining a measure of fuzzy events was made in 1968 by
Zadeh [41]. Let (X, A, P) be a classical Kolmogorovian probability space.Let
F(A) be a generated tribe of fuzzy subsets of X . A mapping m : F(A) — [0, 1]
defined via

Ae F(A):m(A) = [A(:c) dP(z), - (3)
¥
where the right-hand side is a Lebesque-Stiltjes integral, is called a (Zadeh)
fuzzy probability measure. Hence m defined through (3) is an ordinary mean
value functional.

The next steps were made mainly by E. P.Klement . In 1980 [9] he defined
axiomatically a fuzzy probability measure m on a fuzzy o-algebra (i.e. on a
%"-tribe) T as a mapping fulfilling

M1) m(0x)=0 and m(lx) =1 (boundary conditions)

M2) m(AV B)+m(AAB)=m(A)+m(B) for any A, B € 7 (valuation)
M3) {An} C 7, An T A= m(4,) T m(A) (left-continuity)

Klement proved the following result:
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THEOREM 6.1. Let 7 = F(A) be a generated tribe on X . A mapping m

is a fuzzy probability measure on T if and only if there is uniquely determined
probability P on A(P = m/A) and a P -a.e. unique Markov-kernel K such
that

VAer: m(A)= /K(:n, [0, A(z)[) dP(z). (4)
X

Recall that here a Markov-kernel K is a mapping, K : X xB([0,1[) — [0, 1],
such that K(o, E) is an A-measurable function for any Borel subset E of the in-
terval [0,1[,F € B([O, 1[), and K(z,-) is a probability distribution on B([0,1])
for any z € X . Hence K is a (measurable) family of probability distributions.
Note that for Zadeh’s fuzzy probability measures, K(«,-) is the uniform distri-
bution on [0,1[ forany z € X.Klement,Lowen andSchwyhla [10]
showed the necessary and sufficient conditions for a fuzzy probability measure
to be a Zadeh fuzzy probability measure.

THEOREM 6.2. Let. m be a fuzzy probability measure on a generated tribe
7 = F(A). Then the following conditions are equivalent:

1) m is a Zadeh fuzzy probability measure; ; ;i
2) forany e €[0,1] and A €7 : limgjo(m(AABx)—m(AAax)/(B -
«) = P(D), where P=m/A and D={z € X : A(z) >a} € A;

3) m is linear, ie. if for some reals u and v and some fuzzy events
A,Ber itis (u-A+v-B)€r, then

m(u-A+v-B)=u-m(A)+v"m(B);
4) m is additive, i.e.if A, B and (A+ B) ¢ r, then
m(A + B) = m(A) + m(B);
5) m is homogenous, i.c. if u€ R,A and u-A € 7, then
' m(u- A) = u-m(4).
O

In the axiom M2), i.e., in the valuation property, the maximum V (i.e. So)
and the minimum A (i.e. %’) can be replaced by a t-conorm S and its dual
t-norm T. Hence we obtain a T'-valuation property

M2T') m(ASB) + m(AT B) = m(A) + m(B) for any A,B ¢ 7.

Klement in 1982 [11] introduced a T-measure m defined on a T'-tribe
7 as a mapping satisfying M1) (here m(1x) = 1 can be generalized to be a
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positive real), M2T") and M3) (here we have to suppose sup A, € 7, see Example
5.2.). fa T-tribe 7 isalso a %’~tribe, then any T'-measure m on 7 is also a

%“-measure(i.e. if m(1x) =1),it is a fuzzy probability measure). A short proof
of this fact is due to Schwyhla:
m(AV B)+m(AAB)=m(T(AVB,AAB))+m(S(AV B,AAB)) =
= m(T(A, B)) + m(S(A, B)) = m(A) + m(B).
Here the first and the last equalities are true because of the T -valuation property
of m, the second equality follows from the simple fact {(AVB)(z),(AAB)(z)} =
{A(z) B(z)} for any z € X . It follows that (if 7 is a generated tribe) a T'-

meastre m is representable as an integral of a Markov-kernel K with respect
to a measure M = m/A, 7 = F(A), similarly as in (4). ¥ T = T is a

fundamental t-norm, Klement [11] and Butnariu with Klement [4] have
proved the following results:

THEOREM 6.3. Let 7 = F(A) be a generated tribe. Let m be a T -measure
Ll
on 7 for some s € ]0,c0[. Then there is a unique finite measure M (M =
m/A) and an element B € 7 (M -a.e. unique) such that
VA € rismd) ] (B(z) + (1 - B(z)) - A(x)) dM (z). (5)
’ {A>0}
(N

It is evident that Theorem 6.3. is true for semigenerated tribes T, toe. If
T =T, then the axioms M2T) and M3) are equivalent to the o -additivity, i.e.
o0

if ZAn <1, then m(Z4,) = Zm(4,). Butnariu (see e.g. [4]) showed that any
T -measure is representable in the integral form (2).

T}IEOREM 6.4. Let 7 bea T-trjbe of fuzzy subsets of X and let m be a
T-measure on 7. Then there is a unique finite measure M on a o - algebra A
ofaJI crisp subsets of T (then M =m/A ) such that

VAer: m(A)=]A(z)dM(z).
X
O

For a general f{' -tribe 7, € ]0, co[, Butnariu and Klement [4] proved in 1991

the following decomposition theorem for T'-measures:
- a
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THEOREM 6.5. Let m be a T -measure on a T -tribe 1,5 € ]0, 0o, of fuzzy
8 3

subsets of X . Then m can be uniquely decomposed in a monotonically irre-
ducible T -measure m* on 1 and a generated measure 7z on T,
a .

m=m"+m.
O

Recall that any T'-tribe 7,s €]0,00], is contained in a minimal generated
3

tribe F(A), where A is a o-algebra of all crisp subsets of 7. Let M be a
finite measure on: A and let B,C € F(A). A mapping ™ : 7 — [0, 00| defined
via

VA€ mi(A) = / (B(z) + C(z) - A(x)) dM(z)
{A>0}
is called a generated measure. A measure m is called monotonically irreducible

(on 1) if m* — ¢ is a monotone measure on 7 for a generated measure g only
if ¢ is identically equal to zero.

Remark 6.1. Recently we have shown [20] that for denumerable universes
X , any T'- measure (s > 0) is generated and it fulfills (5). Our conjecture is
F .

that the same is true in general, it means that the monotonically irreducible
measure m* in Butnariu-Klement’s decomposition is always identically equal
to a zero measure. . . O

Generalizing the concept of L -decomposable measures, Klement and
Weber [13] introduced in 1991 a L-decomposable measure of fuzzy events.
Let 1 be a pseudo-addition on [0,00] generated by an additive generator
g :[0,00] = L[0,M], M €[0,00], i.e. 4

wlv=g1 (min(M,g(u) + g(v))), u,v € [0, oo] :

Note that L is a continuous Archimedean t-conorm on [0,00].Let 7 = F(.A)
be a generated tribe. A mapping m : 7 — L[0, M] fulfilling M1) (we replace
m(lx)=1 by m(lx) €]0, M],.m(1x) < o), M3) and
M21) m(AAB) L m(AV B) = m(A) L m(B) for any A, B€ 7 (L-
valuation) : :
is called a 1 -decomposable measure of fuzzy events. Klement and Weber have
shown the integral representation of these measures by Markov kernels using an
integral with respect to L -decomposable measures due to Weber [38].
Comparing T -measures and L -decomposable measures of fuzzy events we
see that the only difference is in the type of valuation property. We have pro-
posed [19] the following generalization including both T'-measures and I -
decomposable measures of fuzzy events.
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DEFINITION 6. 1. Let.  be a generated tribe (it is enough to be a ¢-T'-
tribe), ¢ an additive generator on [0,c0] and (T,S) a g-dual pair of a t-
norm and a t-conorm.Recall that g generates a complementation ¢,, ¢,(a) =
97'(9(1) — g(a)). Let L be a pseudo-addition generated by g. A mapping
m: 7 — [0, M] will be calledea .L-decomposable T -measure iff m fulfills
M1*) m(0x) =0,
M2F 1) m(T(A,B)) L m(S(4,B)) =m(A) L m(B) forany A,Ber
(T - L -valuation)
and M3.

We ‘expect .that the study of L -decomposable T -measures will exploit the
techniques of both Butnariu-Klement’s and Klement-Weber’s approaches.

Remark 6.2. Piasecki [29] in 1985 investigated the fuzzy probabil-
ity measures from the Bayes principle point of view. He showed that the only
fuzzy probability measures fulfilling the Bayes principle are so called fuzzy P-
measures. Let M be a soft fuzzy ¢-algebra. A mapping p : M — L[0,1] is
called a fuzzy P -measure if it fulfills two following axioms:

P1) p(AvA')=1 forany Ae M
P2) {An}nen C M, A, < Al, whenever n # m implies p(VA,) =
Zp(An).
Note that the W -disjointness (A, < A, )in the axiom P2) can be replaced
by the weaker F -disjointness ((An A Am) is a W -empty set). Some other gen-
eralizations on this topic can be found, e.g., in [18]."
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