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ABSTRACT. We investigate strictness of the categorical (Novdk) Lg-ring com-
pletion and the impact of the Urysohn modification. We show that the rational
numbers have exp expw nonstrict L£j-field completions.

Background information on L-structures and particularly on L-rings and
their completions can be found in [1] - [9]. For the reader’s convenience we briefly
recall some basic notions and notation.

By N, @@ and R we denote the set of all natural, rational and real numbers,
respectively. The set of all mappings of N into N is denoted by NIN and the
subset of all strictly monotone mappings is denoted by MON. By an Lg-space
X = (X,.Z) we understand a set X equipped with a sequential convergence
¥ C XM x X satisfying axioms of convergence concerning constants, subse-
quences and uniqueness of limits. In the case when the Urysohn axiom is not
satisfied, we also assume that if (z,) and (y,) converge to the same point, then
the mixed sequence (x,y1,Z2,¥ya,...} converges to the same point, and if we
change finitely many points in a convergent sequence, this new sequence con-
verges to the same point as the original one. The fact that a sequence (z,) is
Z—converging to z is denoted by ((z),z) € £.If S = (S(n)) is a sequence
and s € MON, then S os denotes the subsequence of S the n-th term of which
is S(s(n)). If X is a commutative ring (with unit) and .% is compatible with
the ring structure (if sequences (z,) and (y,) converge to = and y, respectively,
then (z, —yn) converges to z —y and (z,y,) converges to zy), then (X,.%) is
called an Lg-ring. We say that S is Cauchy if for each s,t € MON the sequence
Sos—.Sot converges to zero and X is said to be complete if for every Cauchy
sequence S € XN there is z € X such that (S,z) € . By a completion of an
Ly-ring we understand a complete Ly-ring in which the original one is embedded
as a subalgebra and a topologically dense subspace (iterated sequential closure).
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Let .# be the usual metric convergence on R and .# [ QQ its restriction to Q.
Denote @ = (Q, # [ Q).

Let Y = (Y,) be an Ly-space and let X be a dense subset (each y € ¥
is a limit of a sequence ranging in X ). Consider the following two conditions:

(s) Let ((yn),y) € H, yn € Y\ X, n € N. Then there are a sub-
sequence (yh,) of (y,) and sequences Sy in X, k € N, such that
((Sk(n)),y) € &, k € N, and for each g € NIN we have
((Sﬂ(g(‘n))),‘y) €X;

(ss) Let ({yn),y) € &, yn € Y\ X, n € N. Then there are sequences
Sk in X, k € N, such that ((Sk(n)),yk) € # , k € N, and for each
g € NIN we have ((S,(g(n))),y) € 2.

Clearly, (ss) implies (s) and if Y is a first-countable topological space, then (ss)
holds. Both conditions guarantee that the convergence of sequences ranging in
Y\X is in certain sense controlled from X (cf. [7], [2]). If (s) is satisfied, then
X = (X, | X) will be called a strict subspace of ¥ and Y will be called a
strict extension of X . If (ss) holds, then we will speak of a strong strictness.

Strictness in connection with completions of various classes of Ly-groups
(including Lo-rings and Lo-fields) has been investigated, e.g., in [7] and [8]. The
present paper is devoted to the strictness of Lg-rings. We start with examining
the categorical (Novak) completion of Lo-rings.

Let X = (X,%) be an Ly-ring. Assume that X satisfies the following
condition:

(Cr) if (z,) is Z—converging to zero and (y,) is a Cauchy sequence, then

(znyn) is Z—converging to zero.

Clearly, (Cr) is a necessary condition for X to have an Lo-ring completion and,
as shown in [5] (cf. [4]), if X is a field, then the condition is also sufficient.

THEOREM 1. Let X = (X,.%) be an Ly-ring satisfying (Cr) and let X be a
field. Then the categorical (Novdk) Lo-ring completion pX = (pX,. %) of X
is strongly strict.

Proof. Recall that pX is the ring of all equivalence classes of Cauchy
sequences (two Cauchy sequences are equivalent if their difference #—converges
to zero and each point « € X is identified with the equivalence class [(z)] of
all sequences #—converging to x). It can be considered as a vector space over
the scalar field X'; let {1} U B be a Hamel basis of pX over X . Further, %
is defined as follows: ((yn),y) € %, iff there are m € N, {by,...,bn} C B and

Cauchy sequences Sy € XN, k=0,1,...,m, such that

Yn = So(n) + S1(n)by + -+ + S(n)bm, neEN,
y= {SU] e [Sllbl o s i [Sm].bm )
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where [S] is the equivalence class of sequences containing Si, k= 0,1,..., m.
We have to verify condition (ss) for ¥ = pX and ¢ = .%. Let ((yn),y) €
% such that y, € pX\X, n € N. We know that b, € pX\X, k= 1,...,m.
Since X is dense in pX , there are sequences T € X" such that ((Tk),bk) €
%, k=1,...,m. For each k € N, define the sequence R;, € X" as follows

Rk(n) - So(k) + Sl(k)Tl(’n + k‘) . R o Sm(k)Tm(n + k) 3 ne N.
Then each sequence (R;,(n)) is Z%-converging to yi. Let ¢ € NIN. Then the

sequence (Rn (g(n))) is Z5-converging to y. Hence pX is a strongly strict
completion of X . O

Assume, moreover, that .% satisfies the Urysohn axiom and the following
condition (see [4]):
(Cq) Let (S(n)) be a sequence no subsequence of which is #-Cauchy.
Then there exist s,¢ € MON such that no subsequence of the sequence
(S(s(n)) — S(t(n))) is L-Cauchy.
Let %5 be the Urysohn modification of %, (i.e., (S,z) € % whenever for each
8 € MON there exists t € MON such that (Scsot,z) € %). Then (pX, %)
is the categorical (Novdk) Lg-ring completion of X (cf. [4]).

COROLLARY. (pX,. %) is a strict extension of (X,.%).

Remark. Constructions using Hamel basis are extensively used in the theory
of convergence structures to define convergences compatible with the underlying
linear space [3], [4], [5], [7] and [8]. The basic ideas of this method were explored
in the pioneering work [9] of J. Jakubik.

It is known that the Urysohn modification has a non-trivial impact on the
construction of a completion (see [4]). Comparing Theorem 1 and Corollary
we see that there is a correlation between the Urysohn modification and the
relationship between (s) and (ss). The “closer” Z* is to %, the more likely
(ss) follows from (s). Let X = (X,.#) be a commutative L§-group and let
vX = (vX,.?]) be its categorical (Novdk) Lj-group completion. Observe that
(vX, &) is a strongly strict extension of (X,.%#) and £ is rather “close” to
&, . Indeed (cf. Lemma 3.3 in [7]), if ((yn),y) € & and y, € vX \ X, n€N,
then there are £ € N and a finite nonvoid set {ai,...,a,} C vX \ X such
that each y, belongs to some coset X + a;, i = 1,...,k, and if (yu()) is
the subsequence of (y,) ranging in the same coset X + a;, then there is an
Z~Cauchy sequence S; in X such that ys,) =y + Si(n) — [S;], n € N. Hence
(Yn) is “mixed” of finitely many .%)-convergent sequences (simple ones).

Our second result shows that in the case of the categorical (Novak) L§-ring
completion the relationship between %, and %5 is much more complicated
(however, we do not know whether (s) does or does not imply (ss)).

Denote . = .4 [ Q. Then pQ = R.
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THEOREM 2. Let pQ = (R,.%") be the categorical (Novak) completion of
Q = (Q,.2). Then there is a sequence

S(n) = Si(n)e+ Sy(n)w, mneN,

such that (S,0) € % and there are non-degenerated closed intervals I; C R,
1 = 1,2, such that each point of the interval I;, i = 1,2 is a limit point of some
subsequence of S;, i = 1,2, respectively.

Proof. Arrange the set QN (—1,1) into a one-to-one sequence (g,). Let
{(d,) be a sequence of positive real numbers converging to zero. For each n € N,
let S;(n), S2(n) be rational numbers such that

51(n) € (gnm —dn, gum+dy), (1)
S2(n) = (_Qne = d’n ;s —gn€ 2 dﬂ) - (2)
Consider the sequence
S(n) = S1(n)e+ Sz2(n)w, neN.

Since the numbers e and 7 are Q-linearly independent, for infinitely many
n € N we have S(n) # 0. Let s € MON. Since the sequence (gy(»)) is bounded,
there exists ¢ € MON such that the sequence (g,(:(n))) converges to some real
number 7 € [—1,1]. From d,, — 0 and (1), (2) we can conclude that the sequence
(S1(s(t(n)))) is La-converging to rm € [, 7] and the sequence (Sz(s(¢(n))))
converges to —re € [—e, e]. Hence (S,0) € %5 .

Consider an arbitrary real number r € [—, 7]. Then there is a subsequence (g,,)
of (g} such that (q/) is .#—converging to rw~! and hence (g/,7) is converging
to r. From d, — 0 and (1) it follows that there is s € MON such that the
sequence S; o s is #-converging to r. Hence each point of the interval I; =
[, 7] is the limit point in p@ of some subsequence of S;. Analogously we
can prove that each point of the interval I, = [—e, e| is the limit point of some
subsequence of 55. O

Observe that if § is % -Cauchy (e.g., £ -convergent), then there are
m € N, a finite set {b,...,b,} C pX and sequences S; € X", i=0,1,...,m,
such that

S(n) = So(n) + S1(n)b1 + -+ + Sm(N)bm, n€EN,

but (as in Theorem 2) the sequences S; can be very far from being .¥—Cauchy.

On the other hand, since (R, .#) is a strongly strict extension of Q@ = (Q, %),
from % C 4 it follows easily that pQ = (R, .%%") is a strongly strict extension
of Q, too.
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PROBLEM 1. Does there exist an Lg-ringX = (X,.¥) the categorical (Novék)
L3-ring completion pX = (pX,. %)) of which fails to be strongly strict?

Our final result concerns nonstrict completions of Q. The notion of strict-
ness in situations where a space is topologically dense (iterated closure) in its
extension has been studied in [2]. In Problem 2.4. (ii) the author asked whether
() possesses a nonstrict £}-field completion in which @ is dense. We show that
if @ has to be only topologically dense, then the answer to this question would
be “yes”. In fact, we do not know whether Q is in the completion dense or only
topologically dense in our construction. The first sequential closure of @ in the
completion yields an extension of @ which fails to be strict.

Consider R as a field extension of () and the field C of complex numbers
as an algebraically closed field extension of Q. Let B be a transcendence basis
of R over @ (i.e., a maximal set of algebraically independent elements of R
over (Q, the cardinality of which is expw, cf. [10]). Without loss of generality
we can assume that 2 < b < 3 for all b € B. Let {Sy; @ € expw} be a partition
. of B into disjoint infinite countable subset S, of B. Consider each S, as a
one-to-one sequence. Let f be a mapping of expw into {0,1}.

LEMMA. There is an Lo-ring convergence £5 on R such that %5 C %,
(Sa, f(a)) € & for all @ € expw and for § € QN we have (S,z) € & iff
(S,z) € A .

Proof. The assertion can be proved analogously as Lemma 3.3.1 in [8].
First, let .2 be the smallest L-ring convergence on R such that %5 C %
and (Sa, f(a)) € & for each a € expw. The existence of % is guaran-
teed by Lemma 1, Lemma 2 and Remark 4 in [6]. Indeed, Z;(0) = {S €

RY;(S,0) € &5} consists of all sequences of the form ) T'(3,1)...7 (i, k(i)),
i=1

where m, k() € N, and 7'(z, j) either %5 -converges to zero, or it is of the form
(z)(Sa 0 s — f(a)), = € R, a € expw, s € MON. Further, .%; has unique
limits iff 2°;(0) does not contain any constant sequence except (0) (recall that
(S,z) € & iff (S —(z),0) € &}). So, suppose that (a) € £;(0), a €R. An
m
analysis of the sequence of equations a = 3 T'(¢,1)(n) ... T'(i, k(1)) (n), n € N,
i=1
reveals that « = 0. (Hint: passing to suitable subsequences of T'(i,j) we can
guarantee that if (T'(4,7),0) € %" then (T'(4,5),0) € % and two sequences of
the form S, o0s; and S, 052 are either identical, or the sets {Sa (sl(n));n € N}
and {Sa (Sg (n)),n S N} are disjoint. Now, from the properties of the transcen-
dence basis B (cf. [10]) it follows that a = 0.)
Second, since all 1'(i, j) defining ./~ (0) are bounded sequences of real num-
bers, all .%;-convergent sequences are bounded. Let S$ € QV. Then there exists
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s € MON such that S o s is .#—converging to some = € R. Hence if S is
Zs-convergent, then (S,z) € £ C A . O

THEOREM 3. There are exactly expexpw nonhomeomorphic nonstrict
L}-field completions of Q.

Proof. Let f be a mapping of expw into {0,1}. Consider the nonstrict
extension (R, %) of Q@ = (Q,.¢) constructed in the proof of Lemma. Let £}

be a coarse Ly-ring convergence on R coarser then %% . According to Theorem 4
in [6], i’} is an Lo-field convergence. Clearly, &} satisfies the Urysohn axiom.
Now, the product convergence £} x £} on C ((((xn,yn)), (:::,y)) € .,5,”} X ‘2”;
iff ((zn),z), ((yn), ) € #7) is compatible with the field structure of C'. Again,
let %" be a coarse Ly-field convergence on C, coarser than .ﬂji X E’Ji Since

C is algebraically closed, it follows from Theorem 1.2.1 in [1] that (C,£") is
a complete L3-field. It is easy to see that £t C " [R and £ | Q=2
(cf. Lemma 1.4 in [8]). Let X be the smallest sequentially closed subset in
(C,#") such that Q C X and let & = " | X. Then (X, }) is an
L3-field completion of (Q,.#°) which fails to be strict. If f, and f; are dif-
ferent mappings of expw into {0,1}, then the corresponding completions
(X, #7) and (X, #},) are nonhomeomorphic. Since @ can have at most
expexpw L§-field completions (cf. Corollary 3.3 in [3]), the assertion of the

theorem follows. O

We do not know whether R is sequentially closed in (X, . £}).
Let A be the class of all £L}-ring convergences on C' constructed in the same
way as %" in the proof of Theorem 3. We conclude with the following problems:

PROBLEM 2. Does there exist a convergence in A which is a product conver-
gence?

PROBLEM 3. Does there exist a convergence ¥ in A such that R is sequen-
tially closed in (C,.%R)?

Observe that a positive solution to Problem 2 implies a positive solution to
Problem 3. If the answer to Problem 2 or to Problem 3 is “yes”, then Prob-
lem 2.4.(ii) in [2] has a positive solution.
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ABSTRACT. Two discrete semimodular semilattices § and S§; have isomorphic
graphs if and only if S is of the form A x B and S is of the form A? x B for a
lattice A and a semilattice B. We prove that for discrete semilattices S and S;
this latter condition holds if and only if § and S have isomorphic graphs and
the isomorphism preserves the order on some special types of cells and proper
cells.

G. Birkhoff ([1, Problem 8|) asked for necessary and sufficient conditions
on a lattice L = (L;V,A) in order that every lattice M = (L;V*, A*) whose
(unoriented) graph is isomorphic with the graph of L be lattice-isomorphic to
L. For the case when the lattices L and M are supposed to be distributive or
modular, the problem was solved by Jakubik and Kolibiar (see [2, 4, 8,
9, 11, 12, 13]). In [8] Jakubik also showed that if one of L or M is modular
(distributive), then so is the other. Duffus and Rival [3] solved the problem
for those graded lattices which are determined by the ordered subset of their
atoms and coatoms. '

In [12] Jakubik proved that for discrete modular lattices L and M on
the same underlying set L, the graphs G(L) and G(M) are isomorphic if and
only if the following condition holds:

(a) there exist lattices A = (A;<), B = (B;<) and a direct product
representation ¥: L — A X B via which L is isomorphic with 4 x B
and M is isomorphic with 4% x B where A? stands for the dual of A.

Note that this yields a solution to Birkhoff’s problem within the class of
discrete modular lattices, since a modular lattice L will be uniquely determined
by its graph if and only if every direct factor of L is self-dual.

AMS Subject Classification (1991): 06A12, 06A06.
Key words: semilattice, compatible order, covering graph.

177



CHAWEWAN RATANAPRASERT

Jakubik proved in [5] that for discrete lattices (with no assumption of
modularity) Condition (a) is equivalent to
(b) L and M have isomorphic graphs and all proper cells of L and all
proper cells of M are either preserved or reversed (see below for the
definitions).
In [15] Kolibiar proved that for discrete semimodular semilattices § and
S1 on the same underlying set S, the graphs G(S) and G(S;) are isomorphic
if and only if the following condition holds:
(c) there exist a lattice A = (A4;+,-), a semilattice B = (B;U) and a
map : S5 — A x B via which 1 is a subdirect embedding of S into
A x B and 8 into 4° x B.
In this paper we give new characterizations of (c) and derive Kolibiar’s result
as a corollary.
An order £; is said to be a compatible order of a semilattice S = (5;<) if
<; is a subsemilattice of S2.
In [14], it is proved that if <; is a compatible order of a semilattice (S;V, <),
then the relations 6,03 on S defined by (*) are congruence relations on (S;V):

abrbifandonlyifa<u>banda<iu> b

aﬂgbifandonlyifagv2banda21vglb} for soms w9 €5.  (x)

LEMMA 1 [14]. Let ¢: § — S’ x §” be a subdirect representation of a semi-
lattice S. Denote 3(z) by (z1,z2). Given a,b € S, set a <1 b if a; > b; and
as < by. Then <y is a compatible order of S.

The order <; of the lemma above is said to have stemmed from a subdirect
representation of §.If § = (5;V,<) and 87 = (S;V1,<;) are semilattices and
<1 stems from a subdirect representation of S, we write S1#S.

THEOREM 1 [14]. Let <; be a compatible order of a semilattice S = (S;V,<).
The following conditions are equivalent:
(i) <i stems from a subdirect representation of S ;
(ii) each interval {z € S |a <1 © <; b} is a convex subset of S;
(iii) if @ < b < ¢, then a <y ¢ implies a <1 b <3 ¢, and ¢ <; a implies
cs1b<ia.

Note that condition (i) can be reformulated in the following way (as follows
from the proof of Theorem 1): for the congruence relations 6,0, corresponding
to <y, see (x), we have 0; N f;= w, where w is the least congruence relation,
and <; stems from the subdirect representation of S given by 6; and 8.

LEMMA 2. If <; is a compatible order of a semilattice S = (S;V X), and 6,
0 are the corresponding congruence relations, then <;C (6; N <)o (62 N =).
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Moreover, if < fulfils the conditions of Theorem 1, then <1= (61 N <) o
(020 2).

COROLLARY 1. Let <; be a compatible order of a semilattice S = (S;V, <),
let 8y, 02 be the corresponding congruence relations and let <, fulfil the con-
ditions of Theorem 1. For a,b € S,

(i) if a < b and a 01 b, then a <1 b, and

(ii) f a < b and a 65 b, then b <; a.

THEOREM 2. Let S = (5;V,<) and S; = (S;V1,<;) be semilattices. Then
the following are equivalent:
(i) S#S, and §1#S;
(ii) there are 6,036 ConS N Con Sy such that < = (6; N <1) 0 (62 N 1)
and <1 =6 N<K)o (0N =);
(iii) there is a lattice (X;+,), a semilattice (Y;U) and amap ¢ : S — X XY
such that v is a semilattice embedding of S into (X;+) x (Y;U) and
is a semilattice embedding of S; into (X;-) x (Y;U).

Proof. (i)=(ii) Assume that S#S, and S;#S. Then, by Lemma 1 and
Lemma 2, the congruence relations 6, 6z of S and 6, 85 of S; defined as in
(%) fulfil

<=01N<1)o(B2N>) and <3=(NK)o(f2N).

By the definitions of #; and 0, , we have 6, =0, . It remains to show that ;=05 .

Let a @; b. Then a < u =2 b and a 27 u <1 b for some u € S. It follows
that a V1 b < u V7 b = b since < is compatible with V;. Similarly we have
aVib<a Hence a<iaVib>;band a >aVyb<bimply a 05 b. Thus
02C05. Analogously, 2C6s.

(ii) = (iii) Assume that (ii) holds. Then < is compatible with V; and <; is
compatible with V. Let (a,b) €6, N 6. Thena < aVb>2band <3 = (1 N K)o
(62 N =) imply that a <3 aVb <y b and b <y aV b <; a which yields a = b;
i.e., 91 N 92: w.

Now we will show that the operation join of (S/ #1;<;) is the meet opera-
tion of (S/ 61;<); or equivalently, it is enough to show that for any a,b € S,
[a Vv b] 61=[a] 6; if and only if [a V1 b] 61=[b] 6. Let [a V b] B;= [a] 6;. Then
[b] 61< [a V1 b] 6, since [b] 61< [a] 61 and < is compatible with V. Since
b<iaVviband 3= (0, N<)o(f2 N =), we have u € S such that b 6y u 62 aV1b
and b < u > aVyb;so [b] 1= [u] 61> [a V1 b] 01. Hence [b] 61= [a V1 b] 6.
We can prove the converse analogously. Therefore (S/ 61;V, V1) is a lattice.

Analogously, we can prove that (S/ 02;<) is isomorphic to (S/ f2;<1); or
equivalently, the join operation of (S/ ;<) is the join operation of (S/ f4;<1).
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Since the natural map is an embedding of S into (S/ 61;V) x (S/ 62;V) and
S; into (S/ 01;V1) X (S/ 02; V1), we have (S/ 61;V, V) and (S/ 62;V) are the
required lattice and semilattice, respectively.

(i) = (i) Let < and <; denote the order relations on (X;+) x (Y;U) and
(X;-) x (Y;U) respectively, and let <o denote the order relation on (X;+,-)
and <3 denote the order relation on (Y;U).

Let T'= (T;<) and Ty = (T';<1) be images of the subdirect representation
¥ and let (a1,as), (b1,b2), (c1,c2) be elements in T with (a1,a2) < (b1,b2).
Then a; <2 by and as <3 b2. So a1 -¢1 <o by -c; and ag Ues <3 by U e
ie., (a1-ci,a2 Uce) < (b1 - c1,by Uez), which shows that < is compatible
with the operation of (X;.) x (Y;U). By analogy, <; is compatible with the
operation of (X;+)x (Y;U). Hence S#5; and S;#S follow from the subdirect
representation. a

(©0) /l i w1

By l o
614"
| _ ——*(a,0)
|

(8;V, <) (83 V1, <1)
Figure 1. Figure 2

Figure 1 and Figure 2 show that if S; above is a compatible ordered set
of S which stems from a 2-factor subdirect representation of S, then it does
not necessarily follow that the graph G(S) and G(S;) are isomorphic. In this
paper, we shall prove the following theorem for a pair of semilattices.

THEOREM 3. Let S = (S;V,<) and S; = (S;V1,<1) be discrete semilattices.
Then S#5, and S1#S if and only if the following conditions hold:
(A) G(8)=G(51),
(B) if either S or S; contains a cell of type ¢(1,n), say C = {u < z <
V = Yp -+ = Y1 = u}, then the other contains one of the following four
cells of type 0(,1,’”») :C,C0 D={y1 <12 <1 <1 Un <1V <1 T >1
u 1 1} or D?, and
(C) in both S and Sy, all proper cells of type \/(m,n) with m > 1 and
n > 1 are preserved or reversed.
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A semilattice § = (5;<) is called discrete if each bounded chain in § is
finite.

Let § = (S;<) be a semilattice. For a,b € S with a < b an interval [a,b]
is the set of all elements z € S satisfying a < z < b. We call [a,b] a prime
intervol (or equivalently, b covers a, in symbols a < b) if |[a, b]| =2

By the graph G(S) we mean the (undirected) graph whose vertex set is S
and whose edges are those pairs {a, b}, which satisfy either a < b or b < a.

Let § = (S;<) and §; = (51;<1) be semilattices. It is said that G(S)
is isomorphic with G(S;) if there is a bijection f: S — S; such that for all
a,b € S, {a,b} is an edge of G(S) if and only if {f(a), f(b)} is an edge of
G(S51). Throughout this paper we assume, without loss of generality, that S = 5;
and f is the identity map whenever G(S) is isomorphic to G(S;), whence
G(S)=G(S1).

If G(S) = G(S1), then a set C C S is said to be preserved if, whenever
a,b € C and a < b, then a <; b.

Let u,v,21,...,Zm,Y1,---,Yn be distinct elements in S such that

(1) u<z1 < <T;y,, <V, U<y1 <+ <Yyn < v, and
(ii) either v is the least upper bound of z; and y; (denoted by v =
x1 Vyp) or u is the greatest lower bound of z,,, and y, (denoted by
3= Nl )
Then the set C = {u,v,Z1,...,Tm,Y1,-.-Yn} is said to be a cell of S. If z; V
y1 = v, we call C a cell of type \/(m,n). Dually, if ., Ay, = u, we call C a
cell of type N(m,n). If z; Vy; = v and z,, Ay, = u, we call C a cell of type
O(m,n). If m =n, then C is a cell of length n+ 1. A cell C is called proper if
either m >1 or n > 1.

A semilattice S is said to be upper semimodular if S satisfies the following
Upper Covering Condition (UCC):

(UCC): ifa and b cover ¢ with a # b, then both a and b are covered by aVb.

Let § and §; be discrete semimodular semilattices. Then § and S; contain
no cells of type \/(m,n) with m,n 21 & m+n > 2; ie., Conditions (B) and
(C) of Theorem 3 always hold. Therefore we obtain one of Kolibiar’s results
[15] as a corollary.

COROLLARY 2. [15] Let S and S, be semimodular semilattices. Then S and
S, satisfy Condition (c) if and only if G(S) = G(S,).

We now prove Theorem 3 via the following lemmata.

LeMMA 3. Let § = (5;V,<) and §1 = (S;V1,<1) be discrete semilattices
satisfying S#S1 and S1#S. Then Conditions (A), (B) and (C) hold.

Proof. Assume that a < b. Then a < b implies a <€ a V1 b € b which
yields a=aViborb=aVibie, b<iaor a<1b.If a <y c<; b for some
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c € 5, then it follows by Theorem 1 with a < b that a < ¢ < b; hence a =c or
b = ¢, which shows that a <; b. Similarly if b <; ¢ <; a for some c € S, then
b =1 Q.

Analogously a <1 b implies a < b or b < a. Hence G(S) = G(S1).

To show that S and S; satisfy Condition (B), let C = {u <z < v =
Yn = -+ > y1 > u} be a cell of type ¢(1,n) in S (see Figure 3(1)). By the
assumption, Condition (A) and the definitions of 6; and 6, (defined as in (%)),
we have either z 61 v 0y y1, P2 ubayr, by ubyy; or Tz uby y,.

Case 1: z 67 u 61 y1. Then = =1 u <; y;. It follows by Corollary 1 that
z 0 v and z < v imply = <; v. Since u ¢; = implies y; 6; v for all ¢ = 1,
2,...,n, the transitivity of &, yields y; 6y y; for all 4,j. Thus y; 6 y;4+1 and
Yi < Yi+1 mply 9; <1 Y1 forall i =1,2,...,n5ie, 1 <1 %2 <1 <1 ¥ <1
v. Therefore C is a cell of S; of type ¢(1,n).

Case 2: z 03 u 83 y;. We can prove analogously to Case 1 that C? is a cell
of S; of type ¢(1,n).

o v il L
/\ Yn /\ v \ UYn

T Q : U Q : /$ :

I I I
S n b Y2 v ¢ b U1

\/ e

<) (C;<1) Yo él)
©) (2
n

(3)

FiGuRre 3.

Case 3: © 60; u 62 y1. Then z 03 v and v ¢, y; for all 2 = 1,2,...,n. It
follows from Corollary 1 and the transitivity of 6; that y; <1 y2 <1 -+ =1
Yn <10 =1 T =1 u =1 y1; e, D isacell of §; of type ¢(1,n) (see Figure 3).

Case 4: z 02 u 61 y1. We can prove analogously to Case 3 that D? is a cell
of §; of type ¢(1,n).
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O,

/ce \
N-o
Q >
o/ N
"

(C; <) (C;<1) (C; <)
FIGURE 4.

To prove Condition (C), let A={u <21 < -+ < 2y <V > yYp > -+ >
y1 = u} be a proper cell of S of type \/(m,n) (m > 1 and n > 1). Then
€1V y1 = v. Suppose that x; 6; u 6, y1. Then z; 6 v 6, y; forall 1 <i<m
and 1 € j < n, which together with the transitivity of 8; and 6, implies
thatmzﬁgmkandyjélygforalll<z k<mand1<3j,£<n So
C={y1 <1 Y2 <1 <1 Yn <1V <1 Ty <1 -+ <1 T >'1 u =1 Y1} is
a cell of S; of type ¢(1,n 4+ m — 1) (see Figure 4). By Condition (B), since
Y2 61 y1 0> u, we have that D? is a cell of S of type ¢(1,n +m — 1) which

yields yo =y3 =+ =y, = v; i.e,, n = 1, a contradiction.
We will get a similar contradiction if x; 05 u 6, y;. Therefore, either z; 64
w i yy or x1 03 w6 y;. Hence A is preserved or reversed. O

In the following lemmata, we shall assume that § and S; are semilattices
satisfying Conditions (A), (B) and (C).

LEMMA 4. Let a,b,c € S with a = c<b. Then

(i) ¢ =<1 a implies b <; a Vb, and
(ii) a <; c implies aV b <1 b.

Proof. We only prove (i) as (ii) follows by duality. Assume ¢ <; a. Since
the case a = b is trivial, we assume a # b.

Ifc<a<aVb>b> c,then using (B) we obtain immediately b <; a V b.
Ife<aAaVby b c, then condition (C) applies. We may assume that
c<a=<aVbzb> c (wecan prove analogously if c < b <aVb>a > c).
Then C={c<a<aVb>y, > --->=y; = b>c} for some y1,...,y, € S isa
cell of § of type ¢(1,n) with [c,a] preserved (reversed). Hence, by Condition
(B), either C or D ={b <1 y1 <1 ++- <1 Yn <1 @ Vb <1 a > ¢ b} (resp.
C? or D?) is a cell of Sy of type 0(1 n) (see Figure 5). In either case we have
b<iaVb (resp. aVb = b). m]
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aVvb c b b
b b aVb aVh
a a c c
c a a

aVb
C (ol D D2
FIGURE 5.

LEMMA 5. Let a,b,c € § with a <b. Then

(i) a < b implies aV e <1 bVe, and
(ii) b <, a impliesbVe<iaVe.

Yng+1=Yng42=--=Umg =bVe

Tng Vb=ﬂ1=yn0 =Zng O

\_/‘

Tng

0
Tng+1

Ymg=bVe
zaVb=x3Vbey

Tmg—1Vb=a1=zm,—1

Tmg =aVce
Tng=Tmg—1

z;Vb:yl 3

FIGURE 6.
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Proof. Let a=z0 <71 <+ < 2y, =a Ve, and define y; = z; V z;_1
where yo = b = zp and in general z;_; is chosen so that z;_; < z;_1 < ¥i_1
(if there is an 4 (0 < ¢ < myg) such that z; = z;4;, we will continue the
process by considering z; = z;_; and y;41 = y; (see Figure 6)). Then, by
Lemma 4, the interval [z;41,yi41] is preserved (reversed) if the interval [z;, y;]
is preserved (reversed) since x; < z; < y;. Hence by induction [z, ¥m,] is
preserved (reversed) since [a,b] is preserved (reversed). Since z; < y; < x; V b
forall 0 < i< mp,wehave aVe=2n, < Ymy < Zm, Vb=aVeVb=bVe.

Let ag = a, by = b, m§°’ = Ty yi(o) =, zi-(o) =z forall i =0,1,...,mg.
Note that z(()°) = bg. Let a; = z,({?,) where ng is the least number such that
0 <mp <mp and Tpu41 V 2y = Yng+1 = YUng+2 = *°* = Ym, (See Figure 6
and 7).

Case 1: If a; = 25) = 2, Vb (= Vrig ) TheD Yoo = Beny Vg = Bing ¥ (g V
b) = 2y, Vb = (aVc) Vb =>bVc; hence, by using (B) or (C), the preservation of

[%ng, Yn,] implies the preservation of [z, Ym,] = [a V ¢,bV ¢] (see Figure 6).

bve

:I'.'sz:.’E]_Vb

b=bp=yo=2z0

FIGURE 7.

Case 2: If a; = :z:g;) < Zp, V b (note that a:,(fu) < Yno < Tny V b), we choose
bi(= zél)) with a1 < b < m.,.({:,) V b (see Figure 7). Note that since [aq,bo] is
preserved (reversed) so is [aq,b1]. Now repeat the construction with aq replaced
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by a1 and by replaced by b;. This then produces the elements z&ll) and yﬂf

which are needed to begin the next step of the induction.

(In general, we define a;41 = 2D where n; is the least number such that

mi—1
0 < ny <my and Ty, 41 V Zn, = Ynyt1 = Yny42 = - = Ym, and choose
bipr = 2570 with @iy = 28 < zé‘H} = b1 < 2 v b; (for the case a1 =
zqgf,.) = mgff Vv = y?(;i), (as Case 1) the preservation of [a;,b;] implies the
(8  (i+1)

preservation of [Ym;,Ym,.,)) and, finally, repeat the process with the covering
chain:

aipr = 29, =2l <o) <o 4 gD =

{5y,

41 ym:‘

Since S is discrete, there exists IV such that y,{nﬁ,{\? = bV ¢ and hence we have

a chain:
aVcéymoéymlQ---ymp,*b\/ca

and each step in this chain is preserved (reversed) since each interval [a;,b;] is
preserved (reversed). 0

LEMMA 6. Let a,b,c€ S with a<; b. ThenaVe<,bVe.

Proof. Let a <1 b. Since S; is discrete, we have a = zg <1 1 <1 -+ =<1
Zpy1 = b for some zy,...,z, € S. So either z; < z;4; or z;47 < z; for all
0 €t < n+l. It follows from Lemma 5 that =;Ve <7 ;41 Ve forall 0 €4 < n+l.
Hence by induction we have aVe=zgVe <y 23 Ve £y - €1 Zpr1 Ve=bVe.

O

Finally, Lemma 6 implies that <; is a compatible order of the semilattice
S = (5;<). Conditions (B) and (C) imply that Theorem 1 (iii) holds. But
Theorem 1(iii) is equivalent to Theorem 2 (i) which is S#5; and S;#S. This
completes the proof of Theorem 3.
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