

LEONARD PAULÍK

Dedicated to Professor J. Jakubík on the occasion of his 70th birthday

ABSTRACT. We investigate strictness of the categorical (Novák) \mathcal{L}_0 -ring completion and the impact of the Urysohn modification. We show that the rational numbers have $\exp \exp \omega$ nonstrict \mathcal{L}_0^* -field completions.

Background information on \mathcal{L} -structures and particularly on \mathcal{L} -rings and their completions can be found in [1] – [9]. For the reader's convenience we briefly recall some basic notions and notation.

By \mathbb{N} , \mathbb{Q} and \mathbb{R} we denote the set of all natural, rational and real numbers, respectively. The set of all mappings of N into N is denoted by NIN and the subset of all strictly monotone mappings is denoted by MON. By an \mathcal{L}_0 -space $X = (X, \mathcal{L})$ we understand a set X equipped with a sequential convergence $\mathscr{L} \subset X^{\mathbb{N}} \times X$ satisfying axioms of convergence concerning constants, subsequences and uniqueness of limits. In the case when the Urysohn axiom is not satisfied, we also assume that if $\langle x_n \rangle$ and $\langle y_n \rangle$ converge to the same point, then the mixed sequence $\langle x_1, y_1, x_2, y_2, \dots \rangle$ converges to the same point, and if we change finitely many points in a convergent sequence, this new sequence converges to the same point as the original one. The fact that a sequence $\langle x_n \rangle$ is \mathscr{L} -converging to x is denoted by $(\langle x_n \rangle, x) \in \mathscr{L}$. If $S = \langle S(n) \rangle$ is a sequence and $s \in MON$, then $S \circ s$ denotes the subsequence of S the n-th term of which is S(s(n)). If X is a commutative ring (with unit) and \mathcal{L} is compatible with the ring structure (if sequences $\langle x_n \rangle$ and $\langle y_n \rangle$ converge to x and y, respectively, then $\langle x_n - y_n \rangle$ converges to x - y and $\langle x_n y_n \rangle$ converges to xy, then (X, \mathcal{L}) is called an \mathcal{L}_0 -ring. We say that S is Cauchy if for each $s,t\in MON$ the sequence $S \circ s - S \circ t$ converges to zero and X is said to be complete if for every Cauchy sequence $S \in X^{\mathbb{N}}$ there is $x \in X$ such that $(S, x) \in \mathcal{L}$. By a completion of an \mathcal{L}_0 -ring we understand a complete \mathcal{L}_0 -ring in which the original one is embedded as a subalgebra and a topologically dense subspace (iterated sequential closure).

AMS Subject Classification (1991): 54A20 54H13 13J10. Key words: sequential convergence, *L*-rings, strict completion.

Grant project GA-SAV 1230/94.

LEONARD PAULÍK

Let \mathscr{M} be the usual metric convergence on \mathbb{R} and $\mathscr{M} \upharpoonright \mathbb{Q}$ its restriction to \mathbb{Q} . Denote $Q = (\mathbb{Q}, \mathscr{M} \upharpoonright \mathbb{Q})$.

Let $Y = (Y, \mathcal{K})$ be an \mathcal{L}_0 -space and let X be a dense subset (each $y \in Y$ is a limit of a sequence ranging in X). Consider the following two conditions:

- (s) Let $(\langle y_n \rangle, y) \in \mathcal{K}$, $y_n \in Y \setminus X$, $n \in \mathbb{N}$. Then there are a subsequence $\langle y'_n \rangle$ of $\langle y_n \rangle$ and sequences S_k in X, $k \in \mathbb{N}$, such that $(\langle S_k(n) \rangle, y'_k) \in \mathcal{K}$, $k \in \mathbb{N}$, and for each $g \in \text{NIN}$ we have $(\langle S_n(g(n)) \rangle, y) \in \mathcal{K}$;
- (ss) Let $(\langle y_n \rangle, y) \in \mathcal{K}$, $y_n \in Y \setminus X$, $n \in \mathbb{N}$. Then there are sequences S_k in X, $k \in \mathbb{N}$, such that $(\langle S_k(n) \rangle, y_k) \in \mathcal{K}$, $k \in \mathbb{N}$, and for each $g \in \text{NIN}$ we have $(\langle S_n(g(n)) \rangle, y) \in \mathcal{K}$.

Clearly, (ss) implies (s) and if Y is a first-countable topological space, then (ss) holds. Both conditions guarantee that the convergence of sequences ranging in $Y \setminus X$ is in certain sense controlled from X (cf. [7], [2]). If (s) is satisfied, then $X = (X, \mathcal{K} \upharpoonright X)$ will be called a *strict subspace* of Y and Y will be called a *strict extension* of X. If (ss) holds, then we will speak of a *strong strictness*.

Strictness in connection with completions of various classes of \mathcal{L}_0 -groups (including \mathcal{L}_0 -rings and \mathcal{L}_0 -fields) has been investigated, e.g., in [7] and [8]. The present paper is devoted to the strictness of \mathcal{L}_0 -rings. We start with examining the categorical (Novák) completion of \mathcal{L}_0 -rings.

Let $X = (X, \mathcal{L})$ be an \mathcal{L}_0 -ring. Assume that X satisfies the following condition:

(Cr) if $\langle x_n \rangle$ is \mathcal{L} -converging to zero and $\langle y_n \rangle$ is a Cauchy sequence, then $\langle x_n y_n \rangle$ is \mathcal{L} -converging to zero.

Clearly, (Cr) is a necessary condition for X to have an \mathcal{L}_0 -ring completion and, as shown in [5] (cf. [4]), if X is a field, then the condition is also sufficient.

THEOREM 1. Let $X = (X, \mathcal{L})$ be an \mathcal{L}_0 -ring satisfying (Cr) and let X be a field. Then the categorical (Novák) \mathcal{L}_0 -ring completion $\rho X = (\rho X, \mathcal{L}_2)$ of X is strongly strict.

Proof. Recall that ρX is the ring of all equivalence classes of Cauchy sequences (two Cauchy sequences are equivalent if their difference \mathscr{L} -converges to zero and each point $x \in X$ is identified with the equivalence class $\left[\langle x \rangle\right]$ of all sequences \mathscr{L} -converging to x). It can be considered as a vector space over the scalar field X; let $\{1\} \cup B$ be a Hamel basis of ρX over X. Further, \mathscr{L}_2 is defined as follows: $\left(\langle y_n \rangle, y\right) \in \mathscr{L}_2$ iff there are $m \in \mathbb{N}$, $\{b_1, \ldots, b_m\} \subset B$ and Cauchy sequences $S_k \in X^\mathbb{N}$, $k = 0, 1, \ldots, m$, such that

$$y_n = S_0(n) + S_1(n)b_1 + \dots + S_m(n)b_m, \quad n \in \mathbb{N},$$

 $y = [S_0] + [S_1]b_1 + \dots + [S_m]b_m,$

where $[S_k]$ is the equivalence class of sequences containing S_k , $k=0,1,\ldots,m$. We have to verify condition (ss) for $Y=\rho X$ and $\mathscr{K}=\mathscr{L}_2$. Let $(\langle y_n\rangle,y)\in\mathscr{L}_2$ such that $y_n\in\rho X\backslash X$, $n\in\mathbb{N}$. We know that $b_k\in\rho X\backslash X$, $k=1,\ldots,m$. Since X is dense in ρX , there are sequences $T_k\in X^\mathbb{N}$ such that $(\langle T_k\rangle,b_k)\in\mathscr{L}_2$, $k=1,\ldots,m$. For each $k\in\mathbb{N}$, define the sequence $\mathbb{R}_k\in X^\mathbb{N}$ as follows

$$\mathbb{R}_k(n) = S_0(k) + S_1(k)T_1(n+k) + \dots + S_m(k)T_m(n+k), \quad n \in \mathbb{N}.$$

Then each sequence $\langle \mathbb{R}_k(n) \rangle$ is \mathcal{L}_2 -converging to y_k . Let $g \in \text{NIN}$. Then the sequence $\langle \mathbb{R}_n(g(n)) \rangle$ is \mathcal{L}_2 -converging to y. Hence ρX is a strongly strict completion of X.

Assume, moreover, that \mathcal{L} satisfies the Urysohn axiom and the following condition (see [4]):

(Cq) Let $\langle S(n) \rangle$ be a sequence no subsequence of which is \mathcal{L} -Cauchy. Then there exist $s, t \in \text{MON}$ such that no subsequence of the sequence $\langle S(s(n)) - S(t(n)) \rangle$ is \mathcal{L} -Cauchy.

Let \mathcal{L}_2^* be the *Urysohn modification* of \mathcal{L}_2 (i.e., $(S, x) \in \mathcal{L}_2^*$ whenever for each $s \in \text{MON}$ there exists $t \in \text{MON}$ such that $(S \circ s \circ t, x) \in \mathcal{L}_2$). Then $(\rho X, \mathcal{L}_2^*)$ is the categorical (Novák) \mathcal{L}_0^* -ring completion of X (cf. [4]).

COROLLARY. $(\rho X, \mathcal{L}_2^*)$ is a strict extension of (X, \mathcal{L}) .

R e m a r k . Constructions using Hamel basis are extensively used in the theory of convergence structures to define convergences compatible with the underlying linear space [3], [4], [5], [7] and [8]. The basic ideas of this method were explored in the pioneering work [9] of J. Jakubík.

It is known that the Urysohn modification has a non-trivial impact on the construction of a completion (see [4]). Comparing Theorem 1 and Corollary we see that there is a correlation between the Urysohn modification and the relationship between (s) and (ss). The "closer" \mathcal{L}^* is to \mathcal{L} , the more likely (ss) follows from (s). Let $X = (X, \mathcal{L})$ be a commutative \mathcal{L}_0^* -group and let $\nu X = (\nu X, \mathcal{L}_1^*)$ be its categorical (Novák) \mathcal{L}_0^* -group completion. Observe that $(\nu X, \mathcal{L}_1^*)$ is a strongly strict extension of (X, \mathcal{L}) and \mathcal{L}_1^* is rather "close" to \mathcal{L}_1 . Indeed (cf. Lemma 3.3 in [7]), if $(\langle y_n \rangle, y) \in \mathcal{L}_1^*$ and $y_n \in \nu X \setminus X$, $n \in \mathbb{N}$, then there are $k \in \mathbb{N}$ and a finite nonvoid set $\{a_1, \ldots, a_n\} \subset \nu X \setminus X$ such that each y_n belongs to some coset $X + a_i$, $i = 1, \ldots, k$, and if $\langle y_{s(n)} \rangle$ is the subsequence of $\langle y_n \rangle$ ranging in the same coset $X + a_i$, then there is an \mathcal{L} -Cauchy sequence S_i in X such that $y_{s(n)} = y + S_i(n) - [S_i]$, $n \in \mathbb{N}$. Hence $\langle y_n \rangle$ is "mixed" of finitely many \mathcal{L}_1 -convergent sequences (simple ones).

Our second result shows that in the case of the categorical (Novák) \mathcal{L}_0^* -ring completion the relationship between \mathcal{L}_2 and \mathcal{L}_2^* is much more complicated (however, we do not know whether (s) does or does not imply (ss)).

Denote $\mathcal{L} = \mathcal{M} \upharpoonright \mathbb{Q}$. Then $\rho \mathbb{Q} = \mathbb{R}$.

LEONARD PAULÍK

THEOREM 2. Let $\rho Q = (\mathbb{R}, \mathcal{L}_2^*)$ be the categorical (Novák) completion of $Q = (\mathbb{Q}, \mathcal{L})$. Then there is a sequence

$$S(n) = S_1(n)e + S_2(n)\pi, \quad n \in \mathbb{N},$$

such that $(S,0) \in \mathcal{L}_2^*$ and there are non-degenerated closed intervals $I_i \subset \mathbb{R}$, i=1,2, such that each point of the interval I_i , i=1,2 is a limit point of some subsequence of S_i , i=1,2, respectively.

Proof. Arrange the set $\mathbb{Q} \cap (-1,1)$ into a one-to-one sequence $\langle q_n \rangle$. Let $\langle d_n \rangle$ be a sequence of positive real numbers converging to zero. For each $n \in \mathbb{N}$, let $S_1(n)$, $S_2(n)$ be rational numbers such that

$$S_1(n) \in (q_n \pi - d_n, \quad q_n \pi + d_n), \tag{1}$$

$$S_2(n) \in (-q_n e - d_n, -q_n e + d_n).$$
 (2)

Consider the sequence

$$S(n) = S_1(n)e + S_2(n)\pi$$
, $n \in \mathbb{N}$.

Since the numbers e and π are \mathbb{Q} -linearly independent, for infinitely many $n \in \mathbb{N}$ we have $S(n) \neq 0$. Let $s \in \text{MON}$. Since the sequence $\langle q_{s(n)} \rangle$ is bounded, there exists $t \in \text{MON}$ such that the sequence $\langle q_{s(t(n))} \rangle$ converges to some real number $r \in [-1,1]$. From $d_n \to 0$ and (1), (2) we can conclude that the sequence $\langle S_1(s(t(n))) \rangle$ is \mathcal{L}_2 -converging to $r\pi \in [-\pi,\pi]$ and the sequence $\langle S_2(s(t(n))) \rangle$ converges to $-re \in [-e,e]$. Hence $(S,0) \in \mathcal{L}_2^*$.

Consider an arbitrary real number $r \in [-\pi, \pi]$. Then there is a subsequence $\langle q'_n \rangle$ of $\langle q_n \rangle$ such that $\langle q'_n \rangle$ is \mathscr{M} -converging to $r\pi^{-1}$ and hence $\langle q'_n \pi \rangle$ is converging to r. From $d_n \to 0$ and (1) it follows that there is $s \in MON$ such that the sequence $S_1 \circ s$ is \mathscr{L}_2 -converging to r. Hence each point of the interval $I_1 = [-\pi, \pi]$ is the limit point in ρQ of some subsequence of S_1 . Analogously we can prove that each point of the interval $I_2 = [-e, e]$ is the limit point of some subsequence of S_2 .

Observe that if S is \mathscr{L}_2^* -Cauchy (e.g., \mathscr{L}_2^* -convergent), then there are $m \in \mathbb{N}$, a finite set $\{b_1, \ldots, b_m\} \subset \rho X$ and sequences $S_i \in X^{\mathbb{N}}$, $i = 0, 1, \ldots, m$, such that

$$S(n) = S_0(n) + S_1(n)b_1 + \dots + S_m(n)b_m, \quad n \in \mathbb{N},$$

but (as in Theorem 2) the sequences S_i can be very far from being \mathscr{L} -Cauchy. On the other hand, since $(\mathbb{R}, \mathscr{M})$ is a strongly strict extension of $Q = (\mathbb{Q}, \mathscr{L})$, from $\mathscr{L}_2^* \subset \mathscr{M}$ it follows easily that $\rho Q = (\mathbb{R}, \mathscr{L}_2^*)$ is a strongly strict extension of Q, too.

PROBLEM 1. Does there exist an \mathcal{L}_0^* -ring $X = (X, \mathcal{L})$ the categorical (Novák) \mathcal{L}_0^* -ring completion $\rho X = (\rho X, \mathcal{L}_2^*)$ of which fails to be strongly strict?

Our final result concerns nonstrict completions of \mathbb{Q} . The notion of strictness in situations where a space is topologically dense (iterated closure) in its extension has been studied in [2]. In Problem 2.4. (ii) the author asked whether Q possesses a nonstrict \mathcal{L}_0^* -field completion in which \mathbb{Q} is dense. We show that if \mathbb{Q} has to be only topologically dense, then the answer to this question would be "yes". In fact, we do not know whether \mathbb{Q} is in the completion dense or only topologically dense in our construction. The first sequential closure of \mathbb{Q} in the completion yields an extension of Q which fails to be strict.

Consider $\mathbb R$ as a field extension of $\mathbb Q$ and the field $\mathbb C$ of complex numbers as an algebraically closed field extension of $\mathbb Q$. Let B be a transcendence basis of $\mathbb R$ over $\mathbb Q$ (i.e., a maximal set of algebraically independent elements of $\mathbb R$ over $\mathbb Q$, the cardinality of which is $\exp \omega$, cf. [10]). Without loss of generality we can assume that 2 < b < 3 for all $b \in B$. Let $\{S_\alpha; \alpha \in \exp \omega\}$ be a partition of B into disjoint infinite countable subset S_α of B. Consider each S_α as a one-to-one sequence. Let f be a mapping of $\exp \omega$ into $\{0,1\}$.

LEMMA. There is an \mathcal{L}_0 -ring convergence \mathcal{L}_f on \mathbb{R} such that $\mathcal{L}_2^* \subset \mathcal{L}_f$, $\left(S_{\alpha}, f(\alpha)\right) \in \mathcal{L}_f$ for all $\alpha \in \exp \omega$ and for $S \in \mathbb{Q}^{\mathbb{N}}$ we have $(S, x) \in \mathcal{L}_f$ iff $(S, x) \in \mathcal{M}$.

Proof. The assertion can be proved analogously as Lemma 3.3.1 in [8]. First, let \mathcal{L}_f be the smallest \mathcal{L} -ring convergence on \mathbb{R} such that $\mathcal{L}_2^* \subset \mathcal{L}_f$ and $(S_\alpha, f(\alpha)) \in \mathcal{L}_f$ for each $\alpha \in \exp \omega$. The existence of \mathcal{L}_f is guaranteed by Lemma 1, Lemma 2 and Remark 4 in [6]. Indeed, $\mathcal{L}_f^{\leftarrow}(0) = \{S \in \mathbb{R}^{\mathbb{N}}; (S,0) \in \mathcal{L}_f\}$ consists of all sequences of the form $\sum_{i=1}^m T(i,1) \dots T(i,k(i))$, where $m,k(i) \in \mathbb{N}$, and T(i,j) either \mathcal{L}_2^* -converges to zero, or it is of the form $\langle x \rangle (S_\alpha \circ s - f(\alpha)), \ x \in \mathbb{R}, \ \alpha \in \exp \omega, \ s \in \text{MON}$. Further, \mathcal{L}_f has unique limits iff $\mathcal{L}_f^{\leftarrow}(0)$ does not contain any constant sequence except $\langle 0 \rangle$ (recall that $(S,x) \in \mathcal{L}_f$ iff $(S - \langle x \rangle, 0) \in \mathcal{L}_f$). So, suppose that $\langle a \rangle \in \mathcal{L}_f^{\leftarrow}(0), \ a \in \mathbb{R}$. An analysis of the sequence of equations $a = \sum_{i=1}^m T(i,1)(n) \dots T(i,k(i))(n), \ n \in \mathbb{N}$, reveals that a = 0. (Hint: passing to suitable subsequences of T(i,j) we can guarantee that if $(T(i,j),0) \in \mathcal{L}_2^*$ then $(T(i,j),0) \in \mathcal{L}_2$ and two sequences of the form $S_\alpha \circ s_1$ and $S_\alpha \circ s_2$ are either identical, or the sets $\{S_\alpha(s_1(n)); n \in \mathbb{N}\}$ and $\{S_\alpha(s_2(n)); n \in \mathbb{N}\}$ are disjoint. Now, from the properties of the transcendence basis B (cf. [10]) it follows that a = 0.)

Second, since all T(i,j) defining $\mathscr{L}_f^{\leftarrow}(0)$ are bounded sequences of real numbers, all \mathscr{L}_1 -convergent sequences are bounded. Let $S \in \mathbb{Q}^{\mathbb{N}}$. Then there exists

LEONARD PAULÍK

 $s \in \text{MON}$ such that $S \circ s$ is \mathcal{M} -converging to some $x \in \mathbb{R}$. Hence if S is \mathcal{L}_f -convergent, then $(S, x) \in \mathcal{L}_2^* \subset \mathcal{M}$.

THEOREM 3. There are exactly $\exp \exp \omega$ nonhomeomorphic nonstrict \mathcal{L}_0^* -field completions of Q.

Proof. Let f be a mapping of $\exp \omega$ into $\{0,1\}$. Consider the nonstrict extension $(\mathbb{R}, \mathcal{L}_f)$ of $Q = (\mathbb{Q}, \mathcal{L})$ constructed in the proof of Lemma. Let \mathcal{L}_f' be a coarse \mathcal{L}_0 -ring convergence on \mathbb{R} coarser then \mathcal{L}_f . According to Theorem 4 in [6], \mathcal{L}_f' is an \mathcal{L}_0 -field convergence. Clearly, \mathcal{L}_f' satisfies the Urysohn axiom. Now, the product convergence $\mathcal{L}_f' \times \mathcal{L}_f'$ on C $((\langle (x_n, y_n) \rangle, (x, y)) \in \mathcal{L}_f' \times \mathcal{L}_f'$ iff $(\langle x_n \rangle, x), (\langle y_n \rangle, y) \in \mathcal{L}_f')$ is compatible with the field structure of C. Again, let \mathcal{L}'' be a coarse \mathcal{L}_0 -field convergence on C, coarser than $\mathcal{L}_f' \times \mathcal{L}_f'$. Since C is algebraically closed, it follows from Theorem 1.2.1 in [1] that (C, \mathcal{L}'') is a complete \mathcal{L}_0^* -field. It is easy to see that $\mathcal{L}_f' \subset \mathcal{L}'' \upharpoonright \mathbb{R}$ and $\mathcal{L}'' \upharpoonright \mathbb{Q} = \mathcal{L}$ (cf. Lemma 1.4 in [8]). Let X be the smallest sequentially closed subset in (C, \mathcal{L}'') such that $\mathbb{Q} \subset X$ and let $\mathcal{K}_f = \mathcal{L}'' \upharpoonright X$. Then (X, \mathcal{K}_f) is an \mathcal{L}_0^* -field completion of $(\mathbb{Q}, \mathcal{L})$ which fails to be strict. If f_1 and f_2 are different mappings of f_1 are nonhomeomorphic. Since f_2 can have at most f_2 exp f_3 -field completions (cf. Corollary 3.3 in f_3), the assertion of the theorem follows.

We do not know whether \mathbb{R} is sequentially closed in (X, \mathcal{K}_f) .

Let Λ be the class of all \mathcal{L}_0^* -ring convergences on C constructed in the same way as \mathcal{L}'' in the proof of Theorem 3. We conclude with the following problems:

PROBLEM 2. Does there exist a convergence in Λ which is a product convergence?

PROBLEM 3. Does there exist a convergence $\mathcal{L}_{\mathbb{R}}$ in Λ such that \mathbb{R} is sequentially closed in $(C, \mathcal{L}_{\mathbb{R}})$?

Observe that a positive solution to Problem 2 implies a positive solution to Problem 3. If the answer to Problem 2 or to Problem 3 is "yes", then Problem 2.4.(ii) in [2] has a positive solution.

REFERENCES

- [1] FRIČ, R.: On ring convergences, Riv. Mat. Pura Appl. 11 (1992), 125-138.
- [2] FRIČ, R.: On strict extension, (submitted).
- [3] FRIČ, R.: Group hyperreals: iterated sequential completion of rationals, Tatra Mountains Math. Publ. 5.

- [4] FRIČ, R.—KOUTNÍK, V.: Completion for subcategories of convergence rings, In: Categorical Topology and its Relation to Analysis, Algebra and Combinatorics (Praha 1987), World Scientific Publishing Co., Singapore, 1989, 195-207.
- [5] FRIČ, R.—KOUTNÍK, V.: L₀-rings and their completion, Seminar notes.
- [6] FRIČ, R.—ZANOLIN, F.: Coarse sequential convergence in groups, etc., Czechoslovak Math. J. 40 (1990), 459-467.
- [7] FRIČ, R.—ZANOLIN, F.: Strict completion of L₀*-groups, Czechoslovak Math. J. 42 (1992), 589-598.
- [8] FRIČ, R.—ZANOLIN, F.: Relatively coarse sequential convergence, (submitted).
- [9] JAKUBÍK, J.: On convergence in linear spaces, Mat.-Fyz. Časop. 6 (1956), 57-67. (Slovak)
- [10] Van der WAERDEN, B. L.: Algebra, Nauka, Moskva 1976. (Russian)

Received March 2, 1994

Mathematical Institute Slovak Academy of Sciences Grešákova 6 SK-040 01 Košice SLOVAKIA

E-mail: paulik@linux1.saske.sk

• TO 1 22 1517 1 1 2

one of the state of the company of t

Market in Land State Control of the Control of the

True "

CHAWEWAN RATANAPRASERT

Dedicated to Professor J. Jakubík on the occasion of his 70th birthday

ABSTRACT. Two discrete semimodular semilattices S and S_1 have isomorphic graphs if and only if S is of the form $A \times B$ and S_1 is of the form $A^{\partial} \times B$ for a lattice A and a semilattice B. We prove that for discrete semilattices S and S_1 this latter condition holds if and only if S and S_1 have isomorphic graphs and the isomorphism preserves the order on some special types of cells and proper cells.

G. Birkhoff ([1, Problem 8]) asked for necessary and sufficient conditions on a lattice $L = (L; \vee, \wedge)$ in order that every lattice $M = (L; \vee^*, \wedge^*)$ whose (unoriented) graph is isomorphic with the graph of L be lattice-isomorphic to L. For the case when the lattices L and M are supposed to be distributive or modular, the problem was solved by Jakubík and Kolibiar (see [2, 4, 8, 9, 11, 12, 13]). In [8] Jakubík also showed that if one of L or M is modular (distributive), then so is the other. Duffus and Rival [3] solved the problem for those graded lattices which are determined by the ordered subset of their atoms and coatoms.

In [12] Jakubík proved that for discrete modular lattices L and M on the same underlying set L, the graphs G(L) and G(M) are isomorphic if and only if the following condition holds:

(a) there exist lattices $A = (A; \leq)$, $B = (B; \leq)$ and a direct product representation $\psi \colon L \to A \times B$ via which L is isomorphic with $A \times B$ and M is isomorphic with $A^{\partial} \times B$ where A^{∂} stands for the dual of A.

Note that this yields a solution to Birkhoff's problem within the class of discrete modular lattices, since a modular lattice L will be uniquely determined by its graph if and only if every direct factor of L is self-dual.

AMS Subject Classification (1991): 06A12, 06A06. Key words: semilattice, compatible order, covering graph.

Jakubík proved in [5] that for discrete lattices (with no assumption of modularity) Condition (a) is equivalent to

(b) L and M have isomorphic graphs and all proper cells of L and all proper cells of M are either preserved or reversed (see below for the definitions).

In [15] Kolibiar proved that for discrete semimodular semilattices S and S_1 on the same underlying set S, the graphs G(S) and $G(S_1)$ are isomorphic if and only if the following condition holds:

(c) there exist a lattice $A = (A; +, \cdot)$, a semilattice $B = (B; \cup)$ and a map $\psi: S \to A \times B$ via which ψ is a subdirect embedding of S into $A \times B$ and S_1 into $A^{\partial} \times B$.

In this paper we give new characterizations of (c) and derive Kolibiar's result as a corollary.

An order \leq_1 is said to be a *compatible order* of a semilattice $S = (S; \leq)$ if \leq_1 is a subsemilattice of S^2 .

In [14], it is proved that if \leq_1 is a compatible order of a semilattice $(S; \vee, \leq)$, then the relations θ_1, θ_2 on S defined by (*) are congruence relations on $(S; \vee)$:

$$\begin{array}{l} a \; \theta_1 \; b \; \text{if and only if} \; a \leqslant u \geqslant b \; \text{and} \; a \leqslant_1 \; u \geqslant_1 \; b \\ a \; \theta_2 \; b \; \text{if and only if} \; a \leqslant v \geqslant b \; \text{and} \; a \geqslant_1 \; v \leqslant_1 \; b \end{array} \right\} \; \text{for some} \; u,v \in S \, . \tag{*}$$

LEMMA 1 [14]. Let $\psi \colon S \to S' \times S''$ be a subdirect representation of a semilattice S. Denote $\psi(x)$ by (x_1, x_2) . Given $a, b \in S$, set $a \leqslant_1 b$ if $a_1 \geqslant b_1$ and $a_2 \leqslant b_2$. Then \leqslant_1 is a compatible order of S.

The order \leq_1 of the lemma above is said to have stemmed from a subdirect representation of S. If $S = (S; \lor, \leqslant)$ and $S_1 = (S; \lor_1, \leqslant_1)$ are semilattices and \leqslant_1 stems from a subdirect representation of S, we write $S_1 \# S$.

THEOREM 1 [14]. Let \leq_1 be a compatible order of a semilattice $S = (S; \vee, \leq)$. The following conditions are equivalent:

- (i) \leq_1 stems from a subdirect representation of S;
- (ii) each interval $\{x \in S \mid a \leqslant_1 x \leqslant_1 b\}$ is a convex subset of S;
- (iii) if $a \leqslant b \leqslant c$, then $a \leqslant_1 c$ implies $a \leqslant_1 b \leqslant_1 c$, and $c \leqslant_1 a$ implies $c \leqslant_1 b \leqslant_1 a$.

Note that condition (i) can be reformulated in the following way (as follows from the proof of Theorem 1): for the congruence relations θ_1, θ_2 corresponding to \leq_1 , see (*), we have $\theta_1 \cap \theta_2 = \omega$, where ω is the least congruence relation, and \leq_1 stems from the subdirect representation of S given by θ_1 and θ_2 .

LEMMA 2. If \leq_1 is a compatible order of a semilattice $S = (S; \vee \leq)$, and θ_1 , θ_2 are the corresponding congruence relations, then $\leq_1 \subseteq (\theta_1 \cap \leq) \circ (\theta_2 \cap \geq)$.

Moreover, if \leq_1 fulfils the conditions of Theorem 1, then $\leq_1 = (\theta_1 \cap \leq) \circ (\theta_2 \cap \geq)$.

COROLLARY 1. Let \leq_1 be a compatible order of a semilattice $S = (S; \lor, \leq)$, let θ_1 , θ_2 be the corresponding congruence relations and let \leq_1 fulfil the conditions of Theorem 1. For $a, b \in S$,

- (i) if $a \leq b$ and $a \theta_1 b$, then $a \leq_1 b$, and
- (ii) if $a \leq b$ and $a \theta_2 b$, then $b \leq_1 a$.

THEOREM 2. Let $S = (S; \vee, \leq)$ and $S_1 = (S; \vee_1, \leq_1)$ be semilattices. Then the following are equivalent:

- (i) $S \# S_1$ and $S_1 \# S$;
- (ii) there are $\theta_1, \theta_2 \in \operatorname{Con} S \cap \operatorname{Con} S_1$ such that $\leq = (\theta_1 \cap \leqslant_1) \circ (\theta_2 \cap \geqslant_1)$ and $\leqslant_1 = (\theta_1 \cap \leqslant) \circ (\theta_2 \cap \geqslant)$;
- (iii) there is a lattice $(X; +, \cdot)$, a semilattice $(Y; \cup)$ and a map $\psi : S \to X \times Y$ such that ψ is a semilattice embedding of S into $(X; +) \times (Y; \cup)$ and ψ is a semilattice embedding of S_1 into $(X; \cdot) \times (Y; \cup)$.

Proof. (i) \Rightarrow (ii) Assume that $S\#S_1$ and $S_1\#S$. Then, by Lemma 1 and Lemma 2, the congruence relations θ_1 , θ_2 of S and $\overline{\theta}_1$, $\overline{\theta}_2$ of S_1 defined as in (*) fulfil

$$\leq = (\overline{\theta}_1 \cap \leqslant_1) \circ (\overline{\theta}_2 \cap \geqslant_1) \quad \text{and} \quad \leq_1 = (\theta_1 \cap \leqslant) \circ (\theta_2 \cap \geqslant).$$

By the definitions of θ_1 and $\overline{\theta}_1$, we have $\theta_1 = \overline{\theta}_1$. It remains to show that $\theta_2 = \overline{\theta}_2$.

Let $a \theta_2 b$. Then $a \leq u \geq b$ and $a \geq_1 u \leq_1 b$ for some $u \in S$. It follows that $a \vee_1 b \leq u \vee_1 b = b$ since \leq is compatible with \vee_1 . Similarly we have $a \vee_1 b \leq a$. Hence $a \leq_1 a \vee_1 b \geq_1 b$ and $a \geq a \vee_1 b \leq b$ imply $a \overline{\theta}_2 b$. Thus $\theta_2 \subseteq \overline{\theta}_2$. Analogously, $\overline{\theta}_2 \subseteq \theta_2$.

(ii) \Rightarrow (iii) Assume that (ii) holds. Then \leqslant is compatible with \vee_1 and \leqslant_1 is compatible with \vee . Let $(a,b) \in \theta_1 \cap \theta_2$. Then $a \leqslant a \vee b \geqslant b$ and $\leqslant_1 = (\theta_1 \cap \leqslant) \circ (\theta_2 \cap \geqslant)$ imply that $a \leqslant_1 a \vee b \leqslant_1 b$ and $b \leqslant_1 a \vee b \leqslant_1 a$ which yields a = b; i.e., $\theta_1 \cap \theta_2 = \omega$.

Now we will show that the operation join of $(S/\theta_1; \leqslant_1)$ is the meet operation of $(S/\theta_1; \leqslant)$; or equivalently, it is enough to show that for any $a, b \in S$, $[a \lor b] \theta_1 = [a] \theta_1$ if and only if $[a \lor_1 b] \theta_1 = [b] \theta_1$. Let $[a \lor b] \theta_1 = [a] \theta_1$. Then $[b] \theta_1 \leqslant [a \lor_1 b] \theta_1$ since $[b] \theta_1 \leqslant [a] \theta_1$ and \leqslant is compatible with \lor_1 . Since $b \leqslant_1 a \lor_1 b$ and $\leqslant_1 = (\theta_1 \cap \leqslant) \circ (\theta_2 \cap \geqslant)$, we have $u \in S$ such that $b \theta_1 u \theta_2 a \lor_1 b$ and $b \leqslant u \geqslant a \lor_1 b$; so $[b] \theta_1 = [u] \theta_1 \geqslant [a \lor_1 b] \theta_1$. Hence $[b] \theta_1 = [a \lor_1 b] \theta_1$. We can prove the converse analogously. Therefore $(S/\theta_1; \lor, \lor_1)$ is a lattice.

Analogously, we can prove that $(S/\theta_2; \leq)$ is isomorphic to $(S/\theta_2; \leq_1)$; or equivalently, the join operation of $(S/\theta_2; \leq)$ is the join operation of $(S/\theta_2; \leq)$.

Since the natural map is an embedding of S into $(S/\theta_1; \vee) \times (S/\theta_2; \vee)$ and S_1 into $(S/\theta_1; \vee_1) \times (S/\theta_2; \vee_1)$, we have $(S/\theta_1; \vee, \vee_1)$ and $(S/\theta_2; \vee)$ are the required lattice and semilattice, respectively.

(iii) \Rightarrow (i) Let \leq and \leq_1 denote the order relations on $(X; +) \times (Y; \cup)$ and $(X; \cdot) \times (Y; \cup)$ respectively, and let \leq_2 denote the order relation on $(X; +, \cdot)$ and \leq_3 denote the order relation on $(Y; \cup)$.

Let $T=(T;\leqslant)$ and $T_1=(T;\leqslant_1)$ be images of the subdirect representation ψ and let $(a_1,a_2), (b_1,b_2), (c_1,c_2)$ be elements in T with $(a_1,a_2)\leqslant (b_1,b_2)$. Then $a_1\leqslant_2 b_1$ and $a_2\leqslant_3 b_2$. So $a_1\cdot c_1\leqslant_2 b_1\cdot c_1$ and $a_2\cup c_2\leqslant_3 b_2\cup c_2$; i.e., $(a_1\cdot c_1,a_2\cup c_2)\leqslant (b_1\cdot c_1,b_2\cup c_2)$, which shows that \leqslant is compatible with the operation of $(X;\cdot)\times (Y;\cup)$. By analogy, \leqslant_1 is compatible with the operation of $(X;+)\times (Y;\cup)$. Hence $S\#S_1$ and $S_1\#S$ follow from the subdirect representation.

Figure 1 and Figure 2 show that if S_1 above is a compatible ordered set of S which stems from a 2-factor subdirect representation of S, then it does not necessarily follow that the graph G(S) and $G(S_1)$ are isomorphic. In this paper, we shall prove the following theorem for a pair of semilattices.

THEOREM 3. Let $S = (S; \lor, \leqslant)$ and $S_1 = (S; \lor_1, \leqslant_1)$ be discrete semilattices. Then $S \# S_1$ and $S_1 \# S$ if and only if the following conditions hold:

- (A) $G(S) = G(S_1)$,
- (B) if either S or S_1 contains a cell of type $\Diamond(1,n)$, say $C = \{u \prec x \prec v \succ y_n \cdots \succ y_1 \succ u\}$, then the other contains one of the following four cells of type $\Diamond(1,n): C, C^{\partial}, D = \{y_1 \prec_1 y_2 \prec_1 \cdots \prec_1 y_n \prec_1 v \prec_1 x \succ_1 u \succ_1 y_1\}$ or D^{∂} , and
- (C) in both S and S_1 , all proper cells of type $\bigvee (m,n)$ with m>1 and n>1 are preserved or reversed.

A semilattice $S = (S; \leq)$ is called *discrete* if each bounded chain in S is finite.

Let $S = (S; \leq)$ be a semilattice. For $a, b \in S$ with $a \leq b$ an interval [a, b] is the set of all elements $x \in S$ satisfying $a \leq x \leq b$. We call [a, b] a prime interval (or equivalently, b covers a, in symbols $a \prec b$) if |[a, b]| = 2.

By the graph G(S) we mean the (undirected) graph whose vertex set is S and whose edges are those pairs $\{a,b\}$, which satisfy either $a \prec b$ or $b \prec a$.

Let $S = (S; \leq)$ and $S_1 = (S_1; \leq_1)$ be semilattices. It is said that G(S) is isomorphic with $G(S_1)$ if there is a bijection $f: S \to S_1$ such that for all $a, b \in S$, $\{a, b\}$ is an edge of G(S) if and only if $\{f(a), f(b)\}$ is an edge of $G(S_1)$. Throughout this paper we assume, without loss of generality, that $S = S_1$ and f is the identity map whenever G(S) is isomorphic to $G(S_1)$, whence $G(S) = G(S_1)$.

If $G(S) = G(S_1)$, then a set $C \subseteq S$ is said to be *preserved* if, whenever $a, b \in C$ and $a \prec b$, then $a \prec_1 b$.

Let $u, v, x_1, \ldots, x_m, y_1, \ldots, y_n$ be distinct elements in S such that

- (i) $u \prec x_1 \prec \cdots \prec x_m \prec v$, $u \prec y_1 \prec \cdots \prec y_n \prec v$, and
- (ii) either v is the least upper bound of x_1 and y_1 (denoted by $v = x_1 \vee y_1$) or u is the greatest lower bound of x_m and y_n (denoted by $u = x_m \wedge y_n$).

Then the set $C = \{u, v, x_1, \dots, x_m, y_1, \dots y_n\}$ is said to be a *cell* of S. If $x_1 \vee y_1 = v$, we call C a *cell* of type $\bigvee(m, n)$. Dually, if $x_m \wedge y_n = u$, we call C a *cell* of type $\bigwedge(m, n)$. If $x_1 \vee y_1 = v$ and $x_m \wedge y_n = u$, we call C a *cell* of type $\Diamond(m, n)$. If m = n, then C is a *cell* of length n + 1. A cell C is called proper if either m > 1 or n > 1.

A semilattice S is said to be upper semimodular if S satisfies the following Upper Covering Condition (UCC):

(UCC): if a and b cover c with $a \neq b$, then both a and b are covered by $a \vee b$.

Let S and S_1 be discrete semimodular semilattices. Then S and S_1 contain no cells of type $\bigvee(m,n)$ with $m,n \ge 1$ & m+n > 2; i.e., Conditions (B) and (C) of Theorem 3 always hold. Therefore we obtain one of Kolibiar's results [15] as a corollary.

COROLLARY 2. [15] Let S and S_1 be semimodular semilattices. Then S and S_1 satisfy Condition (c) if and only if $G(S) = G(S_1)$.

We now prove Theorem 3 via the following lemmata.

LEMMA 3. Let $S = (S; \lor, \leqslant)$ and $S_1 = (S; \lor_1, \leqslant_1)$ be discrete semilattices satisfying $S \# S_1$ and $S_1 \# S$. Then Conditions (A), (B) and (C) hold.

Proof. Assume that $a \prec b$. Then $a \leqslant b$ implies $a \leqslant a \lor_1 b \leqslant b$ which yields $a = a \lor_1 b$ or $b = a \lor_1 b$; i.e., $b \leqslant_1 a$ or $a \leqslant_1 b$. If $a \leqslant_1 c \leqslant_1 b$ for some

 $c \in S$, then it follows by Theorem 1 with $a \leq b$ that $a \leq c \leq b$; hence a = c or b = c, which shows that $a \prec_1 b$. Similarly if $b \leq_1 c \leq_1 a$ for some $c \in S$, then $b \prec_1 a$.

Analogously $a \prec_1 b$ implies $a \prec b$ or $b \prec a$. Hence $G(S) = G(S_1)$.

To show that S and S_1 satisfy Condition (B), let $C = \{u \prec x \prec v \succ y_n \succ \cdots \succ y_1 \succ u\}$ be a cell of type $\Diamond(1,n)$ in S (see Figure 3(1)). By the assumption, Condition (A) and the definitions of θ_1 and θ_2 (defined as in (*)), we have either $x \theta_1 u \theta_1 y_1$, $x \theta_2 u \theta_2 y_1$, $x \theta_1 u \theta_2 y_1$ or $x \theta_2 u \theta_1 y_1$.

Case 1: $x \ \theta_1 \ u \ \theta_1 \ y_1$. Then $x \geqslant_1 u \leqslant_1 y_1$. It follows by Corollary 1 that $x \ \theta_1 \ v$ and $x \leqslant v$ imply $x \leqslant_1 v$. Since $u \ \theta_1 \ x$ implies $y_i \ \theta_1 \ v$ for all $i = 1, 2, \ldots, n$, the transitivity of θ_1 yields $y_i \ \theta_1 \ y_j$ for all i, j. Thus $y_i \ \theta_1 \ y_{i+1}$ and $y_i \prec y_{i+1}$ imply $y_i \prec_1 y_{i+1}$ for all $i = 1, 2, \ldots, n$; i.e., $y_1 \prec_1 y_2 \prec_1 \cdots \prec_1 y_n \prec_1 v$. Therefore C is a cell of S_1 of type $\Diamond(1, n)$.

Case 2: $x \theta_2 u \theta_2 y_1$. We can prove analogously to Case 1 that C^{θ} is a cell of S_1 of type $\Diamond(1,n)$.

FIGURE 3.

Case 3: $x \ \theta_1 \ u \ \theta_2 \ y_1$. Then $x \ \theta_2 \ v$ and $v \ \theta_1 \ y_i$ for all i = 1, 2, ..., n. It follows from Corollary 1 and the transitivity of θ_1 that $y_1 \prec_1 y_2 \prec_1 \cdots \prec_1 y_n \prec_1 v \prec_1 x \succ_1 u \succ_1 y_1$; i.e., D is a cell of S_1 of type $\Diamond(1, n)$ (see Figure 3).

Case 4: $x \theta_2 u \theta_1 y_1$. We can prove analogously to Case 3 that D^{∂} is a cell of S_1 of type $\Diamond(1,n)$.

To prove Condition (C), let $A = \{u \prec x_1 \prec \cdots \prec x_m \prec v \succ y_n \succ \cdots \succ y_1 \succ u\}$ be a proper cell of S of type $\bigvee(m,n)$ (m>1 and n>1). Then $x_1 \lor y_1 = v$. Suppose that $x_1 \theta_1 u \theta_2 y_1$. Then $x_i \theta_2 v \theta_1 y_j$ for all $1 \leqslant i < m$ and $1 \leqslant j \leqslant n$, which together with the transitivity of θ_1 and θ_2 implies that $x_i \theta_2 x_k$ and $y_j \theta_1 y_\ell$ for all $1 \leqslant i$, $k \leqslant m$ and $1 \leqslant j$, $\ell \leqslant n$. So $C = \{y_1 \prec_1 y_2 \prec_1 \cdots \prec_1 y_n \prec_1 v \prec_1 x_m \prec_1 \cdots \prec_1 x_1 \succ_1 u \succ_1 y_1\}$ is a cell of S_1 of type $\Diamond(1, n+m-1)$ (see Figure 4). By Condition (B), since $y_2 \theta_1 y_1 \theta_2 u$, we have that D^{∂} is a cell of S of type $\Diamond(1, n+m-1)$ which yields $y_2 = y_3 = \cdots = y_n = v$; i.e., n = 1, a contradiction.

We will get a similar contradiction if $x_1 \theta_2 u \theta_1 y_1$. Therefore, either $x_1 \theta_1 u \theta_1 y_1$ or $x_1 \theta_2 u \theta_2 y_1$. Hence A is preserved or reversed.

In the following lemmata, we shall assume that S and S_1 are semilattices satisfying Conditions (A), (B) and (C).

LEMMA 4. Let $a, b, c \in S$ with $a \succ c \prec b$. Then

- (i) $c \prec_1 a$ implies $b \leqslant_1 a \lor b$, and
- (ii) $a \prec_1 c$ implies $a \lor b \leqslant_1 b$.

Proof. We only prove (i) as (ii) follows by duality. Assume $c \prec_1 a$. Since the case a = b is trivial, we assume $a \neq b$.

If $c \prec a \prec a \lor b \succ b \succ c$, then using (B) we obtain immediately $b \prec_1 a \lor b$. If $c \prec a \not \prec a \lor b \not \succ b \succ c$, then condition (C) applies. We may assume that $c \prec a \prec a \lor b \geqslant b \succ c$ (we can prove analogously if $c \prec b \prec a \lor b \geqslant a \succ c$). Then $C = \{c \prec a \prec a \lor b \succ y_n \succ \cdots \succ y_1 \succ b \succ c\}$ for some $y_1, \ldots, y_n \in S$ is a cell of S of type $\Diamond(1,n)$ with [c,a] preserved (reversed). Hence, by Condition (B), either C or $D = \{b \prec_1 y_1 \prec_1 \cdots \prec_1 y_n \prec_1 a \lor b \prec_1 a \succ_1 c \succ_1 b\}$ (resp. C^{∂} or D^{∂}) is a cell of S_1 of type $\Diamond(1,n)$ (see Figure 5). In either case we have $b \leqslant_1 a \lor b$ (resp. $a \lor b \geqslant_1 b$).

FIGURE 5.

LEMMA 5. Let $a, b, c \in S$ with $a \prec b$. Then

- (i) $a \prec_1 b$ implies $a \lor c \leqslant_1 b \lor c$, and (ii) $b \prec_1 a$ implies $b \lor c \leqslant_1 a \lor c$.

FIGURE 6.

Proof. Let $a=x_0 \prec x_1 \prec \cdots \prec x_{m_0}=a \lor c$, and define $y_i=x_i \lor z_{i-1}$ where $y_0=b=z_0$ and in general z_{i-1} is chosen so that $x_{i-1} \prec z_{i-1} \leqslant y_{i-1}$ (if there is an i $(0 < i < m_0)$ such that $z_i=x_{i+1}$, we will continue the process by considering $z_i=z_{i-1}$ and $y_{i+1}=y_i$ (see Figure 6)). Then, by Lemma 4, the interval $[x_{i+1},y_{i+1}]$ is preserved (reversed) if the interval $[x_i,y_i]$ is preserved (reversed) since $x_i \prec z_i \leqslant y_i$. Hence by induction $[x_{m_0},y_{m_0}]$ is preserved (reversed) since [a,b] is preserved (reversed). Since $x_i \leqslant y_i \leqslant x_i \lor b$ for all $0 \leqslant i \leqslant m_0$, we have $a \lor c = x_{m_0} \leqslant y_{m_0} \leqslant x_{m_0} \lor b = a \lor c \lor b = b \lor c$.

for all $0 \le i \le m_0$, we have $a \lor c = x_{m_0} \le y_{m_0} \le x_{m_o} \lor b = a \lor c \lor b = b \lor c$. Let $a_0 = a$, $b_0 = b$, $x_i^{(\circ)} = x_i$, $y_i^{(\circ)} = y_i$, $z_i^{(\circ)} = z_i$ for all $i = 0, 1, \ldots, m_0$. Note that $z_0^{(\circ)} = b_0$. Let $a_1 = z_{n_0}^{(\circ)}$ where n_0 is the least number such that $0 \le n_0 < m_0$ and $x_{n_0+1} \lor z_{n_0} = y_{n_0+1} = y_{n_0+2} = \cdots = y_{m_0}$ (see Figure 6 and 7).

Case 1: If $a_1 = z_{n_0}^{(\circ)} = x_{n_0} \lor b \ (= y_{n_0})$, then $y_{m_0} = x_{m_0} \lor z_{n_0} = x_{m_0} \lor (x_{n_0} \lor b) = x_{m_0} \lor b = (a \lor c) \lor b = b \lor c$; hence, by using (B) or (C), the preservation of $[x_{n_0}, y_{n_0}]$ implies the preservation of $[x_{m_0}, y_{m_0}] = [a \lor c, b \lor c]$ (see Figure 6).

FIGURE 7.

Case 2: If $a_1 = x_{n_0}^{(\circ)} < x_{n_0} \lor b$ (note that $x_{n_0}^{(\circ)} \leqslant y_{n_0} \leqslant x_{n_0} \lor b$), we choose $b_1 (= z_0^{(1)})$ with $a_1 \prec b_1 \leqslant x_{n_0}^{(\circ)} \lor b$ (see Figure 7). Note that since $[a_0, b_0]$ is preserved (reversed) so is $[a_1, b_1]$. Now repeat the construction with a_0 replaced

by a_1 and b_0 replaced by b_1 . This then produces the elements $z_{n_1}^{(1)}$ and $y_{m_1}^{(1)}$ which are needed to begin the next step of the induction.

(In general, we define $a_{i+1}=z_{n_i-1}^{(i)}$ where n_i is the least number such that $0\leqslant n_i < m_i$ and $x_{n_i+1}\vee z_{n_i}=y_{n_i+1}=y_{n_i+2}=\cdots=y_{m_i}$ and choose $b_{i+1}=z_0^{(i+1)}$ with $a_{i+1}=z_{n_i}^{(i)}\prec z_0^{(i+1)}=b_{i+1}\leqslant x_{n_i}^{(i)}\vee b_i$ (for the case $a_{i+1}=z_{n_i}^{(i)}=x_{n_i}^{(i+1)}\vee b_i=y_{n_i}^{(i)}$, (as Case 1) the preservation of $[a_i,b_i]$ implies the preservation of $[y_{m_i}^{(i)},y_{m_{i+1}}^{(i+1)}]$) and, finally, repeat the process with the covering chain:

 $a_{i+1} = z_{n_i-1}^{(i)} = x_0^{(i+1)} \prec x_1^{(i+1)} \prec \cdots \prec x_{m_{i+1}}^{(i+1)} = y_{m_i}^{(i)}$.

Since S is discrete, there exists N such that $y_{m_N}^{(N)} = b \vee c$ and hence we have a chain:

 $a \lor c \leqslant y_{m_0}^{(\circ)} \leqslant y_{m_1}^{(1)} \leqslant \dots y_{m_N}^{(N)} = b \lor c$

and each step in this chain is preserved (reversed) since each interval $[a_i, b_i]$ is preserved (reversed).

LEMMA 6. Let $a, b, c \in S$ with $a \leq_1 b$. Then $a \vee c \leq_1 b \vee c$.

Proof. Let $a \leqslant_1 b$. Since S_1 is discrete, we have $a = x_0 \prec_1 x_1 \prec_1 \cdots \prec_1 x_{n+1} = b$ for some $x_1, \ldots, x_n \in S$. So either $x_i \prec x_{i+1}$ or $x_{i+1} \prec x_i$ for all $0 \leqslant i < n+1$. It follows from Lemma 5 that $x_i \lor c \leqslant_1 x_{i+1} \lor c$ for all $0 \leqslant i < n+1$. Hence by induction we have $a \lor c = x_0 \lor c \leqslant_1 x_1 \lor c \leqslant_1 \cdots \leqslant_1 x_{n+1} \lor c = b \lor c$.

Finally, Lemma 6 implies that \leq_1 is a compatible order of the semilattice $S = (S; \leq)$. Conditions (B) and (C) imply that Theorem 1 (iii) holds. But Theorem 1(iii) is equivalent to Theorem 2 (i) which is $S \# S_1$ and $S_1 \# S$. This completes the proof of Theorem 3.

REFERENCES

- [1] BIRKHOFF, G.: Lattice Theory, 2nd edition, Amer. Math. Soc., Providence, 1948.
- [2] BIRKHOFF, G.: Some applications of universal algebra, in: Universal Algebra (B. Csákány, E. Fried, E. T. Schmidt, eds.), Colloq. Math. Soc. János Bolyai, Vol. 29, North Holland, Amsterdam, 1982, pp. 107-128.
- [3] DUFFUS, D.—RIVAL, I.: Path length in the covering graph of a lattice, Discrete Math. 19 (1977), 139-158.
- [4] JAKUBÍK, J.: Graph isomorphisms of semimodular lattices, Math. Slovaca 35 (1985), 229-232.
- [5] JAKUBÍK, J.: On isomorphisms of graphs of lattices, Czechoslovak Math. J. 35 (1985), 188-200.
- [6] JAKUBÍK, J.: On lattices determined up to isomorphisms by their graphs, Czechoslovak Math. J. 34 (1984), 305–314.

- [7] JAKUBÍK, J.: Modular lattices of locally finite length, Acta Sci. Math. 37 (1975), 79-82.
- [8] JAKUBÍK, J.: Unoriented graphs of modular lattices, Czechoslovak Math. J. 25 (1975), 240-246.
- [9] JAKUBÍK, J.: Weak product decompositions of discrete lattices, Czechoslovak Math. J. 21 (1971), 399-412.
- [10] JAKUBÍK, J.: Graph-isomorphism of multilattices, Acta Fac. Rer. Nat. Univ. Comenianae Mathematica 1 (1956), 255–264. (Slovak)
- [11] JAKUBÍK, J.: On graph isomorphism of semimodular lattices, Mat.-Fyz. Časopis. 4 (1954), 162–177. (Slovak)
- [12] JAKUBÍK, J.: On the graph isomorphism of lattices, Czechoslovak Math. J. 4 (1954), 131–141. (Russian)
- [13] JAKUBÍK, J.—KOLIBIAR, M.: On some properties of pairs of lattices, Czechoslovak Math. J. 4 (1954), 1-27. (Russian)
- [14] KOLIBIAR, M.: Compatible orderings in semilattices, in: Contributions to general algebra 2 (Klagenfurt, 1982), Hölder-Pichler-Tempsky, Vienna, 1983, pp. 215–220.
- [15] KOLIBIAR, M.: Semilattices with isomorphic graphs, in: Universal Algebra (Esztergom, 1977), Colloq. Math. Soc. János Bolyai, Vol. 29, North-Holland, Amsterdam, 1982, pp. 473–481.
- [16] ROSENBERG, I. G.—SCHWEIGERT, D.: Compatible orderings and tolerances of lattices, in: Orders: description and roles (L'Arbresle, 1982), North-Holland Math. Stud. 99, North-Holland, Amsterdam, 1984, pp. 119–150.
- [17] TOMKOVÁ, M.: On multilattices with isomorphic graphs, Math. Slovaca 32 (1982), 63-73.
- [18] VILHELM, V.: The self dual kernel of Birkhoff's conditions in lattices with finite chains, Czechoslovak Math. J. 5 (1955), 439–450. (Russian)
- [19] RATANAPRASERT, C.—DAVEY, B. A.: Semimodular lattices with isomorphic graphs, Order 4 (1987), 1–13.
- [20] RATANAPRASERT, C.: Compatible Orderings of Semilattices and Lattices, Ph.D. Thesis, Department of Mathematics, La Trobe University, Australia, 1987.

Received March 2, 1994

Silpakorn University Nakorn Pathom 73000 THAILAND