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METRIC BELL INEQUALITIES, RELATIVE
MEASURE OF PROBABILITY AND THE
GEOMETRY OF HIDDEN VARIABLE SPACE

MILAN VINDUSKA

ABSTRACT. Metric inequalities for correlations in Bell's scheme of LHV can be
interpreted as a consequence of the isotropy of the hidden variable space in rela-
tion to the space elements defined by measuring devices. The destroyed isotropy
of such a space leads to the concept of relative measure of probability, which
allows us to describe correctly the quantum mechanical results. For retaining the
Einstein’s locality the necessity of the only relative description of the space-like
correlations must be accepted.

1. Introduction

The metric content of Bell inequalities for correlations in singlet systems,
which has been recognized during last years [2]-[5], has caused a growing atten-
tion [6]-{18]. It has been proved recently that similar metric relations hold for
correlations in precessing spin systems or in the case of oscillations of K and
B mesons [17] (here instants of time, when the measurements of the pertinent
characteristics of both particles are performed, play the role of space elements)
and also for correlations of phases of interfering particles [18]. Thus, it appears
that the metricity of certain correlation functions induced by Bell’s scheme of
hidden variables is its very general characteristic.

This fact makes possible to consider the relation between the Bell scheme of
local hidden variables (=LHV) and quantum mechanics from a new and more
general point of view [16]. Indeed, the key-question of hidden variables can be
now formulated in such a way: why correlation functions in the Bell scheme of
LHV are limited by the metric of spherical or Riemannian geometry while in-
equalities for quantum mechanical correlation functions have a nonmetric form?
The adequate answer to this question may serve as guidance for the inevitable
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extension of Bell’s LHV scheme. Our contribution is devoted to the analysis of
the above question.

The plan of our exposition is as follows. The main results about metric prop-
erties of the corresponding correlation functions in the LHV scheme are briefly
recapitulated in Section 2. The difference between this scheme and quantum
mechanics is considered in Section 3. It is indicated that the metricity of certain
correlation functions is a quite natural consequence of the invariant description
of the LHV picture and expresses the isotropy of the LHV space with respect
to “space elements” defined by the measuring devices. At the same time the
destroyed isotropy of the LHV space leads to the necessity of introduction of a
new concept — relative measure of probability [6] — which is capable of describing
the quantum mechanical results correctly.

The properties of relative measure of probability (=RM) are considered in
Section 4. It appears that in relation to the experiments performed up to now
[19] there exist different possible interpretations of RM [16]. We then discuss
one of the alternatives, i.e., RM as necessity of the only relative description of
the space-like quantum correlations in more details, emphasizing nonclassical
features of such a statistics. In the closing Section the relation of RM to the
other “no-go” theorems for LHV is briefly recapitulated and some more general
problems are discussed.

2. Bell’s LHV scheme and metric
inequalities for correlation functions

We shall start our consideration from the usual description of the correlations
of two particles in the Bell LHV scheme [20]

P(a,b) = fA(a.,)\)B(b, A p(A) di, (1)

here @ and b represent certain space elements, which characterize measured
variables, A(a,)A) and B(b,A\) denote the results of the measurement of the
properties of the first and the second particle, respectively (acquiring values of
+1 and —1 according to convention), A’s are hidden parameters and p(A) is
a positively defined, normalized measure of probability.

The space elements @ and b can be, e.g. — directions on which the spin pro-
jection of particles or linear polarizations of photons are measured; — instants of
time [17], when the measurements of spin projections in singlet precessing sys-
tems are performed (the same relates, with some caution, to measuring flavour
characteristics in systems of K and B mesons); — values of phases [18] of inter-
fering particles, etc.

The correlation function is expressed usually as a relation of the correspond-
ing mean values

() + (==) = {+=) = (=)
)+ () + F+ ()

P(a,b) = A (2)
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here (++) denotes the mean value for A =41 and B = +1, etc.

It is supposed further that the measurements on both particles are performed
at space-like intervals and then the principle of “locality” is formulated (as we
shall see later, it is only a necessary condition for the description to be local)

A@,)) # F(), and B(b,\) # Fla), (3)
and also independence of probability measure of real experimental arrangement
p#p(ab), (4)

which express isotropy of the hidden variable space in relation to the space
elements a and b.

This last relation does not hold, generally, neither in the quantum nor in
the classical statistics. It is not fulfilled in the cases when the measurement of
variable itself supposes destroying the initial symmetry of the system [16]. In
the case of the space-like correlations, however, it looks quite reasonable.

As far as we are trying to construct the LHV scheme as close as possible
to that of quantum mechanics we shall specify some properties of the quantum
mechanical correlation function which can be realized in the LHV scheme, too.

From the symmetry of the considered systems it follows

PeM (g, q) = +1, (5)

where the upper sign relates, e.g., to the case of the correlations of photon linear
polarization in singlet state and/or correlations of phases of interfering bosons,
while the lower sign corresponds to the correlations of spin projections in singlet
(s = %) stationary states, or precessing in the constant magnetic field, to the
correlations of phases of interfering fermions, etc.

The relation (5) can be satisfied in the scheme of LHV if only

Sl Aln,X) =DBla,A) for Pla,a)=1, (6a)
A(a,A) = —B(a,A) for P(a,a)=-1. (6b)

From (1) and (6a) or (6b) it follows that
P(a,b) = P(b,a). (7)

Now a function of Ei(a, b) can be introduced (we shall show latter that it is
equal to a certain conditional probability)

1

d(ﬂ., b) = m

[P(aa G.) e P(a’i b)] ] (8)

which can be interpreted as a metric distance. It is symmetric due to (7), pos-

itively defined, equal zero for identical elements and satisfies the triangular in-
equality

d(al, az) + d(az, ﬂ.3) — d(al, (13) 2 0. (9)

The metric defined through d(e,b) is not yet fully specified. An important

characteristic of the metric is, e.g., its degeneracy. For that we shall investigate
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the properties of P(a,b) and d(a,b) more thoroughly. As it can be easily re-
alized, there are other properties of P?™(a,b) which must hold in the LHV
scheme also.
First it must hold
P(a,b) = P(a—1b), (10)

as in the quantum mechanical case.

Due to the periodicity of P®M (qa—b) it is convenient to express the difference
a — b through some angle @, . It is evident in the case when a and b are
vectors, and it can be realized for one-dimensional spaces as time instants and
phase values, too. In this case we can represent the space elements as points on
a circle and corresponding vectors will join the centre with these points as it is
usual in affine geometry.

The equality (10) can be generally interpreted as a consequence of the rota-
tional invariance of the considered quantum systems.

Another important characteristic of P®M (g — b) is its period = 2«. It can
be derived from the relation

P9¥(q,b) = —P?M(q,a), (10a)
or, equivalently,
POM (k) = —P2M(0), (10b)
where we used notation k= g .
For the considered systems k = 7 for projections of spins, flavour character-
istics and phases and & = Z for correlations of photon linear polarizations.

Postulating relation (lﬂé,b) for LHV correlation functions and using inequal-
ity (9), it is possible to derive another useful relations for P(pq) [22]

P(p)=—-P(k—¢p), Plk—p)=Pc+y), etc. p<k, (10c)
from which an important relation
P(2nk) = P(0), (11)

n=20,1,2,..., can be deduced.
Thus, it appears, that the metric defined with the use of d(a,b) is degener-
ated, as far as

d(a,b) =0 for @u =2ns, n=0,1,2,.... (12)

This degeneracy can be removed by the change of topology of the space, identi-
fying all space elements for which d(a,b) = 0. The upper bound of the metric
defined with d(a,b) is equal to the metric of ordinary spherical geometry (for
r = m ) or of Riemannian geometry on the spherical surfaces (for x = % ). It can
be realized, when we take space elements a,b,... as unit vectors with begin-
nings in a common point. Then the distance between their ends, measured on
the spherical surface can be expressed as )

D(a,b) = kd(a,b). . (13)
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A similar reasoning as above can be done for distance defined in another way.
Braunstein and Caves [23] have introduced mean conditional informa-

tion entropy
H(a/b) = - p(a,B) logp (e/B), (14)
lﬁ
here p (e, ) is the joint probability and p(a/3) the conditional probability for
Aa,A) =a and B(b,A) =8 (o, f==1).
The symmetry of the considered quantum systems leads to the relation

p*M(e, 8) = p°M(-a,-P), (15)
where o, = +1. Assuming that the same relation holds in the LHV scheme
we can rewrite (14)

H(a/b) = — % [P(a,t) + 1] log{ 5 [P(a,b) +1]} -

- % [1 — P(a,b)] ]og{ % [1 — P(a,b)] } (16)

Using properties of P(a,b) derived above, it can be shown that this function
satisfies the first three conditions of metricity and with using Bay es’s theorem
the triangular inequality can be derived [12, 13, 23|. Using (10c) and (16) it can
be also shown that
H{o/b) = H{g.p) =0 for pau=ng 5=0,12..:, (17)
i.e., this metric is twice more degenerated than the metric defined by D(a,b)
(C1.(12)).
Concluding this Section let us make some comments.
C1. Using the relation (15) we can interpret the function of d(a,b) as a condi-
tional probability.
It holds
d(a b) == p(+11 +1) +p (_1’ _1) 1 fOI' P(ﬂ,, a‘) =
’ p(+1,-1)+p(-1,41), for P(a,a) =1,

here p (o, 8); @, = £1 denotes joint probabilities as above.

C2. In spite of similarity of the functions D(a,b) and H(a/b) these functions
differ in respect to the Bell’s LHV scheme substantially. While this scheme
allows for D(a,b) to be an exact spherical or Riemannian metric, it is so for
H(a/b). For details see [13].

C3. For specialists in quantum logic it will not be surprising that different space
elements which define the measured variables are connected by metric rela-
tions in the LHV scheme, as far as all the reasoning is based on an identical
probability scheme. Really, the problem of treating such phenomena as pre-
cession of spins or flavour variables in the case of oscillations of K and B
mesons, correlation of phases of interfering particles has consisted mainly in
the choosing of the suitable quantum state and corresponding experimental
procedure. But what probably has passed unnoticed is the real content of the
discovered metricity which permits us to formulate the question of hidden
variables as it is done in the title of the next Section.

(18)
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3. Why Correlation functions in the Bell’s scheme of
LHYV are limited by metric of spherical or Riemannian
geometry while the inequalities for quantum
mechanical correlations have a nonmetric form?

Discordance between Bell’s LHV scheme and quantum mechanics is usually
solved with the use of Bell’'s Theorem [21], which asserts that quantum me-
chanics can be completed only by nonlocal hidden variables. In the language of
the quantum logic the answer is given in a more abstract and, therefore, more
correct manner [24]: the violation of Bell’s inequalities implies that a lattice of
propositions for a quantum physical system is not distributive [5, 24].

It is true that the broken locality (cf. with (3))

A(a,\)=F(b) and B(b,A) = F(a)

can cause that the Bell inequalities will not be fulfilled and, consequently, the
nondistributivity of the propositions will appear, but it is not true that the con-
cepts of nonlocality and nondistributivity are equivalent, as far as the converse
implication has not yet been proven.

Similarly, there exists a close relation between the Bell’s scheme of LHV
with corresponding metric inequalities and Boolean logic of propositions with
its distributivity, but such an abstract relation does not give an adequate answer
to the key question above either.

Before proceeding it will be useful to say some words about the used method-
ology. Up to now we have used pure algebraic methods and the geometrical pic-
ture has served only for the better illustration of the results. We shall use this
attitude as long as possible because of its generality. But at a certain stage of our
investigation we shall be forced to use purely geometrical methods. It is not a
surprise, because we are discussing problems which are formulated in geometrical
terms and the geometrical methods appear to be more powerful. For explaining
some details we shall also use elementary results of theory of information.

Let us begin our consideration from the first part of the posed question - why
the correlation functions in the Bell’s scheme of LHV are limited by the metric
of spherical or Riemannian geometry.

We understand a limiting (the strongest) correlation function of P(a,b) in
the usual sense. It is a function which reaches the maximum value of | P(a,b)]|
for any a and b, or, equivalently, which minimalizes the difference between
quantum mechanical and LHV values | P2 (a,b) — P(a,b)|. It is not difficult
to realize that for such a function P(a,b) the corresponding function of D (a,b)
is an exact metric distance of spherical or Riemannian geometry (see Fig. 1).

It can be proved an useful theorem which characterizes such extremal func-
tions [6].

THEOREM 1. Let D(0) = 0, D(x) = k, and A(a,)\), B(b,A) and p(})
guarantee the rotational invariance of D (a,b), i.e., D(a,b) = D (@asp) -
Then D (a,b) is the exact metric distance of spherical or Riemannian geom-
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etry if and only if the sequence
A(a1, ), Alag, ), ... , A(an,A),
for an ordered set of space elements

a1,02,03,...,0n; Paian, S:‘C,

changes its sign no more than once for each \.

For a one-dimensional space of elements the ordering simply means placing
of a; in correspondence with the increasing index, for a spherical surface, e.g.,
it means that a; are placed similarly on the main circle.

This theorem can be proven algebraically, exploiting the fact, that the men-
tioned property of A(a;,A) is necessary and sufficient condition for the polygon
equality

D(ai,az) + D(az,a3) +--- + D(an-1,an) — D(a1,a,) =0 (19)

to be held.

The considered property of A(a;, A) has a simple geometrical content. For
Kk =7 it corresponds to the situation when both a; and )\ are vectors in some
—
n-dimensional space and the procedure of evaluating of A(a;,\) = A(@;, A)

is defined as . _
A(a’;, X)) =sign(a;- \). (20)
Using this geometric picture it is not difficult to satisfy relations (5), (6a),

—_}
(6b) and/or (10a) and (10b) if we describe one particle by X; and the second
s st .

: — — —
one by A2 with condition A || A5 or A1 | M5 in accordance with the
symmetry of the system.

For x = 7, what corresponds, e.g., to the measurement of photon linear
polarization the corresponding expressions are more complicated, nevertheless
they can be also written down as signs of scalar products

A(a,)) = A(T, X) =sign( X - 1%, (21)

where A% is constructed in such a way that @ is a bissectrisse of the angle
—_—
A A?. For fulfilling the relations (5), (6a), (6b) and/or (10a), (10b) the relation

—_  — — —
Al A2 or A1 L X5 must be used.

We have introduced here the explicit expressions of (21) because we shall
especially use this example further.

It is worth noting that the supposed properties of p()) are very general up
to now: we demand only p(A) >0, [p()A)dA =1 and preserving the rotational
invariance of P(ygap) .

It appears that the LHV scheme acquires an intelligible content when it
is expressed in geometrical terms. Let us proceed further and geometrize the
measure of probability p()). We shall use affine geometry for this purpose.
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For that we suppose generally that the hidden parameters A, which determine
behaviour of each particle, are vectors in a n-dimensional space. For physical
examples introduced above it is enough to use n =2 or 3.

—

We place the beginnings of the vectors A in the origin of the coordinate sys-
tem. The ends of considered vectors then define some surface S with,dimension
n — 1. As far as there exists one-to-one correspondence between A (hidden

=
parameter describing the first particle) and A 5 (which relates to the second
one), there does not arise a misunderstanding, if we omit the indices “1” ae: 27

(due to the coupling the subsequent relations hold for both S 1 and X 2).
We shall describe the distribution of p(A) as

p(N)drA~ (X - 7)dS, (22)

where d S denotes an element of the surface S, and 7 is a normal to the surface

PRI B 3 s — B
at the “point” A . The direction of 7 must be chosen so that (A - 7’) > 0.
Then the normalization condition takes a form

f(?-ﬁ’)dS:L (23)
5

Which p(A), A(a,A) and B(b,A) must be chosen for satisfying the condi-
tions of Theorem 1? We know that for reaching the extremal values of D (a,b)
and for satisfying relations D (0) = 0 and D (k) = &, it is enough to use func-
tions of signs of the scalar products (20) or (21). Then for guaranteeing the
rotational invariance of the correlation function (10) it is sufficient to express all
terms as geometric invariants with respect to rotations. Due to the homogeneity
and isotropy of the spaces with constant curvature, we can use any elementary
geometry which can be introduced in such spaces: Euclidean, Lobatchevskian or
Riemannian.

As far as the signs of the scalar product are invariant with respect to the
rotations, what remains is an invariant description of p(\). It is clear that
this invariance of p( P will be guaranteed only if & will be identified with the
spherical surface S™*. In this case
T - T = const,

and hidden vectors are equally distributed in the space. Such a picture cor-
responds to the classical description of the singlet systems and the condition
p # p(a,b) is satisfied here automatically.

We can now formulate the answer to the first part of the posed question in

—
the following way. For obtaining the limiting correlation function P(@’, b) or
B

D (@, b) in the Bell scheme of LHV the conditions of Theorem 1 must be sat-
isfied. It can be easily done if the invariant description in space with constant
curvatures is used as far as here the condition p # p(a,b) is guara.nteed by
natural isotropy of these spaces. In such a case the function D (@', b ) realizes
the isomorphic mapping of the spherical surface defined by vectors a1, @z, .- - ,
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onto itself and the appearance of the metric of spherical or Riemannian geome-
tries is a logical consequence of it (there are not other geometries on spherical
surfaces in such spaces [25]).

Let us proceed to the second part of the problem — why the quantum corre-
lations have a nonmetric form.

From the preceding consideration it follows that for the correct description of
quantum phenomena the Bell’s scheme of LHV must be extended. We propose
preserving a general statistical scheme in such an extension as it is formulated
in (1) together with the condition of “locality” expressed by (3).

For justification of the accepted postulates of (1) and of (3) we shall start
our consideration from the case of correlations of photon linear polarizations,
which can serve as an instructive concrete example. It will also demonstrate the
usefulness of Minkowskian geometry in physics (cf. with the use of Minkowskian
geometry 3 + 1 in special theory of relativity).

As far as the linear polarizations of photons can be classically described by
vectors lying in the plane perpendicular to the photon momentum, we shall
express the hidden variables A as vectors with common beginnings lying in the
plane. The ends of such vectors then will define S as a plane curve.

In accordance with (21), we define a projection of linear polarization of the
first photon on @ as

A(@,N) = sign(}; - A9), (24a)
and, similarly, of the second photon on D as
B(b, ;) =sign(A; - 13). (24b)

— — —_ —
The relation between A; and A, is postulated as X;|| A5 for singlet systems
— =
with even parity and as A; L Ay for singlet systems with odd parity. When
only one variable is used, then the relations (24a) and (24b) can be rewritten as
follows R
A(@, ) =sign( X - A7), (25a)
B(b,\) = +sign( X - 3), (25b)
where the upper sign relates to the even parity states and the lower to the odd
ones.
Procedures (24a), (24b) or (25a) and (25b) guarantee fulfilling the following
relations for P(@’, b) and D (@, b) in accordance with quantum mechanics
for any positive and normalized p())

+1, if @ =nm = 01,20000
)=10, if pgp=2gm  pn=0,1,... (26a)

F1, ifgoab——-Ql‘Z"L-i?r; =012
and, consequently,

0, if po =nm A=y ey
D(@, b0)={ 5 ifpw=2r  n=01,2. .. (26b)
7, foa=3%"n  n=012...
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The relations (26b) for 'D(E’,?) correspond to the distance between given

clements @ and b as it is defined in Riemannian geometry on the circle.

Now we have met a problem of invariance, which is closely related to the
properties of the geometry used. In a plane there are two nonequivalent elemen-
tary geometries preserving a quadratic form under rotation: Euclidean geometry
with invariant of 2 + y® = const, and Minkowskian geometry with invariants
22 — y? = £ const [26]. As far as the former one is a metric space, the latter is
not, it will be interesting to compare results which follow from the use of both of
them [11]. The invariant description in terms of Euclidean geometry guarantees
fulfilling the conditions of Theorem 1 and we thus obtain

o
D ((,Oab) = Pab, 0 _<_. Pab S a0 (278‘)

or i 2
P(pap) = £1F —fr”'b ; (27b)

on the same interval. Here @4 denotes the angle between vectors @ and _b_);
the upper sign relates to the even states and the lower to the odd states, respec-
tively.

The full functional dependence of D (¢ap) and P(pay) on e can be ob-
tained by direct computations or by the use of relation (10c). We remind that
in the case of linear photon polarizations sk =

Let us postulate now the invariance of the LHV space with respect to the
hyperbolic rotations, preserving forms z2 — y? = + const:

IS}

z' = xcosh@ — ysinhf,
7 (28)

y' = —zsinh @ 4 ycosh§.

It is not difficult to rewrite all expressions needed as invariants with respebt
to (28). In such a case we have :

A(d, Q) = sign(”).“”?,_) : . (29a)
and w0
B(b,)) = +sign(|I\]%), (29b)

where ||[A"||? denotes the square of the hyperbolic norm of
INTIIE = A% = Ay,

when axis z is identified with 7 (7 = @, b).
A curve which defines distribution of p()\) must be evidently composed of
four branches of hyperbolas

:Cz—yz:ﬁzcl,

here c¢; is a constant.
It appears that in the considered case a question arises of orientation of the

s
Minkowski coordinate system in relation to @ and b . Such a problem appears
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always when we use Minkowskian geometry in the concrete physical situation.
In special theory of relativity, for example, the used coordinate system must
be also oriented in a definite way, but here it looks not so striking because the
opposite sign in the invariant z* + y2 + 22 — ¢?t? has a time variable.

In our case the correct quantum mechanical result for the correlations of the
projection of the photon linear polarizations in singlet systems can be obtained

—_—
if we put the coordinate axis  or y parallel to @ or b . Let us suppose that
Z'||'@’. Then the normalized probability density takes a form

2

- 1 ”)‘a”h
= ]

4 J|Al12
here ¢, is constant. The subscript “e” in the scalar product stresses the using

of scalar product as it is defined in Euclidean geometry, ||A||? is the square of

the ordinary Euclidean norm, and ||A%||? is the square of hyperbolic norm for
— =
& || %

Using the basic relation (1) and (29a), (29b) with (30) we obtain

PN A = pz(A)dA = ex(T - X).

(30)

”

P(@,b) = [p|, (31a)
or, after interchanging @ « b
P(@, D) = [b% = £[|a®|]2 = = cos 20, (31b)

in accordance with the quantum mechanical results. In the expressions (31a) and
(31b) the upper sign relates to the even states and the lower to the odd states,

i
respectively, ¢, is an angle between vectors @ and b .

Without going into details let us notice that the other quantum correlations
as projections of spins of stationary singlet states (s = 1/2) and of precessing
ones in the constant magnetic field, projections of the flavour characteristic in
the case of oscillating K and B mesons, the correlations of interfering bosons
or fermions can be correctly described with the use of the relative measure
of probability p+(A) in the space of the LHV with destroyed isotropy, too
6, 16, 17].

From the macroscopic point of view our space is isotropic, however. It is
reflected by the fact that P%M(a,b) or DM (a,b) are functions of the difference
of a —b only. How to reconcile this symmetry with the symmetry of the LHV
space, which appears to be different (cf., e.g., the transformations of (28))?

It turns out that we must restrict the definition given by (1) by the following
condition

e

PN Ty PR, b):/A(?,A‘)B(?,,\)p?(,\) a,  (32)

3
where 7 =@ or b .

In the next Section we shall see that (32) can be generalized in a way: as
—_ . .
7 all elements, for which transformation of p5 — p+ or py — P+ can be
interpreted as ordinary rotations in Euclidean space, can be taken.
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We have introduced this new concept, p+ (), which we already called a
relative measure of probability in our first paper on the subject [6]. Such a con-
cept reminds in some sense of N. Bohr’s approach to the problem of quantum
mechanics [27], when he stressed the necessity of relating the theoretical descrip-
tion of the quantum phenomena to the concrete physical situation defined by
measuring devices.

The relative measure of probability permits us to overcome the limits of
Bell’s inequality and that of Braunstein and Caves due to the destroyed isotropy
of the LHV space with respect to the space elements a and b [6, 10, 13]. It
practically means that we cannot describe the correlation on three vectors in
general positions with the use of only one p+ . This fact is also responsible for
the nondistributivity of the quantum logic propositions in this model.

It is evident that the possibility of the description of a set of correlation
measurements with one p+ does not depend on the fact if these correlations

s
can be measured in one run or not. In practice any function of P(@’, b) must
be measured in a separate experimental run. Due to the definition (32) we can
describe with one common probability measure p+ (and, therefore, to calculate

the joint probabilities) all correlations with one common vector @’ or B Itis
in accord with the result of analysis of A. Fine, which has proved this property
of LHV by the algebraic method without any reference to the concrete model
[28].

As we have already shown [13] and have demonstrated practically in consid-
ering the Greenberger—Horne-Zeilinger correlations [16], the possibility of using
one probability measure for the considered correlated system does not depend
on the commutativity of the measured operators either. We shall return to this
question in the last Section in connection with the others “no-go” theorems for
hidden variables.

4. Relative measure of probability
and its physical implications

It has appeared that for obtaining correct values for the quantum correlations
we have been forced to destroy the isotropy of LHV space with respect to the
space elements defined by measuring devices and to abandon the original Bell’s
scheme of LHV. In which way can the introduced RM be interpreted?

The most direct possibility is an interpretation as a consequence of so-called
nonlocal influences [29, 30]. Really, we can imagine that before the measurement
the system is described by the absolute p(A) which is independent of a and b.
Then the origin of pa(A) or py(A) can be explained as a result of the interaction
of the measuring device with the system as it is demonstrated in Fig. 2. Such
an explanation, however, is explicitly nonlocal in the case of space-like correla-
tions, because the measurement of the projection of the first particle changes the
distribution of Ay of the second remote one. As a consequence the unavoidable
inconsistencies as in the orthodox interpretation of quantum mechanics will ap-
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pear. Because of the nonsymmetric actions of both apparatuses (really, the first
device changes the state of both particles and the second one only registers this
change) there arise problems when the order of the events is reversed. Space-like
events do not obey absolute time ordering and in the case of time dependent
phenomena [17] undesired retroaction appears; it is not clear how to explain the
phenomenon when both measurements are done in some reference frame at the
same moment, etc.

Careful analysis of the experiments performed with photons [19] permits an-
other logically possible explanation of the quantum correlations in this special
case. The low efficiency of the photon detectors used allows one to explain the
mentioned correlations as a result of the subtle interplay between registered and
unregistered pairs [31, 32).

Actually, we can start our consideration again with p(\) = const as in
the preceding case and explain the distorted distribution with respect to the
orientations of devices as a result of special choice during the measurement (See
Fig. 3). Nevertheless, in this model both detectors cannot act independently,
because in such a case the resulting probability density is a product of pa(A;)
and pp(A2) and it is impossible to define similar (or identical) functions of p,
and pp and at the same time to obtain constant counting rate for registered pairs
which is independent of g, . But it is possible, with some caution, to formulate
such a hidden variable theory which can explain the experiments performed with
these low efficiency detectors. The deficiency of this interpretation is its limited
universality [1].

In our first work [6] we have proposed another interpretation of the relative
measure, we have taken it as a necessity of the only relative description of the
space-like correlations. In such an interpretation the space elements defined by
measuring devices play a role of reference frame to which the description of the
physical system can be related. We have used certain features of the methodology
of the special theory of relativity in this task. It seems reasonable to use the
following assumptions in our case.

Al. Principle of covariant description in any reference frame used. In prac-
tice it means that all procedures of A(a,?), B(b,\?) and also p()\?)
must have the same functional dependence on the corresponding vari-
ables A’. This will guarantee the equivalence of the reference frames
and actions of both apparatuses can be described symmetrically.

A2. Principles of relativistic causality hold in quantum phenomena, too. As
far as each concrete measurement takes place in finite space-time re-
gion, the space-like measurements cannot influence themselves. Hence,
all that concerns the second particle when the first one is measured
can be interpreted only as a gain of information about it, related to
the frame of reference defined by the first apparatus.

The use of both principles is schematically demonstrated in Figs. 4 and 5,
where the measurements of the correlations of the photon linear polarizations
in states with even parity are presented (for definiteness the angle @q = % is
chosen).

There arises a question of the relation between different reference frames and,
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consequently, between A¢ and 3. This relation can be found by specifying
the character of the transformations between A? «» A5 and of the invariants
which such a transformation preserves. For that we propose to use two additional
assumptions.
A3. There exists one-to-one correspondence between A « 5.
A4. The transformation A\¢ «+ A5 must preserve each concrete event as an
invariant, i.e. the result of each concrete measurement must not depend
on the frame reference used for its description.

Hence, it must hold
A(T,2%) = A(T, A
and (33)
B(b,2) = B(7,)%).

These principles were applied in the Figs. 4 and 5, too. We have used here
for the better understanding discrete values of A with AA = % . The continuous
distribution of A can be obtained in the limit AX — 0.

We can imagine the measuring of the correlations as a computer game. Let
us have a set of numbers which describe the frequencies of A§ according to
Pa(A]) depicted in Fig. 4. The measurement of polarization of any particle on
@ can be described as a tossing by chance one of these numbers, which deter-
mines A} and, consequently, the corresponding projections on a’: A(@’, A%).
Due to the connection A¢ « A} the first experimenter can predict the result
of the projection of the second paired particle in any direction by, bs,..., with
certainty. The appearance A} here is not interpreted as a change of the state of
the second particle, but only as a gain of information about it, expressed in a
reference frame connected with p,. The first experimenter can also exploit (33)
to reconstruct the whole picture as it is perceived by the second experimenter
by ps()) (See Figs. 4 and 5).

It is evident that all these procedures can be reversed. We can start our
consideration from the reference frame defined by the second device. As far
as our attitude is strictly local, there do not arise additional difficulties when
the real order of the évents is reversed and/or when the devices change their
orientation during the passage of the particles from the source to the detectors
[43].

A peculiar property of the transformation p,(\¢) < py()3) is worth noting
here. Using assumptions Al — A4, the unambiguous correspondence between A§
and A} can be established only for

2n+1
Pab = 1 m n=0,1,2,...,

while for
i =n%; n=012,...

there remains an unambiguity in placement of A¢ or A} for removing of which
another bit of information is needed. This situation can be understood on the
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base of the information theory. We determine, say, the position of A} in corre-
sponding reference frame exploiting the knowledge of A} and of the value of the
projection B(b, \§) for what, generally, one bit of information is needed. This
bit is in disposal for

_ 2n+1
Lab = 4

because for that value of w,, we have H(pg) = 1 (the mean conditional entropy
is expressed in bits if 2 is used as a base of logarithm in (14) and has a meaning of
the information which is stored in the pair and can be revealed by measurement),
but not for

m n=012...,

m
‘Pab:ni; n=0,12...,

where H(pgp) =0.

For other values of ¢q; we get 0 < H(pgs) < 1 , which is an intermediate
situation between both considered limits. In order to remove the mentioned un-
ambiguity we have used the additional rule for establishing the relation between
A? and A}. It was the following

al) the small changes of @, lead to the small changes of the ordering of
A, or, equivalently,

a2) if there are two possibilities for placing of certain A, then there is
preferred the natural order of indices.

It can be shown, that neither the preceding nor the following investigations
are influenced by this special choice.

As far as we interpret the distributions of po(A$) and p,(A3) as description of
the photon singlet state in a different reference frame, we can define an operator
which transforms one distribution into another

ps(A3) = R(wab) pa(AS)- (34)

On the basis of Al - A4 it can be shown, that there always exists [fl(epab)] x
such that : 4

[R(pab)] " R(pab) =1, (35)

where the transformation of identity can be taken as I%((pab =0).
Other properties of the transformation R((pgp) can be specified as it follows
[43]
P1. Generally ﬁ(r,oab) do not form a group, i.e. a general product of two

transformations A .
R(pap) - R(pve)

does not represent a transformation.

P2. Operators of R(wa) form only a cyclic group with elements ﬁl’.(tpﬂb) :
Yab = ny, n = 0,1,2,..., for which the transformation R is an
ordinary rotation in Euclidean space (this result can be generalized:

the number of the independent elements of the cyclic group is equal to
the number of operators of the task which mutually commute).
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Both mentioned properties of transformation of p () are not so unexpected,
because it is known that whereas the transformations of a state vector in quan-
tum mechanics generally form a group, it is not so for probabilities and a special
role of the commutations (P2) in the LHV scheme can be expected, too.

It must be emphasized, however, that both properties P1 and P2 of R(pa)
were deduced here as a consequence of the different symmetries which take place
in the space of the LHV and in the ordinary macroscopic space defined by the
measuring devices. In other words, we can use the measurement of quantum
correlations as a mean for the study of the symmetry of the LHV space.

Tt appears that the description with the relative measure of probability
demonstrates both classical and nonclassical behaviour.

The classical properties may be seen in the fact, that RM admits a concept of
counterfactual definiteness [35] (= the possibility of considering unique results
of the unperformed experiments). It can be seen from the following. Knowledge
of \¢ of the first particle and relation between A{ and A§ makes it possible to
predu:t definite results of experiment on the second pa.rtlcle when its projection

is measured on any direction of b . Tt allows us also to use A} in the same way
and to predict the definite result of the measurement of the projection of the
first particle on any direction of @ . In this sense the unperformed experiments
have the unique results. Due to the fact that the transformations of R((,oag,) do
not form a continuous group of parameter (., however, this property cannot be
used for the derivation of contradiction with quantum mechanics. In this respect
our proposed model has a similar property as the model introduced before by
Pitowsky [36]-[38].

Nonexistence of the group of transformations of p(A) has also peculiar con-
sequences when the propositions based on different probability schemes are com-
bined. In the pure quantum mechanical treatment it can lead to the different
type paradoxes and confusions.

As an example, the “relativity of the quantum mechanical predictions” indi-
cated by Pitowsky [39] can be introduced or the analysis of the Hard y’s
paper about relativistic invariance of the LHV picture [40]. In the language of
quantum mechanics such paradoxes can be solved if the foreseeing prescription of
von Neumann about necessity of the definition of the measuring procedure
for each operator is used [41].

In the language of the RM a special care must be taken when the different
probability schemes are combined.

5. Conclusion

We have investigated thoroughly implications following from the Bell inequal-
ities for LHV and have indicated in which way these constraints can be overcome
by the relative probability measure. It is not difficult to understand why the RM
invalidates other no-go theorems as Braunstein and Cave’s inequalities
[23], Feynman’s inequality [42, 43], and von Neumann’s theorem [13,
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41] as far as they use the concept of independent probability measure. It was
shown [16], that the consistent use of the concept of RM succesfully solves para-
doxes connected with Greenberger-Horne-Zeilinger correlations
(44], too. It must be stressed that the main problem is neither in the commuta-
tivity of the measured operators (e.g. GHZ-like correlations deal with commuting
operators) nor in the simultaneous measurability of them (as a rule the differ-
ent setting of measuring devices are needed for their verification), but in the
possibility to describe the experimental situation with single RM.

Similar theories are often called contextual. We are not sure if such a de-
notation is truthful. Because the contextuality may include also the nonlocal
behaviour, we have preferred the term relative measure of probability which, in
our opinion, corresponds better to its content.

It is possible to say that from the point of view of the historical controversy
between Einstein and Bohr about the role and content of quantum mechanics
the concept of RM lies somewhere in the middle between these contradictory
positions. In other words, it partially gives truth both of them [45].

It remains to comment three important questions concerning RM. Is it really a
local model? Does it correspond to the concept of realistic description of Nature?
Does the use of RM lead to a more reasonable explanation of the quantum
phenomena?

As to locality, it can be certainly asserted that the description with the RM
is local. It is constructed and interpreted in this way.

More difficult is the problem of its reality (here we mean the independence
of the description on the phenomenon of the observer). In any case, the RM
contradicts the Bell scheme of LHV, which is very often taken as a synonym of
“local realism” and it seems not to fulfil definitions of the realistic description,
given, e.g., by Santos [7Jor Gudder [46]. A wider concept of reality could
be a way out of this situation, but the author does not feel himself strong in this
rather philosophical field.

The analogy with the special theory of relativity can help in claryfying the
whole problem. Can we speak about masses, distances and the time intervals
without specifying the frame of reference which we use for description of the
physical phenomena? We think, that we do, although for the concrete consid-
eration we must use a definite reference frame. The description of a concrete
phenomenon will depend on the frame reference used, the concrete variables will
acquire different values, the geometrical picture will change, the space-like events
may be reversed; the different frequencies due to the Thomas rotation can be
registered, etc. All this will not bother us, because we know, that it is a direct
consequence of the transformation law of the special theory of relativity. More-
over, we know, that there exists a special reference frame with some extremal
properties, when masses and time intervals are minimal and distances maximal.

A very analogous reasoning may be done in our case for the relative proba-
bility measure, too, when it is considered from the different “frame of reference”
defined by the measuring devices. In this case the special reference frame also
exists, which has some extremal properties. It is that one, where the measure-
ments actually occur. It differs from the other frames by the fact that in it the
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information entropy of the measured part of the considered system can reach a
minimumyequal to zero) by the proper evaluating of hidden variables.

The use of the RM as an interpretational language of quantum mechanics can
be useful when we feel the necessity to explain what does happen in a quantum
phenomenon. This scheme, by our opinion, is as close to the classical statistics
as possible. It allows us to explain the correlations of the space-like events in
local way — as a consequence of the symmetry of the system considered. The
price which we must pay for it [47], is the abandoning of the concept of the
absolute independent probability measure, which is an inherent feature of classi-
cal statistics, and, therefore, the loss of the possibility to describe the quantum
phenomena per se.

Whether this price will be compensated by the better understanding of the
quantum world is an open question. It would be desirable to generalize the
proposed concept in such a way so that the rational heart of the matter would
not be lost, to consider possibility of application of the RM in other quantum
phenomena, to make clear the question of the possible relativization of this
model, to reveal a dynamics of hidden variables,etc.
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Fig. 1

The dependence of quantum mechanical function P?™ and of PLHV and
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DLHV in Bell’s scheme of the LHV on as - In this Fig. 1 PLHV and pLHV
are presented by the same straight line. The relation between P9M and PLHV
is demonstrated for values of ¢; and ¢, (See text).

0 /2 %
Fig. 2

Distribution of pa(A1) and (pa(A2) corresponding to the first and second par-
ticle, respectively. It is supposed that the measurements of the projection of
the first particle immediately changes distribution of A, of the second one. The
projections are evaluated according to

— <
Aa )= { T Tl Ml

otherwise,

+1, for [b— Ag] < =
—1, otherwise,

B(b, ) = {

which corresponds to the singlet state with even parity. The dotted line p = const
corresponds to p before the measurement. In the Fig. 2 distribution of A only
up to 7 is presented for brevity.
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Fig. 3

The origin of the relative measure of probability according to variable detec-
tion model. Presented distribution of ps(\1) and ps(Az) must be taken only
symbolically (see text). The dotted line p = const corresponds to p before the
measurement.
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Fig. 4

Distribution of A{ and A} as it perceived by first experimenter measuring the
projection of the linear polarization of the first particle along @ .
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Fig. 5

Distribution of A} and A} as it is perceived by second experimenter measuring

the linear polarization of the second particle along D . The projections on both
Figs. 4 and 5 are evaluated according to ;

+1, forjla— M| < F

T, ’ = g2
Afah) { —1, otherwise,

+1, for [b—X2| <,
-1, otherwise,

B(b,\z) = {

which corresponds to the singlet state with even parity. The denumeration of
boxes of the discrete values of A in Fig. 5 is obtained from the transformation
law of pa(A$) to ps(Ad) as it is performed in the frame reference related to @ .
In both Figs.4 and 5 the distribution of A only up to 7 is presented for brevity.
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