

POLAR OPERATORS IN LATTICE OF RADICAL CLASSES OF ℓ -GROUPS

DAO-RONG TON

Dedicated to Professor J. Jakubík on the occasion of his 70th birthday

ABSTRACT. In this paper we prove that for most radical classes $\mathcal{R}_{12i_3...i_7}$ there exists a unique largest radical class $\mathcal{R}'_{12i_3...i_7}$ whose intersection with $\mathcal{R}_{12i_3...i_7}$ is trivial. $\mathcal{R}'_{12i_3...i_7}$ is called the polar of $\mathcal{R}_{12i_3...i_7}$. We give concrete construction for polars of radical classes generated by the integer group \mathbb{Z} .

1. Preliminaries

We use the common terminology and notation of [1, 2, 4]. Throughout the paper G is an ℓ -group. We use the additive group notation. Let $\{G_{\lambda} \mid \lambda \in \Lambda\}$ be a family of ℓ -groups and $\prod_{\lambda \in \Lambda} G_{\lambda}$ their direct product. If an ℓ -group G is a subdirect product of G_{λ} , we denote this by $G \subseteq' \prod_{\lambda \in \Lambda} G_{\lambda}$. We denote the ℓ -subgroup of $\prod_{\lambda \in \Lambda} G_{\lambda}$ consisting of the elements with only finitely many non-zero components by $\sum_{\lambda \in \Lambda} G_{\lambda}$. An ℓ -group G is said to be a completely subdirect product of G_{λ} , if G is an ℓ -subgroup of $\prod_{\lambda \in \Lambda} G_{\lambda}$ and $\prod_{\lambda \in \Lambda} G_{\lambda} \subseteq G$. An ℓ -group G is said to be an ideal subdirect product of G, denoted $G \subseteq ' \prod_{\lambda \in \Lambda} G_{\lambda}$, if $G \subseteq' \prod_{\lambda \in \Lambda} G_{\lambda}$ and G is an ℓ -ideal of $\prod_{\lambda \in \Lambda} G_{\lambda}$. For each $\chi \in \Lambda$ let χ be the projection from χ and χ onto χ and

$$\overline{G}_{\lambda} = \left\{g \in \prod_{\lambda \in \Lambda} G_{\lambda} \mid \lambda' \neq \lambda \Rightarrow g_{\lambda'} = 0\right\}.$$

For any $\lambda \in \Lambda$ and $a_{\lambda} \in G_{\lambda}$ let $\overline{a}_{\lambda} = (0, \dots, 0, a_{\lambda}, 0, \dots, 0)$.

AMS Subject Classification (1991): 06F15, 20F60. Key words: lattice-ordered group, radical class, polar operator.

DAO-RONG TON

Let G be an ℓ -group. $\mathcal{C}(G)$ denotes the complete lattice of all convex ℓ -subgroups of G. For $g \in G$, G(g) is the principal convex ℓ -subgroup generated by g. Let $X \subseteq G$. $X_G^{\perp} = \{g \in G \mid |g| \land |x| = 0 \text{ for all } x \in X\}$ is called the *polar* of X in G and $X^{\perp \perp}$ is called the *double polar* of X. If G is an ℓ -subgroup of an ℓ -group H, the order closure \overline{G}_H of G in H is the smallest closed ℓ -subgroup of H containing G.

We can make new ℓ -groups from some original ℓ -groups. These operations include:

- 1. taking convex ℓ -subgroups,
- 2. forming joins of convex ℓ -subgroups,
- 3. forming completely subdirect products,
- 3'. forming direct products,
- 4. taking ℓ -homomorphic images,
- 4'. taking complete ℓ -homomorphic images,
- 4". taking ℓ -homomorphic images,
- 5. forming extensions, that is, G is an extension of A by using B if A is an ℓ -ideal of G and B = G/A,
- 6. taking order closures, that is, G is an order closure of A if A is a convex ℓ -subgroup of an ℓ -group H and $G = \overline{A}_H$,
- 7. taking double polars, that is, G is a double polar of A if A is a convex ℓ -subgroup of an ℓ -group H and $G = A_H^{\perp \perp}$.

A family \mathcal{U} of ℓ -groups is called a class if it is closed under some operations. If a class \mathcal{U} is closed under the operations $1, 2, i_3, \ldots, i_7$, we call \mathcal{U} a $12i_{3\ldots i_7}$ -class where $i_3 \in \{3, 3', 4''\}$, $i_4 \in \{4, 4', 4''\}$ $i_5 \in \{4'', 5\}$ $i_6 \in \{4'', 6\}$, $i_7 \in \{4'', 7\}$. All our classes always assumed to contain along with a given ℓ -group all its ℓ -isomorphic images, so we omit the index 4". Thus, a radical class [5] is a 12-class, a quasi-torsion class [6] is a 124'-class, a torsion class [7] is a 124-class, a closed-kernel radical class [3, 10] is a 126-class, a polar kernel radical class [3] is a 127-class. A 125-class is called a complete radical class. We call a 123'-class (a 123-class) a product radical class (a subproduct radical class) [8, 9]. Let $T_{12i_3\ldots i_7}$ be the complete lattice of all $12i_3\ldots i_7$ -classes. Let $\mathcal{R}_{12i_3\ldots i_7}$ be a $12i_3\ldots i_7$ -class and G be an ℓ -group. Then there exists a larger convex ℓ -subgroup of G belonging to $\mathcal{R}_{12i_3\ldots i_7}$. We denote it by $\mathcal{R}_{12i_3\ldots i_7}$ and call it the $\mathcal{R}_{12i_3\ldots i_7}$ -radical of G.

In [10] we discussed the relationship between several radical classes and gave the characteristic properties for several radical mappings. This paper is a continuation of [10].

2. Polar operators

In this section we will show that for most of $12i_3 \dots i_7$ -classes $\mathcal{R}_{12i_3 \dots i_7}$, there exists a unique largest radical class $\mathcal{R}'_{12i_3 \dots i_7}$ in $T_{12i_3 \dots i_7}$, whose intersection with $\mathcal{R}_{12i_3 \dots i_7}$ is trivial. We call the mapping $\mathcal{R}_{12i_3 \dots i_7} \to \mathcal{R}'_{12i_3 \dots i_7}$ a polar operator in $T_{12i_3 \dots i_7}$, denoted by $PO_{12i_3 \dots i_7}$. $\mathcal{R}'_{12i_3 \dots i_7}$ is said to be the polar of $\mathcal{R}_{12i_3 \dots i_7}$ in $T_{12i_3 \dots i_7}$.

LEMMA 2.1. ([3], [5]). For any radical class \mathcal{R}_{12} , $\mathcal{R}'_{12} = \{G \mid \mathcal{R}_{12}(G) = 0\}$ is the unique largest radical class such that $\mathcal{R}_{12} \cap \mathcal{R}'_{12} = 0$. For each ℓ -group G, $\mathcal{R}'_{12}(G) = \mathcal{R}_{12}(G)_G^{\perp}$.

The following lemma is clear.

LEMMA 2.2. For any $\mathcal{R}_{12} \in T_{12}$, $\mathcal{R}'_{12} \in T_{126} \cap T_{127}$.

COROLLARY 2.3. For any $\mathcal{R}_{12} \in T_{12}$, $\mathcal{R}'_{12} \in T_{125}$.

Proof. $T_{127} \subseteq T_{125}$ (see Theorem 2.7 in [10] and also see Proposition 4.4 in [3]).

From Lemma 2.1, Lemma 2.2 and Corollary 2.3 we have

THEOREM 2.4. For any closed-kernel radical class (polar radical class, complete radical class) \mathcal{R} , there exists a unique largest closed-kernel radical class (polar radical class, complete radical class, respectively) \mathcal{R}' such that $\mathcal{R} \cap \mathcal{R}' = 0$ and $\mathcal{R}'(G) = \mathcal{R}(G)^{\perp}$ for each ℓ -group G.

In [7] J. Martinez proved that for any torsion class \mathcal{R}_{124} the torsion class $\mathcal{R}'_{124} = \{G \mid \text{if } C \in \mathcal{C}(G) \text{ and } H \text{ is an ℓ-homomorphic image of C, then } \mathcal{R}_{124}(H) = 0\}$ is the unique largest torsion class whose intersection with \mathcal{R}_{124} is trivial. Similarly, we can show that for any quasi-torsion class $\mathcal{R}_{124'}$, the quasi-torsion class $\mathcal{R}'_{124'} = \{G \mid \text{if } C \in \mathcal{C}(G) \text{ and } H \text{ is a complete ℓ-homomorphic image of C, then <math>\mathcal{R}_{124'}(H) = 0\}$ is the unique largest quasi-torsion class whose intersection with $\mathcal{R}_{124'}$ is trivial.

A 123'4'-class is called a product quasi-torsion class.

THEOREM 2.5. For any product quasi-torsion class $\mathcal{R}_{123'4'}$, there exists a unique largest product quasi-torsion class $\mathcal{R}'_{123'4'}$ whose intersection with $\mathcal{R}_{123'4'}$ is trivial.

Proof. Let

 $\mathcal{R}'_{123'4'} = \bigl\{ G \mid \text{if } C \in \mathcal{C}(G) \text{ and } H \text{ is a complete ℓ-homomorphic} \\ \text{image of } C, \quad \text{then} \quad \mathcal{R}_{123'4'}(H) = 0 \bigr\} \,.$

Similarly to Theorem 2.3 of [7] we see that $\mathcal{R}'_{123'4} \in T_{124}$. Now suppose that $\{G_{\lambda} \mid \lambda \in \Lambda\} \subseteq \mathcal{R}'_{123'4'}, C \in \mathcal{C}\left(\prod_{\lambda \in \Lambda} G_{\lambda}\right)$ and f is a complete ℓ -homomorphism from C onto an ℓ -group H. For each $\lambda \in \Lambda$ let

$$\overline{\varphi_{\lambda}(C)} = \left\{ g \in C \mid g_{\lambda} \in \varphi_{\lambda}(C) \text{ and } g_{\lambda'} = 0 \text{ for } \lambda' \neq \lambda \right\}.$$

Then $\overline{\varphi_{\lambda}(C)} \in \mathcal{C}(C) \cap \mathcal{C}(\overline{G}_{\lambda})$ for $\lambda \in \Lambda$. Hence

$$\mathcal{R}_{123'4}\left(\left[\overline{\varphi_{\lambda}(C)}\right]\right) = 0 \quad (\lambda \in \Lambda),$$

$$\mathcal{R}_{123'4}\left(\prod_{\lambda \in \Lambda} f\left[\overline{\varphi_{\lambda}(C)}\right]\right) = \prod_{\lambda \in \Lambda} \mathcal{R}_{123'4}\left(f\left[\overline{\varphi_{\lambda}(C)}\right]\right) = 0. \tag{2.1}$$

The mapping $f' : c = (\ldots, c_{\lambda}, \ldots) \longrightarrow (\ldots, f(\overline{c}_{\lambda}), \ldots)$ defines an ℓ -homomorphism from $\prod_{\lambda \in \Lambda} \varphi_{\lambda}(C)$ onto $\prod_{\lambda \in \Lambda} f\left[\overline{\varphi_{\lambda}(C)}\right]$. If $a, b \in C$ such that f(a) = f(b)

in H, then $|\overline{a}_{\lambda} - \overline{b}_{\lambda}| \leq |a - b|$, and so $f(\overline{a}_{\lambda}) = f(\overline{b}_{\lambda})$ for each $\lambda \in \Lambda$. This means that the mapping

 $g: h \longrightarrow \left(\ldots, f\left(\overline{f^{-1}(h)_{\lambda}}\right), \ldots\right)$

is an ℓ -homomorphism from H into $\prod_{\lambda \in \Lambda} f\big[\overline{\varphi_{\lambda}(C)}\,\big]$ and $g \circ f = f'|_C$. The fact

that Ker f is closed implies that $f^{-1}(\operatorname{Ker} g) = \operatorname{Ker} f$, so Ker g = 0 and g is an embedding. Since C is a convex ℓ -subgroup of $\prod_{\lambda \in \Lambda} \varphi_{\lambda}(C)$, H is also a convex

 ℓ -subgroup of $\prod_{\lambda \in \Lambda} f[\overline{\varphi_{\lambda}(C)}]$. It follows from the formula (2.1) that

$$\mathcal{R}_{123'4'}(H) = H \cap \mathcal{R}_{123'4'}\left(\prod_{\lambda \in \Lambda} f\left[\overline{\varphi_{\lambda}(C)}\right]\right) = 0.$$

Therefore $\prod_{\lambda \in \Lambda} G_{\lambda} \in \mathcal{R}'_{123'4'}$, and $\mathcal{R}/_{123'4'} \in T_{123'4'}$.

It is clear that $\mathcal{R}_{123'4'} \cap \mathcal{R}'_{123'4'} = 0$. If \mathcal{U} is a product quasi-torsion class so that $\mathcal{U} \cap \mathcal{R}_{123'4'} = 0$, $G \in \mathcal{U}$, $C \in \mathcal{C}(G)$ and $\varphi \colon C \longrightarrow H$ is a complete ℓ -homomorphism, then $C \in \mathcal{U}$ and $H \in \mathcal{U}$. Hence $\mathcal{R}_{123'4'}(H) = 0$, that is $G \in \mathcal{R}'_{123'4'}$ and $\mathcal{U} \subseteq \mathcal{R}'_{123'4'}$. We have proved that $\mathcal{R}'_{123'4'}$ is the unique largest product quasi-torsion class whose intersection with $\mathcal{R}_{123'4'}$ is trivial.

LEMMA 2.6. For any $\mathcal{R}_{124'} \in T_{124'}$, $\mathcal{R}'_{124'} \in T_{124'6}$.

Proof. Suppose that G is a convex ℓ -subgroup of H and $G \in \mathcal{R}'_{124'}$. We want to show that $\overline{G}_H \in \mathcal{R}'_{124'}$. Let $C \in \mathcal{C}(\overline{G}_H)$ and C' be a complete ℓ -homomorphic image of C with ℓ -homomorphism φ . Put $C_1 = C \cap G$ and $C'_1 = \varphi(C_1)$. Then $\overline{C'_1} = C'$ and C'_1 is dense in C'. Since $G \in \mathcal{R}'_{124'}$, $\mathcal{R}_{124'}$ (C'_1) = 0. But

 $\mathcal{R}_{124'}(C_1') = \mathcal{R}_{124'}(C') \cap C_1'$

hence $\mathcal{R}_{124'}(C_1') = 0$. We have proved that $\mathcal{R}_{124'}' \in T_{124,6}$.

From Lemma 2.6 we get

THEOREM 2.7. For any closed-kernel quasi-torsion class \mathcal{R} there exists a unique largest closed-kernel quasi-torsion class \mathcal{R}' whose intersection with \mathcal{R} is trivial.

A 1234'-class is called a subproduct quasi-torsion class.

THEOREM 2.8. For any subproduct quasi-torsion class $\mathcal{R}_{1234'}$ there exists a unique largest subproduct quasi-torsion class $\mathcal{R}'_{1234'}$ whose intersection with $\mathcal{R}_{1234'}$ is trivial.

Proof. Let

$$\mathcal{R}'_{1234'} = \{G \mid \text{if } C \in \mathcal{C}(G) \text{ and } H \text{ is a complete ℓ-homomorphic}$$

image of C , then $\mathcal{R}_{1234'}(H) = 0\}$.

We need only to show that $\mathcal{R}'_{1234'}$ is closed under forming completely subdirect products. Suppose that $\{G_{\lambda} \mid \lambda \in \Lambda\} \subseteq \mathcal{R}'_{1234'}$ and G is a completely subdirect product of G_{λ} . Let C be a convex ℓ -subgroup of G and f be a complete ℓ -homomorphism from C onto H. Since $\sum_{\lambda \in \Lambda} G_{\lambda} \subseteq G$ and $C \in \mathcal{C}(G)$, $\overline{\varphi_{\lambda}(C)} \in \mathcal{C}(C) \cap \mathcal{C}(\overline{G_{\lambda}})$ for each $\lambda \in \Lambda$. Hence

$$\mathcal{R}_{1234'}\Big(fig[\overline{arphi_{\lambda}(C)}\,ig]\Big) = 0\,, \quad ext{and}$$
 $\mathcal{R}_{1234'}\Big(\prod_{\lambda \in \Lambda} fig[\overline{arphi_{\lambda}(C)}\,ig]\Big) = \prod_{\lambda \in \Lambda} \mathcal{R}_{1234'}\Big(fig[\overline{arphi_{\lambda}(C)}\,ig]\Big) = 0\,.$

Similarly to Theorem 2.5 H can be considered as a ℓ -subgroup of $\prod_{\lambda \in \Lambda} f\left[\overline{\varphi_{\lambda}(C)}\right]$. Since $C \in \mathcal{C}(G)$ and $\sum_{\lambda \in \Lambda} G_{\lambda} \subseteq G$, $\sum_{\lambda \in \Lambda} \varphi_{\lambda}(C) \subseteq C$. That is, C is a completely subdirect product of $\left\{\varphi_{\lambda}(C) \mid \lambda \in \Lambda\right\}$. Therefore H is a completely subdirect product of $\left\{f\left[\overline{\varphi_{\lambda}(C)}\right] \mid \lambda \in \Lambda\right\}$. It follows from Theorem 3.2 of [10] that

$$\mathcal{R}_{1234'}(H) = \mathcal{R}_{1234'}\Big(\prod_{\lambda \in \Lambda} f\big[\,\overline{\varphi_{\lambda}(C)}\,\big]\Big) \cap H = 0\,.$$

and so $G \in \mathcal{R}'_{1234'}$.

For a proper variety \mathcal{R} there is no variety \mathcal{R}' such that $\mathcal{R} \cap \mathcal{R}' = 0$, because every variety contains the abelian variety \mathcal{A} .

Let \mathcal{R} and \mathcal{I} be two radical classes in $T_{12i_3...i_7}$. Define $\mathcal{R}'' = (\mathcal{R}')'$. Then

$$(1) \mathcal{R} \subseteq \mathcal{R}'',$$

(2) if
$$\mathcal{R} \subseteq \mathcal{I}$$
, then $\mathcal{R}' \supseteq \mathcal{I}'$, (2.2)

$$(3) \mathcal{R}' = \mathcal{R}''',$$

$$(4) (\mathcal{R} \vee \mathcal{I})' = \mathcal{R}' \wedge \mathcal{I}'.$$

Thus the polar operator defines a Galois connection which has the above properties. We call the mapping $\mathcal{R} \longrightarrow \mathcal{R}''$ a polar closure operator in $T_{12i_3...i_7}$, denoted by $PCO_{12i_3...i_7}$. \mathcal{R}'' is called the polar closure of \mathcal{R} . A polar closure operator has the following properties:

(1)
$$\mathcal{R}'' = (\mathcal{R}'')''$$
,
(2) if $\mathcal{R} \subseteq \mathcal{I}$, then $\mathcal{R}'' \subset \mathcal{I}''$.

3. Examples

Let G be an ℓ -group. We denote by $\mathcal{R}_{12i_3...i_7G}$ the intersection of all $12i_3...i_7$ -classes containing G. It is said to be the $12i_3...i_7$ -class generated by G. In [3] [10] the construction for $12i_3...i_7$ -classes generated by the integer group Z were given.

$$\mathcal{R}_{12Z} = \left\{ \sum_{\alpha \in A} Z_{\alpha} \mid Z_{\alpha} = Z \quad \text{for all } \alpha \in A \right\}, \tag{3.1}$$

$$\mathcal{R}_{123Z} = \left\{ G \mid \sum_{\alpha \in A} Z_{\alpha} \subseteq G \subseteq \prod_{\alpha \in A} Z_{\alpha}, \quad Z_{\alpha} = Z \quad \text{for all } \alpha \in A \right\}, \tag{3.2}$$

$$\mathcal{R}_{123'Z} = \left\{ G \mid G \subseteq^* \prod_{\alpha \in A} Z_\alpha = Z \quad \text{for all } \alpha \in A \right\}, \tag{3.3}$$

 $\mathcal{R}_{126Z} = \Big\{ G \,|\, G \text{ is an order closure of a convex ℓ-subgroup} \Big\}$

$$\sum_{\alpha \in A} Z_{\alpha} (Z_{\alpha} = Z) \text{ of an } \ell\text{-group } H \},$$
(3.4)

 $\mathcal{R}_{127Z} = \Big\{ G \,|\, G ext{ is a double polar of a convex ℓ-subgroup}$

$$\sum_{\alpha \in A} Z_{\alpha} (Z_{\alpha} = Z) \text{ of an } \ell\text{-group } H \}.$$
 (3.5)

In this section we will determine the polars of the above $12i_3 \dots i_7$ -classes generated by Z. An ℓ -group G is called locally dense if for any element $0 < g \in G$ there exists $x \in G$ such that 0 < x < g.

PROPOSITION 3.1. $\mathcal{R}'_{12Z} = \{G \mid G \text{ is a locally dense } \ell\text{-group}\}.$

Proof. $\mathcal{R}'_{12Z} = \{G \,|\, \mathcal{R}_{12Z}(G) = 0\}$. By formula (3.1) we see that $G \in \mathcal{R}'_{12Z}$ if and only if G does not contain the integer group \mathbb{Z} as a convex ℓ -subgroup, if and only if for any element $0 < g \in G$ the principal convex ℓ -subgroup G(g) is not ℓ -isomorphic to \mathbb{Z} . Since $G(g) = \{x \in G \,|\, 0 \leq |x| \leq n |g|$ for some $n \in \mathbb{N}\}$, $G \in \mathcal{R}'_{12Z}$ if and only if G is locally dense.

By Lemma 2.2 and Corollary 2.3 we have

POLAR OPERATORS IN LATTICE OF RADICAL CLASSES OF \(\ell \)-GROUPS

COROLLARY 3.2. \mathcal{R}'_{12Z} is a closed-kernel, polar and complete radical class.

PROPOSITION 3.3. $\mathcal{R}'_{126Z} = \{G \mid G \text{ is a locally dense } \ell\text{-group}\}.$

Proof. Since \mathcal{R}'_{12Z} is a closed-kernel radical class, $\mathcal{R}'_{12Z} \subseteq \mathcal{R}'_{126Z}$. But since $\mathcal{R}'_{126Z} \cap \mathcal{R}_{126Z} = 0$, $\mathcal{R}'_{126Z} = \mathcal{R}'_{12Z}$.

By Theorem 2.4 and the formula (3.5), similarly to the proof of Proposition 3.3 we have

PROPOSITION 3.4. $\mathcal{R}'_{127Z} = \{G \mid G \text{ is a locally dense } \ell\text{-group}\}.$

PROPOSITION 3.5. $\mathcal{R}'_{123'Z} = \{G \mid G \text{ is a locally dense } \ell\text{-group}\}.$

Proof. By Theorem 4.1 of [8], $\mathcal{R}'_{123'Z} = \{G \mid \mathcal{R}_{123'Z}(G) = 0\}$. It follows from the formula (3.3) that if $G \in \mathcal{R}'_{123'Z}$ then G does not contain Z as a convex ℓ -subgroup. Conversely, if G does not contain Z as a convex ℓ -subgroup and $\mathcal{R}'_{123'Z}(G) \neq 0$, then $\mathcal{R}'_{123'Z}(G)$ is an ideal subdirect product of $\{Z_{\alpha} \mid \alpha \in A\}$ ($Z_{\alpha} = Z$ for all $\alpha \in A$). Since $\sum_{\alpha \in A} Z_{\alpha}$ is a convex ℓ -subgroup of $\mathcal{R}_{123'Z}(G)$ and $\mathcal{R}_{123'Z}(G)$ is a convex ℓ -subgroup of G, so $\sum_{\alpha \in A} Z_{\alpha}$ is a convex ℓ -subgroup of G, a contradiction. Hence $G \in \mathcal{R}'_{123'Z}$ if and only if G is locally dense.

By Theorem 4.1 of [9] and the formula (3.2), using a proof similar to that of Proposition 3.5 we can get

PROPOSITION 3.6. $\mathcal{R}'_{123Z} = \{G \mid G \text{ is a locally dense } \ell\text{-group}\}.$

Thus, the radical class \mathcal{R}'_{12Z} of all locally dense ℓ -groups is simultaneously the polar of \mathcal{R}_{12Z} , \mathcal{R}_{126Z} , \mathcal{R}_{127Z} , \mathcal{R}_{123Z} and $\mathcal{R}_{123'Z}$.

REFERENCES

- ANDERSON, M.—FEIL, T.: Lattice-Ordered Groups, (An Introduction), D. Reidel Publishing Company, 1988.
- [2] CONRAD, P.: Lattice-Ordered Groups, Tulane Lecture Notes, Tulane University, 1970.
- [3] DARNEL, M.: Closure operators on radical classes of lattice-ordered groups, Czechoslovak. Math. J. 37 (1987), 51-64.
- [4] GLASS, A. M. W.—HOLLAND, W. C.: Lattice-Ordered Groups, (Advances and Techniques), Kluwer Academic Publishers, 1989.
- [5] JAKUBÍK, J.: Radical mappings and radical classes of lattice ordered groups, in: Symposia Math., 21, Academic Press, New York-London, 1977, pp. 451-477.
- [6] KENNY, G. O.: Lattice-Ordered Groups, Ph.D dissertation, University of Kansas, 1975.
- [7] MARTINEZ, J.: Torsion theory of lattice-ordered groups, Czechoslovak Math. J. 25 (1975), 284–299.

DAO-RONG TON

- [8] DAO-RONG TON: Product radical classes of ℓ-groups, Czechoslovak Math. J. 42 (1992), 129-142.
- [9] DAO-RONG TON: Subproduct radical classes of ℓ -groups, (to submit).
- [10] DAO-RONG TON: Radical classes of \(\ell\)-groups, Internat. J. Math. Math. Sci. 1 (17) (1994), 129–142.

Received December 10, 1993

Department of Mathematics and Physics Hohai University Nanjing, 210024 People's Republic of CHINA