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POLAR OPERATORS IN LATTICE OF
RADICAL CLASSES OF /(~-GROUPS
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Dedicated to Professor J. Jakubik on the occasion of his 70th birthday

ABSTRACT. In this paper we prove that for most radical classes Ri2i,...i7
there exists a unique largest radical class R’12i3,..i7 whose intersection with
R12is...i7 is trivial. 7?,’121.3“_1»7 is called the polar of Ry2;;...i;. We give concrete

construction for polars of radical classes generated by the integer group Z.

1. Preliminaries

We use the common terminology and notation of [1, 2, 4]. Throughout the
paper G is an /-group. We use the additive group notation. Let {G5 | A € A}
be a family of f-groups and J] G their direct product. If an f-group G is

AgA

a subdirect product of G, we denote this by G C' [] G.. We denote the
{-subgroup of || G consisting of the elements with on‘lifeiﬁl\nitely many non-gero
components by)‘eé G . An f-group G is said to be a completely subdirect product
of Gy, if G is ailez—subgroup of J[ Ga and ) Gx C G. An f-group G is said
to be an ideal subdirect product)f(‘)efAG, denot):iAG C* Tl Ga, if G C' ]I Ga
and G is an f-ideal of J] G,. For each A € A let go,\)\i?e the projec.tio;e?rom

AEA
11 G onto G and
AEA

E)\Z{QEHG,\lAI#A#gAIZ“D}.
AEA

For any A € A and ay € G let @y =(0,...,0, ax, 0,...,0).
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Let G be an {-group. C(G) denotes the complete lattice of all convex
f-subgroups of G. For g € G, G(g) is the principal convex f-subgroup gen-
erated by g. Let X C G. Xg = {g€ G||g|Alz| =0 for all z € X} is called
the polar of X in G and X1 is called the double polar of X. If G is an
¢-subgroup of an f-group H, the order closure Gy of G in H is the smallest
closed f-subgroup of H containing G.

We can make new f-groups from some original ¢-groups. These operations
include:

1. taking convex f-subgroups,

2. forming joins of convex #-subgroups,

3. forming completely subdirect products,
3’. forming direct products,

4. taking f-homomorphic images,

4’. taking complete ¢-homomorphic images,
4”. taking /-homomorphic images,

5. forming extensions, that is, G is an extension of A by using B if A is
an f-ideal of G and B=G/ A,

6. taking order closures, that is, G is an order closure of A if A is a
convex f-subgroup of an {-group H and G = Ay,

7. taking double polars, that is, G is a double polar of A if A is a convex
{-subgroup of an £-group H and G = A%.

A family U of ¢-groups is called a class if it is closed under some operations. If
a class U is closed under the operations 1,2,1s,...,i7, we call U a 12i3_;,—class
where i3 € {3,3',4"}, 14 € {4,4',4"} 15 € {4",5} ig € {4”,6}, iy € {4",7}.
All our classes always assumed to contain along with a given f-group all its
¢-isomorphic images, so we omit the index 4”. Thus, a radical class [5] is a
12-class, a quasi-torsion class [6] is a 124'—class, a torsion class [7] is a 124—class,
a closed-kernel radical class [3, 10] is a 126—class, a polar kernel radical class
[3] is a 127—class. A 125-class is called a complete radical class. We call a
123"-class (a 123-class) a product radical class (a subproduct radical class) [8, 9].
Let Th2;,..4, be the complete lattice of all 12i3...ir—classes. Let Ria,...4, be
a 12i3...i7-class and G be an {-group. Then there exists a larger convex
¢-subgroup of G belonging to Rio;,..i, .- We denote it by Ri2,...i,(G) and call
it the Rq94,...i,-radical of G.

In [10] we discussed the relationship between several radical classes and gave
the characteristic properties for several radical mappings. This paper is a con-
tinuation of [10].
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2. Polar operators

In this section we will show that for most of 12i3...¢7-classes Rigi,...i, , there
exists a unique largest radical class R’lQis.“h in T194,...4, , whose intersection with
Ri12is...i, is trivial. We call the mapping Riai,..i; — Rig;,. s, @ polar operator
in T12i3...i7 y denoted by POlZig...i7 5 RIlZig.‘.i is said to be the pola'r of R12i3...i7
in T1245...47 -

7

LEMMA 2.1. ([3], [5]). For any radical class Ri2, Ry = {G | R12(G) =0} is
the unique largest radical class such that Ri2 N R}, = 0. For each {-group G,
12(G) = R12(G)g -

The following lemma is clear.
LEMMA 2.2. For any Ris € Ti9, Rllz € Thog NT1o7.
COROLLARY 2.3. For any Ris € T1o, R’12 € Tios.

Proof. Tis7 C Ti25 (see Theorem 2.7 in [10] and also see Proposition 4.4
in [3]). O

From Lemma 2.1, Lemma 2.2 and Corollary 2.3 we have

THEOREM 2.4. For any closed-kernel radical class (polar radical class, com-
plete radical class) R, there exists a unique largest closed-kernel radical class
(polar radical class, complete radical class, respectively) R’ such that RNR' =0
and R'(G) = R(G)* for each f-group G.

In [7] J. Martinez proved that for any torsion class Rj24 the torsion
class Riy = {G | if C € C(G) and H is an £-homomorphic image of C, then

Ri0a(H) = 0} is the unique largest torsion class whose intersection with Riq4 is
trivial. Similarly, we can show that for any quasi-torsion class Ri24/, the quasi-
torsion class R,y = {G | if C € C(G) and H is a complete ¢-homomorphic

image of C, then Rioy(H) = 0} is the unique largest quasi-torsion class whose
intersection with Rjo4 is trivial.

A 123'4’-class is called a product quasi-torsion class.

THEOREM 2.5. For any product quasi-torsion class Rissa, there exists
a unique largest product quasi-torsion class R'y4., whose intersection with
Ri234 Is trivial.

Proof. Let
Risze ={G |if C € C(G) and H is a complete {~homomorphic
image of C, then Rigzy(H) = 0} .
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Similarly to Theorem 2.3 of [7] we see that Rf53., € Ti24. Now suppose that

{Gr|A€A} CRipgu,CE C( 11 G;\) and f is a complete ¢~-homomorphism
Aer
from C onto an ¢-group H. For each A € A let

ox(C)={geClgmepr(C) and g =0 for X #A}.
Then ¢, (C) € C(C)NC(G,) for A € A. Hence
R123'4([80>\‘(C>]) =0 (A€A),

'R123'4(H f[‘P;\(C)D = H 73123'4(f -[SOA(C)]) =0. (2.1)
AEA AEA
The mapping f':c={(...,cr,...) — (..‘,f(EA),...) defines an ¢-homomor-

phism from [] ¢A(C) onto [T f[ea(C)]. If a,b € C such that f(a) = f(b)
AEA AEA

in H, then |@y—bx| < |a—b|, and so f(@x) = f(bx) for each A € A. This means
that the mapping

gih— (., f(FHR),---)
is an f~-homomorphism from H into [] f [gaA(C’)] and go f = f'|c. The fact
A€A

that Ker f is closed implies that f~(Kerg) = Ker f, so Kerg =0 and g is an
embedding. Since C is a convex f-subgroup of ][] a(C), H is also a convex
A€EA

£-subgroup of ] f[®a(C)]. It follows from the formula (2.1) that
AEA

Riozrar(H) = HN Rigarar (H f[‘PA(C)]) =0.
A€A
Therefore H G, € R1123/4,, and R/123/4I € Tiogar.
AEA

It is clear that Riasrar N Ry = 0. If U is a product quasi-torsion class
so that U N Riz30er = 0, G € U, C € C(G) and p: C — H is a complete
#-homomorphism, then C € 4 and H € U. Hence Riozar(H) = 0, that is
G € Rijggy and U C R ygr4 . We have proved that RY,3., is the unique largest
product quasi-torsion class whose intersection with Rjp34 is trivial. O
LEMMA 2.6. For any Rioy € Tiag, 723241 € Troag-

Proof. Suppose that G is a convex {-subgroup of H and G € Riy .
We want to show that Gg € R,y . Let C € C(Gy) and C’ be a complete
£-homomorphic image of C with £-homomorphism ¢. Put C; = C NG and
C! = p(C;). Then C] = C' and C} is dense in C’. Since G € Ripy, Rizw
(C1) =0. But

Ri24:(C1) = Rize (C') N Cy,
hence R124/(C) = 0. We have proved that R,y € Ti24,6- O

From Lemma 2.6 we get
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THEOREM 2.7. For any closed-kernel quasi-torsion class R there exists a
unique largest closed-kernel quasi-torsion class R' whose intersection with R
is trivial.

A 1234'-class is called a subproduct quasi-torsion class.

THEOREM 2.8. For any subproduct quasi-torsion class Ri234 there exists a
unique largest subproduct quasi-torsion class R',3, whose intersection with
R1234/ is trivial.

Proof. Let
lase¢ ={G | if C € C(G) and H is a complete £-homomorphic
image of C, then TRigsw(H)= O} .

We need only to show that R},s, is closed under forming completely subdirect
products. Suppose that {G |\ € A} C Rl,34 and G is a completely subdirect
product of Gy. Let C be a convex {-subgroup of G and f be a complete
¢-homomorphism from C onto H. Since Y, G\ C G and € € C(G), pA(C) €
C(CYNC(G)) for each A € A. Hence AeA

Ri23ar (f[m]) =0, and

’R,1234:<Hf ex(C) ] ) HR1234'< CPA(C)])

AEA XEA

Similarly to Theorem 2.5 H can be considered as a £-subgroup of H HEX@R

Since C € C(G) and Y}, GxC G, Z ex(C) C C. Thatis, C is a completely
AEA

subdirect product of {goA(C) |\ € A}. Therefore H is a completely subdirect
product of { flea@)]1xe A}. It follows from Theorem 3.2 of [10] that

Rizze (H) = 'R1234'(H f[‘P,\(C)])' NH=0.
AeA

and so G € Rigay - O

For a proper variety R there is no variety R’ such that RNR' = 0, because
every variety contains the abelian variety A.
Let R and T be two radical classes in Tigi,..i,. Define R” = (R')’. Then

(1) RC R,

(2)if RCT, then R' DT,
(3) R/ ey RHI,

(4) (RVI)Y =R AT

(2.2)
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Thus the polar operator defines a Galois connection which has the above prop-
erties. We call the mapping R — R” a polar closure operator in Ti2i5. 40
denoted by PCO;i9,...:,.- R" is called the polar closure of R. A polar closure

operator has the following properties:
(1) RII = (RII)II,

(2) if R C T, then R” C I". (2:3)

3. Examples

Let G be an f-group. We denote by Ri2is...i,c the intersection of all
12i3 ... i7-classes containing G. It is said to be the 12i5...4-class generated
by G. In [3] [10] the construction for 12is...4r-classes generated by the integer
group Z were given.

RlzZ:{ZZa]Za:Z forallaeA}, (3.1)
a€A
R123Z:{G| > 2.CGC [] %y Zu=2 forallaEA},
a€cA a€A (3.2)
By — {G 1GC* [[ Za=2 forallac A}, (3.3)
a€EA

Risez = { G |G is an order closure of a convex £-subgroup

3" Zo(Zo = Z) of an L-group H} , (3.4)
a€cA

Riorz = {G | G is a double polar of a convex ¢-subgroup

Z Zo(Zo = Z) of an f-group H} . (3.5)
a€A
In this section we will determine the polars of the above 12i5...4-classes
generated by Z. An {-group G is called locally dense if for any element 0 < g €
G there exists z € G such that 0 <z < g.

PROPOSITION 3.1. Ri,; = {G|G is a locally dense {-group}.

Proof. Riy; = {G|Ri122(G) = 0}. By formula (3.1) we see that G €
Risz if and only if G does not contain the integer group Z as a convex {-
subgroup, if and only if for any element 0 < g € G the principal convex
{-subgroup G(g) is not {-isomorphic to Z. Since G(g) = {z € G |0 < |z| < ng|
for some n € N}, G € R}, if and only if G is locally dense. O

By Lemma 2.2 and Corollary 2.3 we have
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COROLLARY 3.2. R, Is a closed-kernel, polar and complete radical class.
PROPOSITION 3.3. Ri,5; = {G|G is a locally dense {-group}.

P ro/of. Since R,y is a closed—l;:ernel radical class, Ri5; C R, But
since Ris6; NRi26z =0, Riggz = Rioyz-

By Theorem 2.4 and the formula (3.5), similarly to the proof of Proposition
3.3 we have

PROPOSITION 3.4. R,,; = {G|G is a locally dense {-group}.
PROPOSITION 3.5. R, ,; = {G|G is a locally dense {-group}.

Proof. By Theorem 4.1 of [8], Ris3; = {G|R123:z(G) = 0}. It fol-
lows from the formula (3.3) that if G € R/, , then G does not contain
Z as a convex {-subgroup. Conversely, if G does not contain Z as a convex
l-subgroup and Rf,3 ;(G) # 0, then R/y4 ;(G) is an ideal subdirect product

of {Zo|ao€ A} (Zo = Z for all @ € A). Since ), Z, is a convex f-subgroup
agA
of Ri23(G) and Ri23z(G) is a convex {-subgroup of G,s0 Y. Z, is a convex
acA
L-subgroup of G, a contradiction. Hence G € R/43. 5 if and only if G is locally

dense. 0

By Theorem 4.1 of [9] and the formula (3.2), using a proof similar to that of
Proposition 3.5 we can get

PROPOSITION 3.6. R,3,; = {G|G is a locally dense {-group}.

Thus, the radical class R),, of all locally dense ¢-groups is simultaneously
the polar of Ri2z, Riz6z, Ri27z, Rizsz and Rizzz.
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