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ABSTRACT. It is known that all normal extensions of an algebra %A = (4, F)
from a variety V belong to the Malcev product V o S where S is the variety
of all F-semilattices. Now we show that all quasi-boolean extensions of 2 are
contained in the Malcev product So V.

It is known that all normal extensions of an algebra 2 = (A, F) from a
variety V belong to the Malcev product V o § where S is the variety of all
F—semilattices. Theorem 3 below states that all quasi-boolean extensions of 2
are contained in the Malcev product So V.

Let L be a complete lattice with the least element O and the greatest ele-
ment I and let A be a non-empty set. Denote by A°[L] the set of all mappings
v: A — L such that if a,b € A, a # b, then v(a) Av(b) = O. For v € A°[L]

define its weight as [v] := \/ v(a), and denote by A[L] the subset of A°[L]
a€A
consisting of all those mappings v which have weight I.

If 24 = (A, F) is an algebra with finitary operations, then for every n-ary
(n > 0) operation f € F and for all vy,...,v, € A°[L], a € A put

flvi,...vp)(a) = \/ (Vl(al)/\---/\vn(an)).

a=f(a1,...,an)

Thus there appear two partial algebras 2°[L] = (A°[L], F) and A[L] =
(A[L],F). When L is a complete Boolean lattice, all operations in both 2A°[L]
and 2[L] are everywhere defined. In this case 2A°[L] is the so called normal
extension of the algebra 2 and 2A[L] is its Boolean extension (or Boolean power).

If algebra 20 belongs to some variety V), then all its Boolean extensions are
also V-algebras. Normal extensions in general do not preserve equational theo-
ries. It was shown in [2] that an identity p = ¢, which holds in algebra 2 is also
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true in all normal extensions of 2 iff this identity is normal (or regular), which
means that the same variables occur on either side. Varieties defined by nor-
mal identities are called normal (or regular) varieties. The least normal variety
N(V) containing a given variety )V is generated by all normal extensions of V-
algebras [4]. Assume that F' does not include nullary operations and that at least
one member of F' is at least binary operation. If (A4,A) is a meet-semilattice,
then it may be treated as an F-algebra when defining f(z) := z for unary
and f(z1,...,2n) = 21 A--- Az, for n-ary (n > 1) operations f € F. Such
F—semilattices form a subvariety S of the variety F of all F—algebras. It is the
least normal variety of F-algebras and for every V C F we have N(V) =VV S
(join in the lattice of all subvarieties of F).

If IC is some class of F—algebras and A, B are its subclasses, then the Malcev
product Aoy B is defined [1] as the class of all K-algebras 2 = (A, F'), which
admit a congruence 6 with properties (i) (Va € A)(f(a) € K = 0(a) € A) and
(ii) ”A/0 € B.

Theorem 6.7 from [4] implies the following proposition.

THEOREM 1. Let L be a complete Boolean lattice and let V be any variety
of F-algebras. Then A°[L] € Vor S for every algebra A € V.

A Malcev congruence on °[L] is, e.g., 6 := {(u,v) € A°[L] x A°[L] | [u] =
1}

So the Boolean extension A[L] is one of f-classes of the normal extension
2A°(L].

An orthogonal system in a complete lattice L is a subset A = {l;|7 €
I} C L such that [; Al; = O whenever i # j. An orthogonal system \ is
said to be independent if \/ I; A \/ lp = O for every partition I = JU K,

JjeJ keK
JNK = 0. Quasi-boolean lattice is a complete complemented lattice in which all
orthogonal systems are independent. Certainly every complete Boolean lattice
is quasi-boolean. Note that the pentagon Ns is also a quasi-boolean lattice.

It is known [5, Theorem 1] that a complete complemented lattice is quasi-
boolean iff it admits a meet-homomorphism onto a complete Boolean lattice
which is one-to-one in O and I and preserves l.u.b.’s of all orthogonal systems.
Such meet-homomorphism is called canonical.

THEOREM 2. (see [3], Theorem 1). Let L be a complete complemented lattice.
Then in the L—-extension A[L] of every algebra 2 all operations are everywhere
defined iff L is a quasi-boolean lattice.

If 2 is an algebra and L runs over the class of all quasi-boolean lattices,
then algebras of the form 2A[L] are called quasi-boolean extensions of 2. The
following result together with the above Theorem 1 reveals a certain duality
between normal extensions and quasi-boolean extensions of algebras.
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THEOREM 3. Let L be a quasi-boolean lattice and let V be any variety of
F-algebras. Then A[L] € Sor V for every algebra 2L € V.

Proof. Let 2 = (A, F) be any algebra from the variety V and let ¢ be a
canonical meet-homomorphism from L onto a complete Boolean lattice L*. For
v e AlL] and a € A define (¢(v))(a) :== ¢o(v(a)). Then clearly ¢(v) € A[L*].
Since ¢ preserves l.u.b.’s of orthogonal systems, we get by direct computation
¢)(f(1/1,...,yn)) = f(qb(yl),...,qb(z/n)) for every m-ary operation f € F and
for all vy,...,v, € A[L]. Thus ¢ is a homomorphism from the quasi-boolean
extension 2A[L] onto the Boolean extension 2A[L*]. Hence

0 = Kerg = {(1,v) € AL x A[L]|$(1) = $(v)}
is a congruence on 2A[L]. We will show that ¢ is a Malcev congruence corre-
sponding to the product S oz V.

LEMMA. (u,v) € 0 <= (Ya,b € A;a #b)(u(a) Av(b) =0).

(Indeed, if (u,v) € 6 and p(a) Av(b) # O for some distinct elements a,b € A
then for p* = ¢(u) = ¢(v) we have p*(a) A p*(b) # O which is impossible since
pu* € A[L*].

On the other hand, if (u,v) € 0, i.e., ¢(p) = u* # v* = ¢(v), then p*(a) #
v*(a) for some a € A. Hence p*(a) A [v*(a)]) # O or [p*(a)ll Av*(a) # O
(strokes mark complements). Assume for example that the former situation takes
place. Then we have )

0 # @) Al @) =p @A\ v'@) =\ (W) Avi(@).
T#a T#a

Thus p*(a) Av*(b) # O for some b # a and so u(a) Av(b) # O completing
the proof of Lemma).

Now let (g, ) € 6. Under the point-wise order u < v : <= (Va € A)(u(a) <
v(a)) each O-class is a meet-semilattice (a lattice in fact). Take v1,..., v, from
some 6-class which is a subalgebra of 2[L]. Using Lemma, we have

F )@=\ (@) A Avalan)) =\ (@) A Ava(e))
a=f(ai,..,an) a=f(z,...,x)
for an arbitrary m-ary operation f € F' and for every a € A.
First assume that f(v1,...,vs)(a) # O. It follows from Lemma that

f(a,...,a) = a and vi(z) = -+ = vu(z) = O for ¢ # a, f(z,...,z) = a.
So f(vi,...,vn)(a) = vi(a) A - Awp(a) = (1 A -+ Avg)(a). If, otherwise,
fvi,...,vn)(a) = O then clearly vi(a) = --- = vu(a) = O and we can write

formally f(vi,...,vn)(a) = (1A --Avy)(a). Hence, f(v1,...,v5) =viA--Avy
and so 0(a) is a F-semilattice.

Finally, as /6 = A[L*] we have /0 € V (recall that varieties are closed
under Boolean extensions).

This completes the proof of Theorem 3. O
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