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COMPATIBLE ORDERS OF SEMILATTICES
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Dedicated to Professor J. Jakubik on the occasion of his 70th birthday

ABSTRACT. Two discrete semimodular semilattices S and S; have isomorphic
graphs if and only if S is of the form A x B and S; is of the form A2 x B for a
lattice A and a semilattice B. We prove that for discrete semilattices S and S;
this latter condition holds if and only if S and S; have isomorphic graphs and
the isomorphism preserves the order on some special types of cells and proper
cells.

G. Birkhoff ([1, Problem 8]) asked for necessary and sufficient conditions
on a lattice L = (L;V,A) in order that every lattice M = (L;V*,A*) whose
(unoriented) graph is isomorphic with the graph of L be lattice-isomorphic to
L. For the case when the lattices L and M are supposed to be distributive or
modular, the problem was solved by Jakubi{k and Kolibiar (see [2, 4, 8,
9, 11, 12, 13]). In [8] Jakubik also showed that if one of L or M is modular
(distributive), then so is the other. Duffus and Rival [3] solved the problem
for those graded lattices which are determined by the ordered subset of their
atoms and coatoms. ‘

In [12] Jakubik proved that for discrete modular lattices L and M on
the same underlying set L, the graphs G(L) and G(M) are isomorphic if and
only if the following condition holds:

(a) there exist lattices A = (A;<), B = (B;<) and a direct product
representation ¥: L — A x B via which L is isomorphic with A x B
and M is isomorphic with A% x B where A2 stands for the dual of A.

Note that this yields a solution to Birkhoff’s problem within the class of
discrete modular lattices, since a modular lattice L will be uniquely determined
by its graph if and only if every direct factor of L is self-dual.
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Jakubik proved in [5] that for discrete lattices (with no assumption of
modularity) Condition (a) is equivalent to

(b) L and M have isomorphic graphs and all proper cells of L and all
proper cells of M are either preserved or reversed (see below for the
definitions).

In [15] Kolibiar proved that for discrete semimodular semilattices S and
S1 on the same underlying set S, the graphs G(S) and G(S;) are isomorphic
if and only if the following condition holds:

(c) there exist a lattice A = (A;+,-), a semilattice B = (B;U) and a
map ¥: S — A x B via which v is a subdirect embedding of § into
A x B and S, into A% x B.

In this paper we give new characterizations of (c¢) and derive Kolibiar’s result
as a corollary.

An order <; is said to be a compatible order of a semilattice S = (5;<) if
<1 is a subsemilattice of S2.

In [14], it is proved that if <; is a compatible order of a semilattice (S;V, <),
then the relations 61,0, on S defined by (*) are congruence relations on (S;V):

abrbifandonlyifa<u>banda<;u>1bd

aezbifandonlyifa<v>banda>1v<1b} for some u,v € 5. (x)

LEMMA 1 [14]. Let ¢: S — 8’ x S” be a subdirect representation of a semi-
lattice S. Denote (z) by (z1,z2). Given a,b € S, set a <y b if a; > by and
as < by. Then <, is a compatible order of S'.

The order <; of the lemma above is said to have stemmed from a subdirect
representation of §.If § = (S;V,<) and S; = (S;V1,<;) are semilattices and
< stems from a subdirect representation of S, we write S;#S.

THEOREM 1 [14]. Let <; be a compatible order of a semilattice S = (S;V,<).
The following conditions are equivalent:
(i) <i stems from a subdirect representation of S ;
(ii) each interval {z € S| a <1 = <1 b} is a convex subset of S;
(ili) if @ < b < ¢, then a <; ¢ implies a <1 b <4 ¢, and ¢ <; a implies
c <1 b <1 a.

Note that condition (i) can be reformulated in the following way (as follows
from the proof of Theorem 1): for the congruence relations 61,6, corresponding
to <1, see (x), we have 0; N 6= w, where w is the least congruence relation,
and <; stems from the subdirect representation of S given by 6; and 6,.

LEMMA 2. If <; is a compatible order of a semilattice S = (S;V <), and 6,
0 are the corresponding congruence relations, then <;C (81 N <)o (2 N >).
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Moreover, if <; fulfils the conditions of Theorem 1, then <;= (0; N <)o
(2N =).

COROLLARY 1. Let <; be a compatible order of a semilattice S = (S;V, <),
let 61, 62 be the corresponding congruence relations and let <, fulfil the con-
ditions of Theorem 1. For a,b € S,

(i) f a < b and a 6, b, then a <1 b, and

(ii) f a < b and a 65 b, then b <; a.

THEOREM 2. Let S = (S;V,<) and S; = (5;V1,<1) be semilattices. Then
the following are equivalent:
(i) S#S; and S1#S;
(ii) there are 6;,02€ ConS N ConS; such that < = (6; N <1) 0 (62 N =)
and <1 = (91 N <)0(92 N 2),
(iii) there is a lattice (X;+,-), a semilattice (Y;U) andamap ¢ : S — X xY
such that v is a semilattice embedding of S into (X;+) x (Y;U) and %
is a semilattice embedding of S; into (X;-) x (Y;U).

Proof. (i)=-(ii) Assume that S#S; and S1#S. Then, by Lemma 1 and
Lemma 2, the congruence relations #;, 82 of S and 51, 0o of S; defined as in

(%) fulfil
<=0 N<)o@:2:2n>=1) and <=1 N<K)o(B2N>).

By the definitions of 6; and 6, we have 6;=0; . It remains to show that ;=05 .

Let a 02 b. Then a <u>band a > u <1 b for some u € S. It follows
that a V1 & < ©wVy b = b since < is compatible with V;. Similarly we have
aVib<a. Hence a <31 aVib>21band a>aVib<bimply a 05 b. Thus
6,C0,. Analogously, 0,C6s.

(ii) = (iii) Assume that (ii) holds. Then < is compatible with V; and <; is
compatible with V. Let (a,b) €01 N ;. Then a < aVb>=band <3 = (A1 N K)o
(62 N =) imply that a <3 aVb <y b and b <y aVb < a which yields a = b;
ie., 81 NO=w.

Now we will show that the operation join of (S/ 0;;<1) is the meet opera-
tion of (S/ 0y;<); or equivalently, it is enough to show that for any a,b € S,
[aVb] 61=[a] 6; if and only if [a V; b] 61=[b] 0. Let [a V b] 1= [a] ;. Then
[b] 1< [a V1 b] 61 since [b] 6:< [a] 6; and < is compatible with V;. Since
b<;aVviband <;= (01 N<K)o(f3 N =), we have u € S such that b 0; u 0 aVyib
and b < u > aViyb;so [b] 01= [u] 6:> [aV1b] 0;. Hence [b] 1= [a V1 b] 6;.
We can prove the converse analogously. Therefore (S/ 01;V,Vy) is a lattice.

Analogously, we can prove that (S/ ;<) is isomorphic to (S/ 02;<1); or
equivalently, the join operation of (S/ 02; <) is the join operation of (S/ 6s;<1).
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Since the natural map is an embedding of S into (S/ 01;V) x (S/ 62; V) and
Sy into (S/ 01;V1) X (S/ 62;V1), we have (S/ 61;V,V1) and (S/ 62;V) are the
required lattice and semilattice, respectively.

(iii) = (i) Let < and <; denote the order relations on (X;4) x (Y;U) and
(X;-) x (Y;U) respectively, and let <y denote the order relation on (X;+,-)
and <3 denote the order relation on (Y;U).

Let T = (T;<) and Ty = (T;<1) be images of the subdirect representation
¢ and let (a1,as), (b1,bs), (c1,ca) be elements in T with (a1, as) < (b1, b2).
Then a1 <3 by and as <3 by. So a1 -¢; <9 by -c1 and ag Uy <3 ba U ¢y
ie., (a1 -c1,a2 Ucy) < (by - c1,b2 Uey), which shows that < is compatible
with the operation of (X;-) x (Y;U). By analogy, <; is compatible with the
operation of (X;+4)x (Y;U). Hence S#5S; and S1#5S follow from the subdirect
representation. O

(c’ 0) ./I (C,l) (c7 1) ./. (C; 0)

(b,1) l .
(b,1) &~~~

—

_ -7 (CL,O)
(a,0) &
(S;V, <) (S;V1,<1)
Figure 1. Figure 2

Figure 1 and Figure 2 show that if S; above is a compatible ordered set
of S which stems from a 2-factor subdirect representation of S, then it does
not necessarily follow that the graph G(S) and G(S1) are isomorphic. In this
paper, we shall prove the following theorem for a pair of semilattices.

THEOREM 3. Let S = (S;V,<) and S1 = (5; V1, <1) be discrete semilattices.
Then S#S, and S1#S if and only if the following conditions hold:

(A) G(S)=G(51),

(B) if either S or S; contains a cell of type O(1,n), say C = {u < z <
V> Ynp - = Y1 > u}, then the other contains one of the following four
cells of type O(1,n) : C,C?, D ={y1 <192 <1+ <1 Yn <1V <1 T =1
u >y y1} or D7, and

(C) in both S and Si, all proper cells of type \/(m,n) with m > 1 and
n > 1 are preserved or reversed.
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A semilattice S = (S5;<) is called discrete if each bounded chain in S is
finite.

Let S = (S;<) be a semilattice. For a,b € S with a < b an interval [a, 0]
is the set of all elements z € S satisfying a < ¢ < b. We call [a,b] a prime
interval (or equivalently, b covers a, in symbols a < b) if Ha, b]| =2,

By the graph G(S) we mean the (undirected) graph whose vertex set is S
and whose edges are those pairs {a, b}, which satisfy either a < b or b < a.

Let § = (5;<) and S; = (S1;<1) be semilattices. It is said that G(S)
is isomorphic with G(S;) if there is a bijection f: S — S; such that for all
a,b € S, {a,b} is an edge of G(S) if and only if {f(a),f(b)} is an edge of
G(S1). Throughout this paper we assume, without loss of generality, that S = S
and f is the identity map whenever G(S) is isomorphic to G(S1), whence
G(S) = G(S1).

If G(S) = G(S1), then a set C C S is said to be preserved if, whenever
a,be C and a < b, then a <; b.

Let u,v,z1,...,2Zm,y1,...,Yn be distinct elements in S such that

(i) u<z1 < <Tyy <V, U<Y; <+ + < Yp < v, and
(ii) either v is the least upper bound of z; and y; (denoted by v =
z1 Vy1) or u is the greatest lower bound of z,, and y, (denoted by
U= Ty A Yp )-
Then the set C = {u,v,z1,...,Zm,Y1,-.-Yn} is said to be a cell of S. If z; V
y1 = v, we call C a cell of type \/(m,n). Dually, if z,, Ay, = u, we call C a
cell of type N(m,n). If 21 Vy, =v and z,, A yn = u, we call C a cell of type
O(m,n). If m =n, then C is a cell of length n+1. A cell C is called proper if
either m >1 or n > 1.

A semilattice S is said to be upper semimodular if S satisfies the following
Upper Covering Condition (UCC):

(UCC): if a and b cover ¢ with a # b, then both a and b are covered by aVb.

Let S and S; be discrete semimodular semilattices. Then S and S; contain
no cells of type \/(m,n) with m,n > 1 & m+n > 2; i.e., Conditions (B) and
(C) of Theorem 3 always hold. Therefore we obtain one of Kolibiar’s results
[15] as a corollary.

COROLLARY 2. [15] Let S and S; be semimodular semilattices. Then S and
S1 satisfy Condition (c) if and only if G(S) = G(S1).

We now prove Theorem 3 via the following lemmata.

LEMMA 3. Let S = (5;V,<) and S; = (S;V1,<1) be discrete semilattices
satisfying S#.S1 and S1#S. Then Conditions (A), (B) and (C) hold.

Proof. Assume that a < b. Then a < b implies a < a V1 b < b which
yields a =aVibor b=aVib;ie, b<iaor a<<ib. If a<<yc<yb for some

181



CHAWEWAN RATANAPRASERT

c € 5, then it follows by Theorem 1 with a < b that a < ¢ < b; hence a =c or
b = ¢, which shows that a <; b. Similarly if b <1 ¢ <; a for some ¢ € S, then
b=y a.

Analogously a <1 b implies a < b or b < a. Hence G(S) = G(S1).

To show that § and S; satisfy Condition (B), let C = {u <z < v >
Yn > -+ > y1 > u} be a cell of type O(1,n) in S (see Figure 3(1)). By the
assumption, Condition (A) and the definitions of 8; and 6, (defined as in (x)),
we have either 61 u 8y y1, 02 u bz y1, 601 ubry; or 6y ubyy;.

Case 1: z 07 u 0y y1. Then z >; u <1 y1. It follows by Corollary 1 that
z0;vand z < v imply z <1 v. Since u #; = implies y; 6; v for all 7 = 1,
2,...,n, the transitivity of 6, yields y; 6; y; for all ¢,j. Thus y; 61 yi+1 and
Yi < Yit1 Imply y; <1 yir forall e=1,2,... ,n5ie, y1 <192 <1 <1 Yo <1
v. Therefore C is a cell of Sy of type O(1,n).

Case 2: z 0 u 0, y; . We can prove analogously to Case 1 that C? is a cell
of S; of type ¢(1,n).

ST ey e;

\ i 1/\/%

U
(C;2) (C;<1) Ye
(1) (2) N\
v
3)
FicUre 3.

Case 3: £ 07 u 62 y1. Then z 03 v and v 07 y; for all 1 = 1,2,...,n. It
follows from Corollary 1 and the transitivity of 6; that y; <1 y2 <1 -+ <1
Yn <1V <1 & >1u>1 y1; e, D isacell of Sy of type O(1,n) (see Figure 3).

Case 4: z 03 u 01 y1. We can prove analogously to Case 3 that D? is a cell
of S; of type O(1,n).
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v

mm?/o\?yn m /\
1 6\/5 Y1 Y2 \/ \ é; )

(C;%) (C5<y) (C; <)
FI1GURE 4.

To prove Condition (C), let A ={u <21 < < Ty <V > yYp &= -+ >
Y1 = u} be a proper cell of S of type \/(m,n) (m > 1 and n > 1). Then
x1 V ¥y = v. Suppose that z; 6; u 65 y;. Then z; 65 v 6 y; forall 1 <i<m
and 1 < j < n, which together with the transitivity of 8; and 6, implies
that z; 02 = and y; 61 yp forall 1 <4, k < mand 1 < j, £ < n. So
C={y1 <192 <1 <1 Un <1 U <1 Ty <1 ~+ <1 &1 >1 U > Y1} is
a cell of S; of type O(1,n + m — 1) (see Figure 4). By Condition (B), since
Y2 01 y1 02 u, we have that D? is a cell of S of type O(1,n + m — 1) which

yields yo =y3 =--- =y, =wv;ie, n =1, a contradiction.
We will get a similar contradiction if z1 65 u 6y y;. Therefore, either z; 6;
u 81 y1 or 1 O3 u b y;. Hence A is preserved or reversed. |

In the following lemmata, we shall assume that S and S; are semilattices
satisfying Conditions (A), (B) and (C).

LEMMA 4. Let a,b,c € S with a > ¢ < b. Then

(i) ¢ =1 a implies b<; aVb, and
(ii) a <1 c implies aV b <1 b.

Proof. We only prove (i) as (ii) follows by duality. Assume ¢ <7 a. Since
the case a = b is trivial, we assume a # b.

If c<a<aVb>b> c, then using (B) we obtain immediately b <; a V b.
Ife<aAAaVb ¥ b c, then condition (C) applies. We may assume that
c<a=<aVb>b>c (wecan prove analogously if c < b <aVb>a > c).
Then C={c<a<aVb>y, > =y = b~ c} for some y1,...,y, €S isa
cell of S of type O(1,n) with [c,a] preserved (reversed). Hence, by Condition
(B), either C or D={b<1y; <1 - <1¥Yn <1aVb=<ia%>1c b} (resp.
C% or D?) is a cell of S of type (}(1 n) (see Figure 5). In either case we have
b<iaVb (resp. aVb>1b). O
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aVb c b b
b b aVb aVb
a a c c
c 557 B a a
C Co D Do

FIGURE 5.

LEMMA 5. Let a,b,c € S with a <b. Then

(i) a <1 b implies aVec <y bVe, and
(ii) b <y a implies bVec<iaVe.

Yng+1=Yng+2="--=Ymy=bVe

Ymg=bVe

ToVb=xz3Vb o)

Ty V=01 =2 —
mg—1 1 mg—1 (EmOICLVC

Tng=Tmg—1

z1Vb=y1d

FIGURE 6.
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Proof. Let a =29 <21 <+ < Ty, = a V¢, and define y; = z; V z,_1
where yo = b = zp and in general z;_; is chosen so that ;1 < z;_1 < ¥i—1
(if there is an ¢ (0 < % < myg) such that z; = x;,1, we will continue the
process by considering z; = z;—; and y;41 = y; (see Figure 6)). Then, by
Lemma 4, the interval [z;41,%;41] is preserved (reversed) if the interval [z;, ;]
is preserved (reversed) since z; < z; < y;. Hence by induction [Zi,,Ym,] is
preserved (reversed) since [a,b] is preserved (reversed). Since z; < y; < z; V b
for all 0 <7< mp, wehave aVe==2m, < Yme < ZTm, Vb=aVcVb=bVe.

Let ag = a, by = b, :cgo) =T, ygo) =y, z§°) = z; forall 2 =0,1,...,mg.
Note that zc(,o) = by. Let a1 = ZT(;;) where ng is the least number such that
0 < ng <mp and Tpgt1 V Zng = Yno+1 = Yno+2 = *** = Ym, (See Figure 6
and 7).

Case 1: If a; = 230 = Tno VO (= Yng), then Yme = Ting V 2ng = Tmg V (Tng V

b) = zm, Vb= (aVc)Vb=>bVc; hence, by using (B) or (C), the preservation of
[Tng, Yno] implies the preservation of [T, Yme] = [a V ¢,bV ] (see Figure 6).

bve

2

T T

=Yng+2=Yng+1

z2Vb=xz1Vb

FIiGURE 7.

Case 2: If a1 = x%c:)) < Zn, V b (note that 2 < Yno < Tny V b), we choose

bi(= zél)) with a1 < b1 < :cgﬁ,) V b (see Figure 7). Note that since [ag,bo] is
preserved (reversed) so is [a1,b1]. Now repeat the construction with ag replaced
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(1 (1)

by a; and by replaced by b;. This then produces the elements 2z ) and ym
which are needed to begin the next step of the induction.

(In general, we define a;41 = z(') 1 Where n; is the least number such that

0 € ny < my and Ty, 41 V Zn; = Yni41 = Yns+2 = - = Ym, and choose
biy1 = zc(,hL ) with Git1 = zf%) (()ZH) =b;11 < a;ﬁf} V b; (for the case ajy1 =
2D = 28 v = y,(m), (as Case 1) the preservation of [a;,b;] implies the

preservation of [y&l,y,(,ij;ll)]) and, finally, repeat the process with the covering

chain:

Mgy = 27(:1_1 (z+1) §i+1) ol x&;fl) _ (i). ).

)

Since S is discrete, there exists N such that y (M) — bV ¢ and hence we have
a chain:

a\/c<y() y(l) <. .ygn]\jv)szc,

and each step in this chain is preserved (reversed) since each interval [a;, b;] is
preserved (reversed). O

LEMMA 6. Let a,b,c€ S with a <1 b. ThenaVe<,;bVe.

Proof. Let a <; b. Since S; is discrete, we have a = zg <1 1 <1 -+ <1
ZTpy1 = b for some zy,...,z, € S. So either z; < x;41 or z;41 < z; for all
0 <7 < n+1. It follows from Lemma 5 that z;Ve <; z;41Ve forall 0 <7 < n+1.
Hence by induction we have aVec=zgVe<i 21 VeKy - - Ky Ty Ve=bVe.

O

Finally, Lemma 6 implies that <; is a compatible order of the semilattice
S = (S;<). Conditions (B) and (C) imply that Theorem 1 (iii) holds. But
Theorem 1(iii) is equivalent to Theorem 2 (i) which is S#S7 and S1#S. This
completes the proof of Theorem 3.

REFERENCES

[1] BIRKHOFF, G.: Lattice Theory, 2nd edition, Amer. Math. Soc., Providence, 1948.

[2] BIRKHOFF, G.: Some applications of universal algebra, in: Universal Algebra (B. Csékény,
E. Fried, E. T. Schmidt, eds.), Collog. Math. Soc. Jénos Bolyai, Vol. 29, North Holland,
Amsterdam, 1982, pp. 107-128.

[3] DUFFUS, D.—RIVAL, I.: Path length in the covering graph of a lattice, Discrete Math.
19 (1977), 139-158.

[4] JAKUBIK, J.: Graph isomorphisms of semimodular lattices, Math. Slovaca 35 (1985),
229-232.

(5] JAKUBIK, J.: On isomorphisms of graphs of lattices, Czechoslovak Math. J. 35 (1985),
188-200.

(6] JAKUBIK, J.: On lattices determined up to isomorphisms by their graphs, Czechoslovak
Math. J. 34 (1984), 305-314.

186



COMPATIBLE ORDERS OF SEMILATTICES

[7] JAKUBIK, J.: Modular lattices of locally finite length, Acta Sci. Math. 37 (1975), 79-82.

[8] JAKUBIK, I.: Unoriented graphs of modular lattices, Czechoslovak Math. J. 25 (1975),
240-246.

[9] JAKUBI’K7 J.: Weak product decompositions of discrete lattices, Czechoslovak Math. J.
21 (1971), 399-412.

[10] JAKUBIK, J.: Graph-isomorphism of multilattices, Acta Fac. Rer. Nat. Univ. Comenianae
Mathematica 1 (1956), 265-264. (Slovak)

[11] JAKUBIK, J.: On graph isomorphism of semimodular lattices, Mat.-Fyz. Casopis. 4
(1954), 162-177. (Slovak)

[12] JAKUBIK, J.: On the graph isomorphism of lattices, Czechoslovak Math. J. 4 (1954),
131-141. (Russian)

[13] JAKUBIK, J.—KOLIBIAR, M.: On some properties of pairs of lattices, Czechoslovak
Math. J. 4 (1954), 1-27. (Russian)

[14] KOLIBIAR, M.: Compatible orderings in semilattices, in: Contributions to general algebra
2 (Klagenfurt, 1982), Holder-Pichler-Tempsky, Vienna, 1983, pp. 215-220.

[15] KOLIBIAR, M.: Semilattices with isomorphic graphs, in: Universal Algebra (Esztergom,
1977), Collog. Math. Soc. Jdnos Bolyai, Vol. 29, North-Holland, Amsterdam, 1982, pp.
473-481.

[16] ROSENBERG, I. G—SCHWEIGERT, D.: Compatible orderings and tolerances of lat-
tices, in: Orders: description and roles (L’Arbresle, 1982), North-Holland Math. Stud. 99,
North-Holland, Amsterdam, 1984, pp. 119-150.

[17] TOMKOVA, M. : On maultilatiices with isomorphic graphs, Math. Slovaca 32 (1982), 63-73.

[18] VILHELM, V.: The self dual kernel of Birkhoff’s conditions in lattices with finite chains,
Czechoslovak Math. J. 5 (1955), 439-450. (Russian)

[19] RATANAPRASERT, C.—DAVEY, B. A.: Semimodular lattices with isomorphic graphs,
Order 4 (1987), 1-13.

[20) RATANAPRASERT, C.: Compatible Orderings of Semilattices and Lattices, Ph.D. The-
sis, Department of Mathematics, La Trobe University, Australia, 1987.

Received March 2, 1994 Silpakorn University

Nakorn Pathom 73000
THAILAND

187





