

VALUES OF GROUP WORDS IN TOTALLY ORDERED GROUPS

NIKOLAI YA. MEDVEDEV — ELENA A. TERECHINA

Dedicated to Professor J. Jakubík on the occasion of his 70th birthday

ABSTRACT. It is proved that for each nilpotent totally ordered group G of nilpotent class ≤ 5 and each group word $w(x_1,\ldots,x_n)$ in variables x_1,\ldots,x_n , the inequality $w(\bar{x}_1,\ldots,\bar{x}_n)>e$ for some $\bar{x}_1,\ldots,\bar{x}_n\in G$ implies that there are $x_1',\ldots,x_n'\in G$ such that $w(x_1',\ldots,x_n')< e$ in G.

In the Black Swamp Problem Book [1] problem 49 is the following: "Let G be a totally ordered group (o-group) and let $w(x,y,\ldots)$ be a word in free group with countable set of free generators. Suppose that for some substitution $\overline{x},\overline{y},\ldots\in G$ we have $w(\overline{x},\overline{y},\ldots)>e$ in G. Does it imply that for some substitution $x',y',\ldots\in G$ we also have $w(x',y',\ldots)< e$?"

In [2] examples of the nilpotent o-group G of nilpotent class 6 and the group word w(x,y) in two variables x and y were constructed, such that all values of w(x,y) in o-group G have the same sign. The following question arises: is there a similar counterexample to problem 49 of nilpotent o-group of nilpotent class ≤ 5 ? The present paper gives the negative answer to this question. It is shown that for each nilpotent o-group G of nilpotent class ≤ 5 and each group word $w(x_1,\ldots,x_n)$ in variables x_1,\ldots,x_n from the inequality $w(\bar{x}_1,\ldots,\bar{x}_n) > e$ for some $\bar{x}_1,\ldots,\bar{x}_n \in G$ there are $x'_1,\ldots,x'_n \in G$ such that $w(x'_1,\ldots,x'_n) < e$ in o-group G.

All basic facts and definitions on ordered groups and groups can be found in [3], [4] and [5], respectively.

It is known that each group word $w(x_1, \ldots, x_n)$ in the variety of nilpotent groups of nilpotent class ≤ 5 can be represented as a product of basic commutators of weight ≤ 5 in the variables x_1, \ldots, x_n ([5], Theorem 11.2.4). As usual,

$$[x_1, x_2] = x_1^{-1} x_2^{-1} x_1 x_2, \qquad [x_1, \dots, x_n] = [[x_1, \dots, x_{n-1}], x_n],$$

AMS Subject Classification (1991): 06F15.

Key words: nilpotent group, totally ordered group, group word.

This research was done under financial support of Russian Fund of Fundamental Research (code of project 93–011–1524).

and the set of integers is denoted by \mathbb{Z} .

PROPOSITION 1. Let G be a nilpotent o-group of nilpotent class ≤ 5 and $w(x_1, x_2)$ be a group word in two variables x_1, x_2 . If $w(\bar{x}_1, \bar{x}_2) > e$ in o-group G for some $\bar{x}_1, \bar{x}_2 \in G$, then there are $x_1', x_2' \in G$ such that $w(x_1', x_2') < e$.

Proof. By the above arguments we may assume that

$$\begin{split} &w(x_1,x_2) = x_1^{k_1} x_2^{k_2} [x_1,x_2]^{p_1} [x_1,x_2,x_1]^{\alpha_{11}} [x_1,x_2,x_2]^{\alpha_{21}} [x_1,x_2,x_1,x_1]^{\beta_{11}} \times \\ &\times [x_1,x_2,x_2x_1]^{\beta_{21}} [x_1,x_2,x_2,x_2]^{\beta_{31}} [x_1,x_2,x_1,x_1,x_1]^{\gamma_{11}} [x_1,x_2,x_2,x_1,x_1]^{\gamma_{21}} \times \\ &\times [x_1,x_2,x_2,x_2,x_1]^{\gamma_{31}} [x_1,x_2,x_2,x_2,x_2]^{\gamma_{41}} \times \\ &\times \big[[x_1,x_2,x_2], [x_1,x_2] \big]^{\gamma_{51}} \big[[x_1,x_2,x_1], [x_1,x_2] \big]^{\gamma_{61}} \end{split}$$

for some integers k_1 , k_2 , p_1 , α_{11} , α_{21} , β_{11} , β_{21} , β_{31} , γ_{i1} $(1 \leq i \leq 6)$. By our assumption $w(\bar{x}_1, \bar{x}_2) > e$ in o-group G. Suppose that $w(x_1, x_2) \geq e$ for all $x_1, x_2 \in G$. Then $w(x_1^{-1}, x_2^{-1}) \geq e$ in G for all x_1, x_2 too. Let $w_2 = w(x_1, x_2) \times w(x_1^{-1}, x_2^{-1})$. Direct verification shows that the group word $w_2(x_1, x_2)$ can be represented in the form

$$\begin{split} w_2(x_1,x_2) &= [x_1,x_2]^{p_2} [x_1,x_2,x_1]^{\alpha_{12}} [x_1,x_2,x_2]^{\alpha_{22}} [x_1,x_2,x_1,x_1]^{\beta_{12}} \times \\ &\times [x_1,x_2,x_2x_1]^{\beta_{22}} [x_1,x_2,x_2,x_2]^{\beta_{32}} [x_1,x_2,x_1,x_1,x_1]^{\gamma_{12}} [x_1,x_2,x_2,x_1,x_1]^{\gamma_{22}} \times \\ &\times [x_1,x_2,x_2,x_2,x_1]^{\gamma_{32}} [x_1,x_2,x_2,x_2,x_2]^{\gamma_{42}} \times \\ &\times [[x_1,x_2,x_2],[x_1,x_2]]^{\gamma_{52}} [[x_1,x_2,x_1],[x_1,x_2]]^{\gamma_{62}} \end{split}$$

for some integers p_2 , α_{12} , α_{22} , β_{12} , β_{22} , β_{32} , γ_{i2} $(1 \le i \le 6)$.

Then $w_2(\bar{x}_1, \bar{x}_2) > e$ and $w_2(x_1, x_2) \geq e$ in o-group G for all $x_1, x_2 \in G$. Let now $w_3(x_1, x_2) = w_2(x_1, x_2) \cdot w_2(x_1^{-1}, x_2)$. It is clear that

$$w_3(x_1, x_2) \ge e$$

in o-group G for all $x_1, x_2 \in G$ and $w_3(\bar{x}_1, \bar{x}_2) > e$. Again, direct verification shows that

$$\begin{split} w_3(x_1,x_2) &= [x_1,x_2,x_1]^{\alpha_{13}} [x_1,x_2,x_2]^{\alpha_{23}} [x_1,x_2,x_1,x_1]^{\beta_{13}} \times \\ &\times [x_1,x_2,x_2x_1]^{\beta_{23}} [x_1,x_2,x_2,x_2]^{\beta_{33}} [x_1,x_2,x_1,x_1,x_1]^{\gamma_{13}} [x_1,x_2,x_2,x_1,x_1]^{\gamma_{23}} \times \\ &\times [x_1,x_2,x_2,x_2,x_1]^{\gamma_{33}} [x_1,x_2,x_2,x_2,x_2]^{\gamma_{43}} \times \\ &\times [[x_1,x_2,x_2],[x_1,x_2]]^{\gamma_{53}} [[x_1,x_2,x_1],[x_1,x_2]]^{\gamma_{63}} \end{split}$$

for some integers α_{13} , α_{23} , β_{13} , β_{23} , β_{33} , γ_{i3} $(1 \le i \le 6)$. Let now $w_4(x_1, x_2) = w_3(x_1, x_2) \cdot w_3(x_1^{-1}, x_2^{-1})$.

VALUES OF GROUP WORDS IN TOTALLY ORDERED GROUPS

Clearly, $w_4(x_1, x_2) \ge e$ in o-group G for all $x_1, x_2 \in G$, $w_4(\bar{x}_1, \bar{x}_2) > e$ and

$$\begin{split} w_4(x_1,x_2) &= [x_1,x_2,x_1,x_1]^{\beta_{14}} [x_1,x_2,x_2x_1]^{\beta_{24}} \times \\ &\times [x_1,x_2,x_2,x_2]^{\beta_{34}} [x_1,x_2,x_1,x_1,x_1]^{\gamma_{14}} \times \\ &\times [x_1,x_2,x_2,x_1,x_1]^{\gamma_{24}} [x_1,x_2,x_2,x_2,x_1]^{\gamma_{34}} [x_1,x_2,x_2,x_2,x_2]^{\gamma_{44}} \times \\ &\times [[x_1,x_2,x_2],[x_1,x_2]]^{\gamma_{54}} [[x_1,x_2,x_1],[x_1,x_2]]^{\gamma_{64}} \end{split}$$

for some integers β_{14} , β_{24} , β_{34} , γ_{i4} $(1 \le i \le 6)$.

Similarly, let $w_5(x_1,x_2)=w_4(x_1,x_2)\cdot w_4(x_1^{-1},x_2)$. Then $w_5(x_1,x_2)\geq e$ in o-group G for all $x_1,\,x_2\in G,\,w_5(\bar x_1,\bar x_2)>e$ and

$$\begin{split} w_5(x_1, x_2) &= [x_1, x_2, x_2 x_1]^{\beta_{25}} [x_1, x_2, x_1, x_1, x_1]^{\gamma_{15}} [x_1, x_2, x_2, x_1, x_1]^{\gamma_{25}} \times \\ &\times [x_1, x_2, x_2, x_2]^{\gamma_{35}} [x_1, x_2, x_2, x_2, x_2]^{\gamma_{45}} \times \\ &\times \left[[x_1, x_2, x_2], [x_1, x_2] \right]^{\gamma_{55}} \left[[x_1, x_2, x_1], [x_1, x_2] \right]^{\gamma_{65}} \end{split}$$

for some integers β_{25} , γ_{i5} $(1 \le i \le 6)$. Let $w_6(x_1, x_2) = w_5(x_1, x_2) \cdot w_5(x_2, x_1)$. Then $w_6(x_1, x_2) \ge e$ in o-group G for all $x_1, x_2 \in G$ and $w_6(\bar{x}_1, \bar{x}_2) > e$. By the use of Hall's commutator identity [5] we have

$$\begin{split} w_6(x_1, x_2) &= [x_1, x_2, x_1, x_1, x_1]^{\gamma_{16}} [x_1, x_2, x_2, x_1, x_1]^{\gamma_{26}} \times \\ &\times [x_1, x_2, x_2, x_2, x_1]^{\gamma_{36}} [x_1, x_2, x_2, x_2, x_2]^{\gamma_{46}} \times \\ &\times \left[[x_1, x_2, x_2], [x_1, x_2] \right]^{\gamma_{56}} \left[[x_1, x_2, x_1], [x_1, x_2] \right]^{\gamma_{66}} \end{split}$$

for some integers γ_{i6} $(1 \le i \le 6)$.

Finally, let $w_7(x_1, x_2) = w_6(x_1, x_2) \cdot w_6(x_1^{-1}, x_2^{-1})$. By the above arguments $w_7(\bar{x}_1, \bar{x}_2) > e$ and $w_7(x_1, x_2) \geq e$ in o-group G for all $x_1, x_2 \in G$. Direct verification shows that $w_7(x_1, x_2) = e$ for all $x_1, x_2 \in G$, a contradiction. \square

PROPOSITION 2. Let G be a nilpotent o-group of nilpotent class ≤ 5 and $w(x_1, x_2, x_3)$ be a group word in three variables x_1, x_2, x_3 . If

$$w(\bar{x}_1, \bar{x}_2, \bar{x}_3) > e$$

in o-group G for some $\bar{x}_1, \bar{x}_2, \bar{x}_3 \in G$ then there are $x_1', x_2', x_3' \in G$ such that $w(x_1', x_2', x_3') < e$.

Proof. Assume that $w(x_1, x_2, x_3) \ge e$ for all $x_1, x_2, x_3 \in G$. The group word $w(x_1, x_2, x_3)$ can be represented as a product of basic commutators in variables x_1, x_2, x_3 . By the use of Hall's commutator identities [5] we can represent the group word $w(x_1, x_2, x_3)$ as product $w_1(x_1, x_2) \cdot w_2(x_1, x_2, x_3)$, where $w_1(x_1, x_2, x_3)$ is a product of basic commutators in variables x_1, x_2, x_3 and $w_2(x_1, x_2, x_3)$ is a product of basic commutators in variables x_1, x_2, x_3 , containing variable x_3 .

NIKOLAI YA. MEDVEDEV — ELENA A. TERECHINA

If $w_1(\bar{x}_1,\bar{x}_2)>e$ for some \bar{x}_1,\bar{x}_2 , then by Proposition 1 there are $x_1',x_2'\in G$ such that $w(x_1',x_2')< e$. Then $w(x_1',x_2',e)=w_1(x_1',x_2')< e$. Therefore, we may assume that $w(x_1,x_2)=e$ for all $x_1,x_2\in G$ and $w(x_1,x_2,x_3)=w_2(x_1,x_2,x_3)$ for all $x_1,x_2,x_3\in G$. By our assumption $w(\bar{x}_1,\bar{x}_2,\bar{x}_3)=w_2(\bar{x}_1,\bar{x}_2,\bar{x}_3)>e$. Similarly

$$w_2(x_1, x_2, x_3) = w_3(x_1, x_3) \cdot w_4(x_1, x_2, x_3)$$

where $w_3(x_1, x_3)$ is a product of basic commutators in variables x_1, x_3 and $w_4(x_1, x_2, x_3)$ is a product of basic commutators containing variables x_2, x_3 .

By the above arguments we may suppose that $w_3(x_1,x_3)=e$ for all $x_1,\,x_3\in G$. Therefore, $w(x_1,x_2,x_3)=w_4(x_1,x_2,x_3)$ for all $x_1,\,x_2,\,x_3\in G$ and $w_4(x_1,x_2,x_3)$ is a product of basic commutators containing variables $x_2,\,x_3$. Let now $w_4(x_1,x_2,x_3)=w_5(x_1,x_2,x_3)\cdot w_6(x_1,x_2,x_3)$ where $w_5(x_1,x_2,x_3)$ is a product of basic commutators in variables $x_2,\,x_3$ and $w_6(x_1,x_2,x_3)$ is a product of basic commutators containing variables $x_1,\,x_2,\,x_3$. By the above arguments we may assume that $w(x_1,x_2,x_3)=w_6(x_1,x_2,x_3)$ for all $x_1,\,x_2,\,x_3\in G$ and $w_6(\bar{x}_1,\bar{x}_2,\bar{x}_3)>e$. Then the group word

$$w_7(x_1, x_2, x_3) = w_6(x_1, x_2, x_3) \cdot w_6(x_1^{-1}, x_2^{-1}, x_3^{-1})$$

has the following properties:

- 1) $w_7(\bar{x}_1, \bar{x}_2, \bar{x}_3) > e;$
- 2) $w_7(x_1, x_2, x_3) \ge e$ for all $x_1, x_2, x_3 \in G$;
- 3) $w_7(x_1, x_2, x_3)$ is a product of basic commutators of the weight ≥ 4 and each basic commutator contains variables x_1, x_2, x_3 .

Let

$$w_8(x_1, x_2, x_3) = w_7(x_1, x_2, x_3) \cdot w_7(x_1^{-1}, x_2, x_3).$$

Then $w_8(\bar{x}_1, \bar{x}_2, \bar{x}_3) > e$, $w_8(x_1, x_2, x_3) \geq e$ for all $x_1, x_2, x_3 \in G$ and $w_8(x_1, x_2, x_3)$ is a product of basic commutators and each basic commutator of the weight 4 has two occurrences of the variable x_1 . Now consider the group word

$$w_9(x_1, x_2, x_3) = w_8(x_1, x_2, x_3) \cdot w_8(x_1, x_2^{-1}, x_3).$$

It is clear that $w_9(\bar{x}_1, \bar{x}_2, \bar{x}_3) > e$, $w_9(x_1, x_2, x_3) \geq e$ for all $x_1, x_2, x_3 \in G$ and $w_9(x_1, x_2, x_3)$ is a product of basic commutators of the weight 5 containing variables x_1, x_2, x_3 .

Therefore $w_{10}(x_1, x_2, x_3) = w_9(x_1, x_2, x_3) \cdot w_9(x_1^{-1}, x_2^{-1}, x_3^{-1}) \geq e$ for all $x_1, x_2, x_3 \in G$ and $w_{10}(\bar{x}_1, \bar{x}_2, \bar{x}_3) > e$. A contradiction to the equality $w_{10}(x_1, x_2, x_3) = e$ for all $x_1, x_2, x_3 \in G$.

PROPOSITION 3. Let G be a nilpotent o-group of nilpotent class ≤ 5 and $w(x_1, x_2, x_3, x_4)$ is a group word in four variables x_1, x_2, x_3, x_4 .

VALUES OF GROUP WORDS IN TOTALLY ORDERED GROUPS

If $w(\bar{x}_1, \bar{x}_2, \bar{x}_3, \bar{x}_4) > e$ in o-group G for some $\bar{x}_1, \bar{x}_2, \bar{x}_3, \bar{x}_4$ then there are x'_1, x'_2, x'_3, x'_4 such that $w(x'_1, x'_2, x'_3, x'_4) < e$.

Proof. Let us assume that $w(x_1,x_2,x_3,x_4) \geq e$ for all $x_1,\,x_2,\,x_3,\,x_4 \in G$ and

$$w(x_1, x_2, x_3, x_4) = w_1(x_1, x_2, x_3) \cdot w_2(x_1, x_2, x_3, x_4)$$

where $w_1(x_1, x_2, x_3)$ is a product of basic commutators in variables x_1, x_2, x_3, x_4 and $w_2(x_1, x_2, x_3, x_4)$ is a product of basic commutators in variables x_1, x_2, x_3, x_4 containing variable x_4 . Arguments similar to the proof of Proposition 2 show that

$$w(x_1, x_2, x_3, x_4) = w_8(x_1, x_2, x_3, x_4)$$

for all $x_1, x_2, x_3, x_4 \in G$, where $w_8(x_1, x_2, x_3, x_4)$ is a product of basic commutators containing variables x_1, x_2, x_3, x_4 . Let now

$$w_9(x_1, x_2, x_3, x_4) = w_8(x_1, x_2, x_3, x_4) \cdot w_8(x_1^{-1}, x_2, x_3, x_4).$$

Then the word $w_9(x_1, x_2, x_3, x_4)$ is a product of basic commutators of the weight 5 containing variables x_1, x_2, x_3, x_4 . It is evident, that

$$w_9(x_1, x_2, x_3, x_4) \ge e$$

for all $x_1, x_2, x_3, x_4 \in G$ and $w_9(\bar{x}_1, \bar{x}_2, \bar{x}_3, \bar{x}_4) > e$. Let

$$w_{10}(x_1, x_2, x_3, x_4) = w_9(x_1, x_2, x_3, x_4) \cdot w_9(x_1^{-1}, x_2^{-1}, x_3^{-1}, x_4^{-1}).$$

Clearly, $w_{10}(x_1, x_2, x_3, x_4) = e$ for all $x_1, x_2, x_3, x_4 \in G$. A contradiction to the inequality $w_{10}(\bar{x}_1, \bar{x}_2, \bar{x}_3, \bar{x}_4) > e$.

THEOREM 1. Let G be an arbitrary nilpotent o-group of nilpotent class ≤ 5 and $w(x_1, \ldots, x_n)$ be a group word in variables x_1, \ldots, x_n . If

$$w(\bar{x}_1,\ldots,\bar{x}_n)>e$$

in o-group G for some $\bar{x}_1, \ldots, \bar{x}_n \in G$, then there are $x'_1, \ldots, x'_n \in G$ such that $w(x'_1, \ldots, x'_n) < e$.

Proof. By Propositions 1–3 we may assume that $n \geq 5$ and $w(x_1, \ldots, x_n)$ is a product of basic commutators of weight $n \leq 5$ in variables x_1, \ldots, x_n . The group word $w(x_1, \ldots, x_n)$ can be represented in the form

$$w(x_1,...,x_n) = w_1(x_1,...,x_{n-1}) \cdot w_2(x_1,...,x_n)$$

where $w_1(x_1,\ldots,x_{n-1})$ is a product of basic commutators in variables x_1,\ldots,x_{n-1} and $w_2(x_1,\ldots,x_n)$ is a product of basic commutators containing variable x_n . If for some $\bar{x}_1,\ldots,\bar{x}_{n-1}\in G$ is valid $w_1(\bar{x}_1,\ldots,\bar{x}_{n-1})>e$ in G, then by inductive arguments

$$w_1(x'_1, \dots, x'_{n-1}) < e, \qquad w(x'_1, \dots, x'_{n-1}, x'_n) = w_1(x'_1, \dots, x'_{n-1}, e) < e$$

NIKOLAI YA. MEDVEDEV — ELENA A. TERECHINA

in G for some x'_1, \ldots, x'_{n-1} . So we may assume that

$$w(x_1,\ldots,x_n)=w_2(x_1,\ldots,x_n)$$

for all $x_1, \ldots, x_n \in G$. By these arguments we may assume that

$$w(x_1,\ldots,x_n)=\hat{w}(x_1,\ldots,x_n)$$

for all $x_1, \ldots, x_n \in G$, where $\hat{w}(x_1, \ldots, x_n)$ is a product of basic commutators of the weight 5 containing variables x_{n-4}, \ldots, x_n and $\hat{w}(\bar{x}_1, \ldots, \bar{x}_n) > e$. Then

$$w^*(x_1,\ldots,x_n) = \hat{w}(x_1,\ldots,x_n)\,\hat{w}(x_1^{-1},\ldots,x_n^{-1}) = e\,$$

a contradiction to inequalities

$$\hat{w}(\bar{x}_1,\ldots,\bar{x}_n) > e, \qquad \hat{w}(\bar{x}_1^{-1},\ldots,\bar{x}_n^{-1}) \ge e.$$

REFERENCES

- [1] The Black Swamp Problem Book, kept by Ch. Holland at Bowling Green State University.
- [2] MEDVEDEV, N. Ya.: On covers in the lattice of quasivarieties of l-groups, Ordered Algebraic Structures (The 1991 Conrad conference), Kluwer Academic Publishers, Dordrecht, 1993.
- [3] KOKORIN, A. I.—KOPYTOV, V. M.: Fully Orderable Groups, John Wiley and Sons, Halstead Press, New York – Toronto, 1974.
- [4] ANDERSON, A.—FEIL, T.: Lattice-Ordered Groups. An Introduction, D. Reidel, Boston, 1988.
- [5] HALL, M.: The Theory of Groups, MacMillan, New York, 1959.

Received February 16, 1994

Department of Mathematics Altai State University Dimitrova 66 656099 Barnaul RUSSIA