

TOPOLOGIES COMPATIBLE WITH ORDER

Milan Kolibiar

Dedicated to Professor J. Jakubík on the occasion of his 70th birthday

ABSTRACT. In paper [2] there were studied two kinds of compatibility of a topology in an ordered set $(P; \leq)$ with the order relation \leq . The present paper deals with some other kind of such compatibility.

By an ordered set (= o. set) we mean a partially ordered set. Two elements a, b of an o. set $(P; \leq)$ are said to be *incomparable*, in notation, $a \parallel b$, whenever $a \nleq b$ and $b \nleq a$.

DEFINITION. (see [2]). Let $(P; \leq)$ be an o. set. A T_1 -topology T in P is said to be strongly compatible with the order relation \leq , whenever for any $a, b \in P$ with a < b there exist neighborhoods U and V of a and b, respectively, such that $x \in U$, $y \in V$ imply x < y or $x \parallel y$.

Now we can prove

THEOREM 1. Let $(P; \leq)$ be an o. set. Then a T_1 -topology T in P is strongly compatible with the order relation \leq if and only if for any two convergent nets $\{x_{\alpha} : \alpha \in D\}$, $\{y_{\alpha} : \alpha \in D\}$ of P with $x_{\alpha} \leq y_{\alpha}$ for every $\alpha \in D$,

 $\lim x_{\alpha} \leq \lim y_{\alpha}$ or $\lim x_{\alpha} \| \lim y_{\alpha}$

holds true.

Proof. Let the topology T in P be strongly compatible with \leq . Let $\{x_{\alpha}\colon \alpha\in D\}$, $\{y_{\alpha}\colon \alpha\in D\}$ be convergent nets in P such that $x_{\alpha}\leq y_{\alpha}$ for all $\alpha\in D$. Denote by $a=\lim x_{\alpha}$ and $b=\lim y_{\alpha}$. Assume to the contrary that a>b. Then there exist neighborhoods U and V of a and b, respectively, such that $u\in U$ and $v\in V$ imply u>v or $u\parallel v$. By assumption, there exists $\beta\in D$ such that $x_{\alpha}\in U$ and $y_{\alpha}\in V$ for all $\alpha\geq \beta$. Since $x_{\alpha}\leq y_{\alpha}$, we have a contradiction. Thus $a\leq b$ or $a\parallel b$.

AMS Subject Classification (1991): 06B30.

Keywords: partially ordered set, topology strongly (extremely) compatible with order.

MILAN KOLIBIAR

Conversely, let $\lim x_{\alpha} \leq \lim y_{\alpha}$ or $\lim x_{\alpha} \| \lim y_{\alpha}$ for any two convergent nets $\{x_{\alpha} \colon \alpha \in D\}$, $\{y_{\alpha} \colon \alpha \in D\}$ with $x_{\alpha} \leq y_{\alpha}$ for all $\alpha \in D$ in P. Assume to the contrary that T is not strongly compatible with \leq . Then there exists a < b in P such that for any neighborhoods U and V of a and b, respectively, there exist $x_{U} \in U$ and $y_{V} \in V$ such that $x_{U} \geq y_{V}$. It is easy to construct a directed set D and nets $\{x_{\alpha} \colon \alpha \in D\}$, $\{y_{\alpha} \colon \alpha \in D\}$ such that $x_{U} \in \{x_{\alpha} \colon \alpha \in D\}$, $y_{V} \in \{y_{\alpha} \colon x \in D\}$, $\lim x_{\alpha} = a$ and $\lim y_{\alpha} = b$, a contradiction.

The last result leads us to the following

DEFINITION. Let $(P; \leq)$ be an o. set. A T_1 -topology T in P is said to be extremely compatible with the order relation \leq , whenever the following condition is fulfilled:

If $\{x_{\alpha} : \alpha \in D\}$ and $\{y_{\alpha} : \alpha \in D\}$ are convergent nets in P such that $x_{\alpha} \leq y_{\alpha}$ for any $\alpha \in D$, then $\lim x_{\alpha} \leq \lim y_{\alpha}$.

The following example shows that there exist an o. set and an extremely compatible topology with the given order.

EXAMPLE. (See [1, Chapt. X]). Consider a complete lattice $(L; \leq)$ endowed with their order topology. Recall that for a net $\{x_{\alpha} : \alpha \in D\}$ in L, $\lim x_{\alpha} = a$ in the order topology if and only if

$$\lim\inf\{x_{\alpha}\}=\lim\sup\{x_{\alpha}\}=a\,,$$

where $\liminf \{x_{\alpha}\} = \sup_{\beta} \inf_{\alpha \geq \beta} x_{\alpha}\}$, $\limsup \{x_{\alpha}\} = \inf_{\beta} \{\sup_{\alpha \geq \beta} x_{\alpha}\}$. Now, it is routine to verify that the order topology in L is extremely compatible with \leq .

THEOREM 2. Let $(P; \leq)$ be an o. set and let a T_1 -topology T in P be given such that

- (i) If $a \parallel b$ in P, then there exist neighborhoods U and V of a and b, respectively, such that $x \in U$ and $y \in V$ imply $x \parallel y$;
- (ii) If a < b in P, then there exist neighborhoods U and V of a and b, respectively, such that $x \in U$ and $y \in V$ imply x < y.

Then T is extremely compatible with the order relation \leq .

Proof. Consider two convergent nets $\{x_\alpha\colon \alpha\in D\}$ and $\{y_\alpha\colon \alpha\in D\}$ in P. Assume that $x_\alpha\leq y_\alpha$ for every $\alpha\in D$. Denote by $a=\lim x_\alpha$ and $b=\lim y_\alpha$. According to Theorem 1 we have $a\leq b$ or $a\parallel b$. Suppose that $a\parallel b$. Then by (i) there exist neighborhoods U and V of a and b, respectively, such that $x\in U$ and $y\in V$ imply $x\parallel y$. Since $a=\lim x_\alpha$ and $b=\lim y_\alpha$, there exists $\beta\in D$ such that $x_\alpha\in U$ and $y_\alpha\in V$ for all $\alpha\geq \beta$. As $x_\alpha\leq y_\alpha$, by assumption, we have come to a contradiction. Thus $a\leq b$ and the proof is complete.

TOPOLOGIES COMPATIBLE WITH ORDER

REFERENCES

- [1] BIRKHOFF, G.: Lattice Theory, 3rd ed., American Mathematical Society, Providence, R. I., 1967.
- [2] SEKANINA, A.—SEKANINA, M.: Topologies compatible with ordering, Arch. Math. (Brno) 2 (1966), 113-126.

Received December 23, 1993

Department of Algebra and Number Theory Komenský University Mlynská dolina SK-842 15 Bratislava SLOVAKIA