TOPOLOGIES COMPATIBLE WITH ORDER.

MILAN KOLIBIAR

Dedicated to Professor J. Jakubík on the occasion of his 70th birthday

ABSTRACT. In paper [2] there were studied two kinds of compatibility of a
topology in an ordered set \((P; \leq)\) with the order relation \(\leq\). The present paper
deals with some other kind of such compatibility.

By an ordered set \((= o.\ set)\) we mean a partially ordered set. Two elements
\(a, b\) of an o. set \((P; \leq)\) are said to be incomparable, in notation, \(a \parallel b\), whenever
\(a \not\leq b\) and \(b \not\leq a\).

DEFINITION. (see [2]). Let \((P; \leq)\) be an o. set. A \(T_1\)-topology \(T\) in \(P\) is said
to be strongly compatible with the order relation \(\leq\), whenever for any \(a, b \in P\)
with \(a < b\) there exist neighborhoods \(U\) and \(V\) of \(a\) and \(b\), respectively, such
that \(x \in U, y \in V\) imply \(x < y\) or \(x \parallel y\).

Now we can prove

THEOREM 1. Let \((P; \leq)\) be an o. set. Then a \(T_1\)-topology \(T\) in \(P\) is strongly
compatible with the order relation \(\leq\) if and only if for any two convergent nets
\(\{x_\alpha : \alpha \in D\}, \{y_\alpha : \alpha \in D\}\) of \(P\) with \(x_\alpha \leq y_\alpha\) for every \(\alpha \in D\),

\[\lim x_\alpha \leq \lim y_\alpha\] or \[\lim x_\alpha \parallel \lim y_\alpha\]

holds true.

Proof. Let the topology \(T\) in \(P\) be strongly compatible with \(\leq\). Let
\(\{x_\alpha : \alpha \in D\}, \{y_\alpha : \alpha \in D\}\) be convergent nets in \(P\) such that \(x_\alpha \leq y_\alpha\) for
all \(\alpha \in D\). Denote by \(a = \lim x_\alpha\) and \(b = \lim y_\alpha\). Assume to the contrary that
\(a > b\). Then there exist neighborhoods \(U\) and \(V\) of \(a\) and \(b\), respectively, such
that \(u \in U\) and \(v \in V\) imply \(u > v\) or \(u \parallel v\). By assumption, there exists
\(\beta \in D\) such that \(x_\alpha \in U\) and \(y_\alpha \in V\) for all \(\alpha \geq \beta\). Since \(x_\alpha \leq y_\alpha\), we have a
contradiction. Thus \(a \leq b\) or \(a \parallel b\).

AMS Subject Classification (1991): 06B30.
Key words: partially ordered set, topology strongly (extremely) compatible with order.
Conversely, let \(\lim x_\alpha \leq \lim y_\alpha \) or \(\lim x_\alpha \parallel \lim y_\alpha \) for any two convergent nets \(\{x_\alpha : \alpha \in D\} \), \(\{y_\alpha : \alpha \in D\} \) with \(x_\alpha \leq y_\alpha \) for all \(\alpha \in D \) in \(P \). Assume to the contrary that \(T \) is not strongly compatible with \(\leq \). Then there exists \(a < b \) in \(P \) such that for any neighborhoods \(U \) and \(V \) of \(a \) and \(b \), respectively, there exist \(x_U \in U \) and \(y_V \in V \) such that \(x_U \geq y_V \). It is easy to construct a directed set \(D \) and nets \(\{x_\alpha : \alpha \in D\} \), \(\{y_\alpha : \alpha \in D\} \) such that \(x_U \in \{x_\alpha : \alpha \in D\} \), \(y_V \in \{y_\alpha : x \in D\} \), \(\lim x_\alpha = a \) and \(\lim y_\alpha = b \), a contradiction. \(\square \)

The last result leads us to the following

Definition. Let \((P; \leq) \) be an o. set. A \(T_1 \)-topology \(T \) in \(P \) is said to be **extremely compatible with the order relation \(\leq \)**, whenever the following condition is fulfilled:

If \(\{x_\alpha : \alpha \in D\} \) and \(\{y_\alpha : \alpha \in D\} \) are convergent nets in \(P \) such that \(x_\alpha \leq y_\alpha \) for any \(\alpha \in D \), then \(\lim x_\alpha \leq \lim y_\alpha \).

The following example shows that there exist an o. set and an extremely compatible topology with the given order.

Example. (See [1, Chapt. X]). Consider a complete lattice \((L; \leq) \) endowed with their order topology. Recall that for a net \(\{x_\alpha : \alpha \in D\} \) in \(L \), \(\lim x_\alpha = a \) in the order topology if and only if

\[
\liminf \{x_\alpha\} = \limsup \{x_\alpha\} = a,
\]

where \(\liminf \{x_\alpha\} = \sup_\beta \{\inf_\alpha \} \), \(\limsup \{x_\alpha\} = \inf_\beta \{\sup_\alpha \} \). Now, it is routine to verify that the order topology in \(L \) is extremely compatible with \(\leq \).

Theorem 2. Let \((P; \leq) \) be an o. set and let a \(T_1 \)-topology \(T \) in \(P \) be given such that

(i) If \(a \parallel b \) in \(P \), then there exist neighborhoods \(U \) and \(V \) of \(a \) and \(b \), respectively, such that \(x \in U \) and \(y \in V \) imply \(x \parallel y \);

(ii) If \(a < b \) in \(P \), then there exist neighborhoods \(U \) and \(V \) of \(a \) and \(b \), respectively, such that \(x \in U \) and \(y \in V \) imply \(x < y \).

Then \(T \) is extremely compatible with the order relation \(\leq \).

Proof. Consider two convergent nets \(\{x_\alpha : \alpha \in D\} \) and \(\{y_\alpha : \alpha \in D\} \) in \(P \). Assume that \(x_\alpha \leq y_\alpha \) for every \(\alpha \in D \). Denote by \(a = \lim x_\alpha \) and \(b = \lim y_\alpha \). According to Theorem 1 we have \(a \leq b \) or \(a \parallel b \). Suppose that \(a \parallel b \). Then by (i) there exist neighborhoods \(U \) and \(V \) of \(a \) and \(b \), respectively, such that \(x \in U \) and \(y \in V \) imply \(x \parallel y \). Since \(a = \lim x_\alpha \) and \(b = \lim y_\alpha \), there exists \(\beta \in D \) such that \(x_\alpha \in U \) and \(y_\alpha \in V \) for all \(\alpha \geq \beta \). As \(x_\alpha \leq y_\alpha \), by assumption, we have come to a contradiction. Thus \(a \leq b \) and the proof is complete. \(\square \)
REFERENCES

Received December 23, 1993

Department of Algebra and Number Theory
Komenský University
Mlynská dolina
SK–842 15 Bratislava
SLOVAKIA