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PERIODICITY OF MATRICES AND
ORBITS IN FUZZY ALGEBRA

MARTIN GAVALEC

ABSTRACT. Periodicity of vector orbits in the fuzzy algebra is studied. Rela-
tions between the period of a matrix A and the periods of the orbits of all vectors
with respect to A are described.

1. Introduction

Fuzzy matrix operations are useful for expressing basic properties of fuzzy
relations. The convergence and periodicity in special classes of matrices were
studied by M. G. Thomason [10], and subsequently by many other authors.
Li Jian-Xin [8], [9] considered the periodicity of fuzzy matrices in the general
case and gave an upper estimate for the period of a matrix.

The convergence of the power sequence of a square matrix in fuzzy algebra
was studied, by means of digraphs, by K. Cechldrov4 [3]. Other connections
between eigenvectors of a fuzzy matrix and its associated digraphs were described
in [4].

It was proved in [6] that the period per(A) of a matrix A is equal to the least
common multiple of the periods of all non-trivial strongly connected components
in all threshold digraphs of A and to the least common multiple of the orbit
periods per (A, x) for all vectors x € B(n). An algorithm was suggested which
enables to compute the period in O(n?®) time.

In this paper the conditions are considered under which, for a given matrix
A, there is a vector x such that per(A) = per (A, x).

2. Notions and notation

In this section we define the notions mentioned informally in the introduction.
For simpler notation of index sets we shall use the convention by which any
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natural number n is considered as the set of all smaller natural numbers, i.e.,
n=1{0,1,...,n —1}. By N, Nt we denote the set of all non-negative integers
and the set of all positive integers, respectively. The greatest common divisor
and the least common multiple of a set S C N are denoted by the abbreviations
ged S and lem S, respectively.

If G = (V,E).is a digraph (directed graph), then by strongly connected com-
ponent of G we mean a subdigraph K = (K, EN K?) generated by a non-empty
subset K C V such that any two vertices z,y € K are contained in a com-
mon cycle, and K is a maximal subset with this property. IC is called trivial,
if K contains only one vertex z, and there is no loop from z to z in IC. If
G1 = (V4, E1), G = (Va, E3) are digraphs, we say that Gy is a subdigraph of G,
(in notation: G; C Ga), if Vi C V2 and E; C E,. The intersection of digraphs
G1, G is a digraph Gy NGy = (V1 N V,, By N Ey); we say that Gi NGy = 0 if
VinVa=0 (and F1 N Ey =0).

DEFINITION 2.1. The fuzzy algebra B is a triple (B,®, ®), where B is a
linearly ordered set and @, ® are the binary operations of maximum and min-
imum, respectively, on B. For any natural n > 0, B(n) denotes the set of all
n-dimensional column vectors over B, and B(n,n) denotes the set of all square
matrices of order n over . The matrix operations over B are defined formally
in the same manner (with respect to @, ®) as the matrix operations over any
field.

DEFINITION 2.2. Let A € B(n,n), h € B.

(i) The threshold digraph G(A,h) is the digraph G = (n, E), with the
vertex set n = {0,1,...,n—1} and with the arc set F = {(Z,j), i,j €
n, aij Z h} .

(ii) For any natural r and for any 4,7 € n, we denote by T/Vér) (,7) the
set of all walks in G, of length r, beginning in ¢ and ending in j.

(iii) For any natural r and for I,J C n, we denote
Wi, T) =W G, 5); i€, jed},

We (I, J) == U{W{ (1, J); r eN}.

Several authors studied the graph properties using power sequences of as-
sociated matrices (R. A. Cuninghame-Green [5], M. Gondran and
M. Minoux [7), U. Zimmermann [12]). Conversely, powers of a matrix
over (B,®, ®) can be characterized by walks in the corresponding threshold
graphs. The following formulation is due to K. Cechldrova [3].
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LEMMA 2.1. Let A € B(n,n), x€B(n), he B, r ¢ N*t, 4,5 € n. Then
(@) (A" 2h < Wi, G,5)#0,
(i) (AT2)i > h <= (3 €n)[z; > b, WTh , (i,7) £ 0].

Proof. By induction on r. O

3. Matrix periods

The necessary definitions and facts from [6] concerning matrix periods in
fuzzy algebra are presented in this section.

DEFINITION 3.1. Let A € B(n,n), h € B. We define

Per(A) := {p € N*; (3R)(Vr > R) A" = APy
per(A) := min Per(A).

The number per(A) is called the period of the matrix A.

Remark 3.1. By the linearity of B, any element of any power of the matrix A
is equal to some element of A. Therefore, the sequence of powers of A contains
only finitely many different matrices. As a consequence, the set Per(A) is always
non-empty and the period of A is well-defined.

DEFINITION 3.2. Let A € B(n,n), x € B(n). We define by recursion
x(o)::x, ifr=0,
x(1) = Ax™1, ifr>0.
The sequence (x(");r € N) is called the orbit of x (with respect to A).
DEFINITION 3.3. Let A € B(n,n), x € B(n). We define

Per(A,x) := {p € N*; (3R) (Vr > R) x(") = x(r+p)}
per (A, x) := min Per (A, x).

The number per(A, x) is called the orbit period of x (with respect to A).

The following lemma is based on the properties of divisibility of natural num-
bers. The denotation (N,|) is used for the set of all natural numbers partially
ordered by the relation of divisibility.
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LEMMA 3.1. Let A € B(n,n), x € B(n). Then
(i) Per(A) is the principal filter in (N, |) generated by per(A),
(ii) Per(A,x) is the principal filter in (N,|) generated by per (A, x),

(iii) Per(A)= [\ Per(A,x),
X€B(n)

(iv) per(A)= lcm Per(A, x).
x€eB(n)

DEFINITION 3.4. Let A € B(n,n), x € B(n), i € n. We define

Per(A, x,1) = {p € N+; (3R)(Vr > R) xgr) _ xz(r+p)}7
per (A, x,1) := min Per(A, x,1).

LEMMA 3.2. Let A € B(n,n), x € B(n). Then
(i) Per(A,x,3) is the principal filter in (N,|) generated by per (A, x,1),
(ii) Per(A,x) = [) Per(A,x,i),

1EN

(iii) per(A,x) = l_cem Per (A, x,1).

DEFINITION 3.5. Let A € B(n,n), h € B, let G(A, h) be a threshold digraph
of A. By SCC* G(A,h) we denote the set of all non-trivial strongly connected
components of G(A,h). For any SCC* G (A, h), we define

(i) per(K):=gcd{|C|; C is a cycle in K},
(ii) A = {ai; i,j € n},
(iii) SCC*(A) =J{SCC*G(A,h); hc A},
(iv) SCC™n(A) = {KC € SCC*(A); K is minimal in (SCC*(A),C)}.

LEMA 3.3. Let A € B(n,n). Then
(i) (VK, K' € SCC*(A))[K CK' = per(K))| per(K)],
(i) (Vh, B’ € A)(VSCC*G(A,h), K' € SCC*G(A, )
[(R>WAKNK #0) = KCKT],
(iif) (VK,K' € SCC™(A))[K #£K' = KNK' =0],
(iv) |sCC™™(A)| < n.
In [6] the period of a fuzzy matrix was characterized by the orbit periods and

by the periods of the non-trivial strongly connected components in the threshold
graphs of the matrix. The following theorem was proved.
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THEOREM 3.4. Let A € B(n,n), d € N. Then the following statements are
equivalent

(i) per(A)ld,
(i) (vxe B(n)) per (A, x)|d,
(iii) (Vh € B) (VSCC* G (A, h)) per(K)|d.

The first two statements in the next theorem present a more compact formu-
lation of Theorem 3.4. The third statement is a consequence of Lemma 3.3 (1).
THEOREM 3.5. Let A € B(n,n). Then

(i) per(A) =lcm {per(A,x); x € B(n)}, *
(i) per(A) = lem {per(K); K € SCC*(A)},
(iii) per(A) = lcm {per(IC); K € SCC™in (A)}.

4. Orbit periods

From Theorem 3.5 a natural question arises: Is the value of the matrix period
per(A) = d necessarily achieved by some orbit period, i.e., is there a vector
x € B(n) such that per(A,x)=d ?

If the matrix period is a prime power, then the answer to this question is
positive.

THEOREM 4.1. Let A € B(n,n), let d = p® be a prime power. Then the
following statements are equivalent

(i) d|per(A),
(i) (3x € B(n))d|per(A,x),
(ili) (3K € SCC*(A)) d|per(K).
Proof. In view of the well-known properties of prime numbers, a prime
power p* divides the least common multiple of some given natural numbers if
and only if p® divides at least one of the numbers. By this fact, the equiva-

lence of the statements (i) and (ii) follows from Theorem 3.5 (i). Similarly, the
equivalence of (i) and (iii) is a consequence of Theorem 3.5 (ii). O

THEOREM 4.2. Let A € B(n,n) and let d = p® be a prime power. If per (A)|d,
then the following statements are equivalent

(i) per(A)=d,
(i) (3x € B(n)) per(A,x) =d,
_ (il)) (3K € SCC*(A)) per(K) =d.
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Proof. By Theorem 4.1. O

In the general case, when the considered matrix period is a product of prime
powers, the situation is somewhat more complicated. Theorem 4.1 can be then
expressed in the following general form.

THEOREM 4.3. Let A € B(n,n), let d; = p?j , for j € s, be powers of different

primes, let d = [ d;. Then the following statements are equivalent
jEs

(i) d|per(A),
(i) (Vi€ s)(3x; € B(n))d;|per (A, x;),
(ii) (Vj € s) (3K; € SCC*(A)) d; | per (IC;).

Proof. The theorem can be proved by using the same arguments as in the
proof of Theorem 4.1, for any p?j, jESs. |

Tf we change the order of the quantifiers in Theorem 4.3 (ii), (iii), in order
to get one common x € B(n), or one common /C € SCC*(A), then we obtain a
weaker form of the theorem, with implications instead of equivalences.

THEOREM 4.4. Let A € B(n,n), let d € N. Then the statements
(i) d|per(A),
(i) (3x € B(n)) d|per(A, x),
(iii) (3K € SCC*(A)) d|per(K),
fulfil the implications (iii) = (i) = (i).
Proof. The theorem follows from Theorem 3.5. O

The following theorem presents another formulation, in terms of equality.

THEOREM 4.5. Let A € B(n,n), let d € N. If per(A)|d, then the statements
(i) per(A)=d,
(i) (3x € B(n)) per(A,x) =d,
(iii) (3K € SCC™(A)) per(K) =d,
fulfil the implications (ii)) = (i) = (i)-
Proof. By Theorem 4.4. O

Remark 4.1. In general, the converse implications to those of Theorem 4.4
and Theorem 4.5 do not hold true. This can be shown by the following two
examples.
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EXAMPLE 1. Let be B=(0,4), n=6, d =6 and

010
0 0 1
10 0 1

A= .0 2 3

0 0 2
3 00

The threshold graphs G (A, h) are of the following five types:
for h =0 we have the complete digraph Gy with 6 vertices {0,1,...,5},
for 0 < h <1 we have the digraph Gi:

0 12 3 4 5

for 1 < h <2 we have the digraph G,:

0 1 2 3 4 5

0 1 2 3 4 5

and for h > 3 we have the discrete digraph G, with 6 vertices.

We can see that the only non-trivial strongly connected components of matrix
A are the subgraphs ICq1, ICy, K3, generated by subsets

Kl = {0,1,2} in g]_,

Ky ={3,4,5} in G; and in Gy,

K3 =1{3,5} in Gs.
The component periods are per(/C;) = 3, per(Ks) = 1, per(K3) = 2.

By Theorem 3.5 (ii), we have per(A) = lem(3,1,2) = 6 = d, therefore, the
statements Theorem 4.4 (i) and Theorem 4.5 (i) are satisfied.
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On the other hand, we can verify that there is no x € B(n) for which

per(A, x) = 6. Let us choose a fixed vector x = (2o, 1, T2, T3, T4, T5) € B(n).

If any of the elements z3, z4, z5 is > 1, then the orbit elements :Ugr), mY),

a:r(;) stabilize on the value 1. The remaining elements :réT), mgr), a:ér) obviously

cannot have their periods other than 1 or 2. By Lemma 3.2 (iii), the orbit period
per(A, x) # 6.
If all the elements x3, 74, x5 are < 1, then the orbit elements acér), :EY), mg)

can only have periods 1 or 3 and all orbit elements mgr), asy), :Egr) stabilize

on the value h = max(z3, T4, ¥5). Again, by Lemma 3.2 (iii), the orbit period
per(A,x) # 6.

We have shown that in Theorem 4.4 and Theorem 4.5, the implication (i)
= (ii) is not satisfled.

EXAMPLE 2. Let be B=(0,2), n=5, d=6 and
0 1 0
0 0 1
A=11 0 0

0 1

1 0

For 0 < h < 1 we have the threshold digraph
0 1 2 3 4

The non-trivial strongly connected components of matrix A are the sub-
graphs K1, Ky generated by subsets Ky = {0,1,2} and K, = {3,4}, respec-
tively. The component periods are per(K;) =3, per(KCy) = 2.

If we define x = (zo, 71, T2, 3, z4) = (1,0,0,1,0), then clearly the orbit
elements m(()r), x&r), avg) have their periods equal to 3 and .TL‘:(3T), my) have the
periods equal to 2. Thus, per(A) = per(A,x) = 6 = d, i.e., the statements
Theorem 4.4 (ii) and Theorem 4.5 (ii) are satisfied.

On the other hand, there is no strongly connected component with a period
equal to 6; therefore, the statements (iii) of the mentioned theorems are not
true.

We have shown that in Theorem 4.4 and Theorem 4.5, the implication
(i) = (iii) is not satisfied.

Remark 4.2. In our previous considerations we have used the fact that in
Example 2 the components Ky, Ko are not reachable from each other. However,
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the non-reachability of components is not necessary. With a little effort we can
construct an example in which the situation is different.

EXAMPLE 3. Let be B=(0,2), n=5, d=6 and

0 2 0

0 0 2
A=|2 0 0 2
0 2
2 0
For 0 < h <2 we have the threshold digraph

0 1 2 3 4

< >

Similarly as in the previous example, the only non-trivial strongly connected
components of matrix A are the subgraphs K;, Ky generated by subsets
K1 = {0,1,2} and K, = {3, 4}, respectively. Again the component periods
are per(KC;) =3, per(Ks) = 2.

It we define x = (zo, z1, z2, ©3, ©4) = (2,0,0,1,0), then clearly the orbit
elements a::(;), xf[-) have the periods equal to 2. On the other hand, in the se-
quence of orbit elements xér), the value 2 repeats with the periodicity equal to
3, whereas the value 1 occurs at any other position (for sufficiently large 7 ). This
is a consequence of Lemma 2.1 and of the fact that ged(per(K;), per(Ks)) = 1.
Therefore, we have per(A, x,0) = 3. Thus, per(A) = per(A,x) = lem(2,3) =
6= d.

Also in this example there is no strongly connected component with a period
equal to 6. Therefore we can conclude from this example that in Theorem 4.4

and Theorem 4.5, the implication (ii) = (iii) is not satisfied.

Remark 4.3. If we compare Example 1 and Example 3, we can see that the
existence of a vector x € B(n) with the property per(A) = per(A, x) depends
on the level A € B on which the strongly connected components are reachable
from each other. The arguments used in Example 3 form the base of the following
theorem.

THEOREM 4.6. Let A € B(n,n),let d; = p?j, for j € s, be powers of different
primes, let d = [] d;. Then the statements
JEs

i) (3xe B(n)) d|per(A,x),
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(i) (Vj € s)(3h; € B)(3K; € SCC* G(A, h;))
[dj |per(/Cj)/\(Vj & s)[WQ’(A,hj)(ICja’Cm) 7é 0 = hj > hm]]
fulfil the implication (ii) = (i).

Proof. Let us suppose that (i) holds true. For any j € s we choose an
element i; € K; in such a way that (Vj, m € s)[; = K & i = i) This is
always possible because of Lemma 3.3.

We define x € B(n) as follows:

z;:=h;, ifi=1i; for some j € s,

z; =0, otherwise.

Then for any j € s, no vertex i, with h, > h; can be reached from the
vertex i; in G(A, h;). Therefore, the value z;; = h; will be repeated in the
orbit elements mg), for sufficiently large 7, with periodicity per(/C;) which is
a multiple of d;. This implies that d;|per(A,x,i;). By Lemma 3.2 we get
lemd,|lcmper (A, x, i;), i.e., d|per(A,x). O
JjEs JjESs

Remark 4.4. It will be shown by the last example that neither the statement
(i) in Theorem 4.6 is necessary for the existence of x € B(n) such that per(A) =
per (A, x). It turns out that in deciding the question it is important to consider
also the lengths of the walks connecting the components of threshold digraphs.

EXAMPLE 4. Let be B=(0,4), n =10, d =12 and

01 00

0 010

0 0 01

1 0 0 01
A= 0 3 02 00
0 03 00O
0 003 00
0 0 00 30
0 00 0 0 3
300 0 0O

for 0 < h <1 we have the digraph G;:
1 v 5 6
0 C/%\ o / \ 7
\‘/\\O u‘\\<—/
3 8

9
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for 1 < h < 2 we have the digraph Gs:

1 )
)

6
8

. N

for 2 < h < 3 we have the digraph Gs:

/

Similarly as in the first example, the only non-trivial strongly connected
components of matrix A are the subgraphs IC;, Ko, 3, generated by subsets

Ky ={0,1,2,3} in Gi,

Ky ={4,5,6,7,8,9} in G; and in G,

K3 ={4,5,6,7,8,9} in Gs.

The component periods are per(K;) = 4, per(Ks) = 2, per(K3) = 6. By
Theorem 3.5 (ii), we have per(A) =1lecm(4,2,6) = 12 = d.

If we define x = (1,0,0,0,3,0,0,0,0, 0), then the orbit elements my), . ,xéT)
evidently have their periods equal to 6. Namely, the value 3 repeats with peri-

odicity equal to 6 (the value 2 also occurs on infinitely many places).

On the other hand, in the sequence of orbit elements :Z,'E)T), the value 1 repeats

on even places with the periodicity equal to 4, whereas on the odd places the
value 1 occurs with periodicity equal to 2 (for sufficiently large ). This is a
consequence of the fact that ged(per(K;), per(K5)) = 2 and that the length
of any walk from the vertex 0 to the vertex 4 is odd. On the whole we have
per(A, x,0) = 4. Thus, per(A) = per(A, x) = lem(4,6) = 12 =d.

It can be easily seen that the statement Theorem 4.6 (ii) is not fulfilled in
Example 4. Therefore, in Theorem 4.6, the converse implication (i) = (i)
does not hold true.

9
1 5 6
) f__)\
0 o2 4 N7
o
3 9

8
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Remark 4.5. The following three problems remain open:

(i) Find a necessary and sufficient condition for the existence of a vector
x € B(n) with the property per (A, x) = per(A), if matrix A € B(n,n)
is given.

(ii) Find a polynomial algorithm for deciding the previous problem.

(iii) Find a polynomial algorithm for computing the orbit period per (A, x),
if A € B(n,n) and x € B(n) are given.
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