TAIRA
Tatra Mountains Math. Publ. 5 (1995), 89-96 Aou"Tq‘“s

Mathematical Publications

GROUP HYPERREALS: ITERATED
SEQUENTIAL COMPLETIONS OF RATIONALS
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Dedicated to Professor J. Jakubik on the occasion of his 70th birthday

ABSTRACT. We construct sequential convergence group completions of the ra-
tional numbers the underlying groups of which differ from the real numbers. First,
we equip the group of real numbers with an incomplete compatible sequential
convergence which preserves the usual metric convergence of rational sequences.
Second, every completion of the resulting group has the desired properties. We
show that there are exactly expexpw such nonhomeomorphic completions; the
sequential order of each completion is at least 2 and there are expexpw comple-
tions the sequential order of which is w; .

1. Introduction

Sequential convergence groups, or L-groups, were introduced by
O. Schreier in [SCH] as groups equipped with a compatible convergence
of sequences (cf. [NOG]). As shown by J. Novéak in [NOV], the completion
theory for L-groups differs from the completion theory for topological groups.
The group of rational numbers equipped with the usual convergence is a sur-
prisingly rich example of the difference (cf. [FZS], [FKP], [FCB]). Observe that
the rational numbers can be equipped with various nondiscrete compatible con-
vergences having interesting properties. P. Simon proved recently that there
exists a convergence finer than the usual one such that the resulting group is
complete, and another, incomplete one, such that the underlying group of its
completion is a proper subgroup of the real numbers ([SIM]). F. Zanolin
proved that each coarse convergence (no convergent sequence can be added)
compatible with the group structure of rational numbers is complete ([FZB]).
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By R, @ and N we denote the set of real, rational and natural numbers,
respectively. The set of all monotone mappings of N into N is denoted by MON.
Let X be a set. A sequential convergence, or an L-convergence, . on X is a
subset of XM x X ; (S,z) € £ means that the sequence S converges to . We
always assume the axioms on constant sequences and subsequences. The pair
(X, %) is an L-space; an Lo-space if limits are unique and an L}-space if the
Urysohn axiom is also satisfied (if S is a sequence and z is a point such that
every subsequence of S contains another subsequence converging to z, then
S itself converges to z). Recall that the Urysohn modification £* of & is
defined as follows: S is Z*-convergent to = whenever each subsequence of S
contains another subsequence .Z-converging to z. If % has unique limits, then
Z* has unique limits as well. If X is an algebra with a convergence, then it is
an L-algebra if the convergence is compatible, i.e., if the algebraic operations are
sequentially continuous (cf. [SCH]). The Urysohn modification preserves com-
patibility. In an L-group (ring, field) the convergence is homogeneous and the
set of all neutral sequences determines the convergence.

Let X be a set equipped with an L-convergence. For each subset A of X
define cl A to be the set of all limits of convergent sequences ranging in A. Put
0 — clA = A and, inductively, for each ordinal number o > 1 put a — cld =

U cl(8—clA). Each a—cl is a closure operator on X which is not necessarily
B<a
idempotent. If X = clA, then A is said to be closure dense and if X = w; —clA,

then A is said to be topologically dense. The sequential order of X is the least
ordinal number ¢ > 1 such that cl(c —cl4) = o —clA for each subset A of X.
Clearly 1 < 0 < w;. The sequential order of every metrizable topological group
is 1 and there are many interesting topological groups the sequential order of
which is w;. However, it is an open problem whether the sequential order of a
topological group or of an L§-group can be anything between 1 and w; (Problem
4 in [NYI] and Problem 1.5 in [FKP]).

Let X be an abelian group equipped with an L-group convergence .. A
sequence S € XN is #-Cauchy if for each s,t € MON the sequence Sos— Sot
converges to zero. If each .Z-Cauchy sequence converges, then X is L-complete.
In an L-ring or an L-field the Cauchy sequences are always defined with re-
spect to the underlying group structure. By an L£-completion we understand an
L-complete group, ring or field, respectively, in which the original one is em-
bedded as a subalgebra and a topologically dense L-subspace; if only Cauchy
sequences ranging in the original group (ring, field) are assumed to converge,
then we speak of a precompletion. We usually assume the uniqueness of limits
and the Urysohn axiom.
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2. Existence

In this section we construct an incomplete L§-group precompletion of the
rational numbers and describe some of its properties. In what follows, .# denotes
the usual convergence on the real line and .#g denotes its restriction to Q.

Construction.

Let {1,7} U B be a Hamel basis of R considered as a linear space over the
scalar field Q. Define % C RN x R to be the set of all pairs (S, z) such that
(S(n)) is of the form

S(n) = S1(n) + Sa(n)m 4+ g1by + - - -+ qrbr,, n €N,

where k€N, b; € B, ; €Q, i=1,...,k, S; and Sy are Cauchy sequences of
rational numbers, and

T =xy+ xom+ q1by + - - - + qiby,

where (S1,21),(Ss,z2) € A and zo € Q. Trivially, % is an L-group conver-
gence on R. Let %3 be the Urysohn modification of Zp.

CraiM. (R,.%y) is an incomplete L§-group precompletion of (Q, y).
Our claim follows immediately from the next lemma.

LEMMA 2.1.
(i) &pCA.
(ii) Let (S,z) € # and S € Q. Then (S,z) € %.
(i) “R#Z%%.
(iv) Let (S,z) € #, S € Q" and z € R\ Q. Then (S(n)m) is an

25 -Cauchy sequence no subsequence of which £ -converges.

Proof. (i) and (ii) are obvious. Observe that, since .# has unique limits,
% C A4 implies that %R has unique limits, too.

(iii) For each k& € N, let (ar,) be a one-to-one sequence of rational num-
bers which .#-converges to 1/k such that for all n € N we have 1 < a3, and

1/k < agn < 1/(k—1) for k = 2,.... Arrange the set {ak,;k,n € N} into
a one-to-one sequence Sy. For each n € N, define 7, to be 7 truncated to
n decimal places (i.e., m = 3,1, m = 3,14,...), Si(n) = —Sz(n)7, and

S(n) = Si(n) + Sa(n)w. Then the sequence S does not Zp-converge, but
Zp-converges to 0. Indeed, for each s € MON there exists ¢ € MON such
that S, o0sot is either a subsequence of the sequence (ay,) for some k € N, or
Sy 050t is .#-converging to 0. Since in both cases S o sot is Zp-converging
to 0, the sequence S is .Z-converging to 0, too.

91



ROMAN FRIC

(iv) Recall that {1,7} U B is a Hamel basis of R over Q. It follows directly
from the definition of & that the sequence (S(n)7) has the desired properties.
O

As shown by J. Novédk in [NOV], every incomplete abelian L£§-group has
an Lg-group completion but it can have many nonequivalent completions; even
(Q, Ag) has expexpw completions finer than (R,.#). Clearly, each L£¥-group
completion of (R,.#y) is also an L§-group completion of (Q,.#g). As al-
ready stated in [FKP], R can be equipped in many different ways with an
Lj-group convergence so that it becomes an incomplete L£}-group precompletion
of (Q, #g). It might be interesting to investigate the class of all completions of
(Q, Ay) . In the present paper we describe some of the L§-group completions of
(R, £5).

Let S be an Z;-Cauchy sequence. Then S is either %;-convergent or no
subsequence of S is .Zj3-convergent. Recall that the equivalence class [S] contain-
ing S consists of all Z-Cauchy sequences T' such that S—T is %-converging
to 0. Further, S and Sos are equivalent for all s € MON and the equivalence
relation is a congruence (cf. [NOV]).

Let (G,Z5) be an Li-group completion of (R,.%y). Then the set of all
Z5-limits of sequences ranging in R can be identified in a natural way with
the group of all equivalence classes of Z5-Cauchy sequences; denote it F. As a
rule, we identify r € R and the equivalence class [(r)] containing the constant
sequence (r).

LEMMA 2.2. Let S be an £ -Cauchy sequence. Then:

(i) Thereare ng,k €N, b; € Band g €Q,i=1,...,k,and Si,S, € QN
such that for all n € N, n > ng, we have S(n) = Si(n) 4+ Sa2(n)m +
qiby + -+ gy

(ii) For each s € MON there exists t € MON such that S;osot and
Sy 0sot are gy-Cauchy sequences.

Proof. Each S(n) can be expressed as a Q-linear combination of finitely
many elements of {1,7} U B. Since S is .%;-Cauchy, there is a finite subset
{b1,...,bx} of B such that each S(n), n € N, is a Q-linear combination of
{1,7} U B. This proves (i).

(ii) Clearly, the sequences S; and Sy are bounded. The rest is trivial. O

Consider the set R®7 of all symbols r®m, r € R. For » € R and g € Q define
q(r®@m) = (gr) ® 7 and for ry,75 € R define (1 @)+ (re ®@7) = (r1 +73) @ .
Then R ® 7 is a linear space over the scalar field Q and it is isomorphic to R
over Q. Denote Rf13up the linear subspace of R over Q generated by {1} UB.
Then the set X of all sums of the form p+r®m+gq1b1+- - -+qrbi, where p € Q,
reR, keN, ¢eQ, i=1,...,k, can be considered as a linear space over Q
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and a direct sum of its linear subspaces R ® m and Riyus (ie., each z € X
can be written in a unique way as z1 + 22 with z; CR® 7 and z4 € Ri13um)-
Clearly, the subgroup of X consisting of all p+7® 7+ q1b1 +---+¢:b., 7 € Q,
is isomorphic to R. Identifying ¢ ® m and g7 for ¢ € Q we can consider R as a
subgroup of X.

According to Lemma 2.2, each Zj-Cauchy sequence S is equivalent to a sum
of three Z-Cauchy sequences S1,S3,S3 such that S; is an %j-convergent
sequence of rational numbers, S3 is a constant sequence, and Sy is of the
form (T'(n)m), where T is an .#-convergent sequence of rational numbers.
Hence S, either .Z5-converges to some ¢, ¢ € Q, or no subsequence of Sy is
Zg-convergent and Sy is .#-convergent to some rw, r € R\ Q. This yields a
canonical mapping h of the group F' of all equivalence classes [S] of % -Cauchy
sequences onto the group X . In particular, if <T(n)7r> is Zg-convergent to qm,

q € Q, then A[{(T(n)m)] =q®.

PROPOSITION 2.3. The mapping h is an isomorphism of F' onto X pointwise
fixed on R.

Proof. A straightforward calculation shows that h has the desired prop-
erties. 0

In what follows we identify F' and X and consider R as a subgroup of F'.

Remark 2.4. Let (G, %3) bean L-group completion of (R, 4y). Since Q &
R & G, each point of R is an .#3-limit of a sequence ranging in Q and no
sequence ranging in QQ can -Z5-converge to a point in G\R, the sequential order
of (G,Z%) is at least 2. In the next section we show that there are expexpw
Lj-group completions of (R,.Zy), hence of (Q,.#y), the sequential order of
which is wi .

3. Completions

To construct an L§-group completion of (R, %), we have to equip the set
F' of all equivalence classes of .Zf-Cauchy sequences with a suitable L£}-group
convergence. Since F' is a direct sum of R® 7 and R¢13uB , we can start with an
Ly-group convergence on R® 7 and extend it in a canonical way to F'. Since R

and R ® 7 are isomorphic, we can utilize all L§-group completions of (Q,.Zg)
described in [FCB], [FKP] and [FZS]. We start with the categorical completion
(R, Z*) of (Q, #y) constructed by J. Novak in [NOV].

EXAMPLE 3.1. Recall that % consists of all pairs of the form ((qn —-r+
z),z), where (g,) is a sequence of rational numbers .#-convergent to r € R
and z € R. Then the set of all pairs ((S(n) ® ),z ® ), (S,z) € A, is an
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Ly-group convergence on R® 7. Define .Z» C XN x X to be the set of all pairs
(S,z) such that

S’(n):Sl(n)+52(n)®7r+qlbl+---+qkbk, TLEN,

where ke N, b, e B, q;€Q, i=1,...,k, Sy is a Cauchy sequence of rational
numbers, Sy is an .%;-convergent sequence of real numbers, and

$:$1+$2®7T+q1b1+"‘+qkbk7

where (Sy,z1) € A, (S2,2z2) € £, . Clearly, ZF is an Ly-group convergence
on F and the restriction of Zr to R is equal to Z. Let .Z} be the Urysohn
modification of %». We have to show that (F,.Z%) is complete. Let S be an
Zp-Cauchy sequence. Straightforwardly (cf. Lemma 2.2), there are & € N,
G €Q, beB,i=1,...,k, 5 € QV, S, € RV such that, barred finitely
many n € N, we have S(n) = S1(n) + S2(n) ® m + ¢1b1 + - - - + qiby . Further,
for each s € MON there exists ¢t € MON such that s; o sot is .Zgy-Cauchy
(hence Zp-convergent) and Sposot is #j-convergent (hence .Z}-convergent).
Consequently S is Zj-convergent, too. Thus (F,.Z}) is complete. It will be
called the Ferenczi completion of (Q, #gy). It is easy to see that £ is the finest
L§-group convergence on F' such that the restriction of £ to R is equal to .2
and each %-Cauchy sequence S is Zp-convergent to [S]. Since the Urysohn
modification commutes with the operation of restriction to a subspace, it fol-
lows that (F,.%5) is the categorical L§-group completion of (R,.%%). Indeed,
the categorical completion is (up to an equivalence) uniquely determined.

ExaMPLE 3.2. Consider any L-group completion (R, Z*) of (Q, #gp). E.q.,
take any (R,.%2}), A C B, from [FKP], or any L}-field completion of (Q, .#y)
from [FCBJ, or simply (R,.#). As in the previous example, define an Ly-group
convergence on R ® 7 via %, then extend it canonically to F' and take its
Urysohn modification. Again, the resulting object is an L£{-group completion of
(R, %5) and hence of (Q, #gy). This way we obtain expexpw nonequivalent
L-group completions of (Q, #g).

COROLLARY 3.3. (Q,.#y) has exactly expexpw nonequivalent L§-group
completions.

Proof. On the one hand, according to Example 3.2, (Q, #p) has at least
expexpw such completions. On the other hand, if (X, %x) is an L{-group
completion of (Q, #g), then the cardinality of X is expw (remember X =
wi — clQ) and there are at most expexpw L-structures on X and expexpw
group structures on X . Then the number of nonequivalent L§-group completions
of (Q, #gy) cannot exceed expexpw. |
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ExaMPLE 3.4. Observe that if in the construction described in Example 3.1
we take an incomplete Lj-group precompletion of (Q,.#gp), i.e., if the conver-
gence on R ® 7 is incomplete, then the resulting precompletion of (R,.Zy) is
incomplete. Hence we can repeat the process of completion. The process can be
iterated at most w; times, but can stop at any iterative step.

As shown in [FCB]|, (Q, #gp) has expexpw nonequivalent L{-field comple-
tions. It follows from Example 3.2 that each of the completions yields an L§-
group completion of (Q, #g) the underlying group of which is F'. Denote them
(F,%£F), a € expexpw.

PROPOSITION 3.5. For each o € expexpw, the sequential order of (F, %))
is wy.

Proof. According to Corollary 3.2 in [FCB], the sequential order of each
of the L§-field completions of (Q, .#g) which yields (F,%%) is wy. Since the
sequentially closed subgroup R ® 7 of (F, %) has sequential order w; (being
homeomorphic to the corresponding Lj-field completion), the sequential order
of (F,%%) is wy, too. a

Remark 3.6. It is known (cf. [FKP], [FCB]) that the completion theory for
L3-rings and Lj-fields also differs from the completion theory of topological
rings and fields. E.g., since in an Lj-field the product ST of a Cauchy sequence
S and a sequence 7' converging to zero need not converge to zero, the field
in question does not have any L§-ring completion. Consequently, to construct
iterated Lo-ring or Lo-field completions of (Q, .#gy) seems to be challenging.
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