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ONE APPROACH TO DECISION
MAKING WITH FUZZY GOALS

KAREL ZIMMERMANN

ABSTRACT. A decision making problem consisting in the choice of intensities
of application of n means to reach m given fuzzy goals is formulated in two
versions, which lead to solving nonstandard optimization problems. The solution
procedures follow from [1], [2]. Modifications and extensions are briefly discussed.

1. Necessary concepts and notations

We shall assume that the membership functions of all fuzzy sets considered
in this contribution are defined on a finite set N = {1,...,n}, so that for any
fuzzy set A, its membership function is m4: N — [0,1]; a A = min(«, ) for
any reals a,(. If A, B are two fuzzy sets with membership functions ma4,mp
we set as usual:

mang(j) =ma(j) Amp(j) forall jeN.
If A is a fuzzy set with a membership function my4, then h(A) = maxm a(j) is
J
called the height of A. Therefore
h(ANB) = E%a]@f(mA(J) Amg(7)) -

We set further for any z7 = (z1,...,z;) € RF:

Izl = max |z;|, the Tshebyshev norm.
<k

2. Motivation

Suppose that we have at our disposal n means (e.g., medicines, remedies)

to reach m goals (e.g., to cure m diseases, defects). For each goal i € S =
AMS Subject Classification (1991): 90B50, 04AT72.

Key words: optimization in fuzzy environments, decision making with fuzzy conditions and
goals.
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{1,...,m}, there is given a fuzzy set A of “appropriate or effective means for
the goal i” with membership function my4,: N — [0,1]. The value m4,(j) can
be interpreted for instance as a given level of “appropriacy” or “effectivity” of the
means (medicine) j to reach the goal 7 (e.g., to cure the disease or defect i). We
want to find the vector (z1,...,2z,) of “intensities”, (z; € [0,1] for all j € N),
with which the means 1,...,n are applied. The values z; can be interpreted as
the values of membership function mx: N — [0, 1] of a fuzzy set X of “used”
or “applied” means, so that z; = mx(j) for all j € N. It is natural to assume
that the effectivity of any means j increases if the intensity z; increases up to a
certain level and then it does not increase any more with further increase of z;,
e.g., it can remain on the level m4,(j). If we denote a;; = ma,(j) for all 4,7,
then such behaviour of the “effectivity” e;;(z;) of the jth means with respect
to the ith goal depending on the intensity z; can be described by a function

eij(:z:j) = aij A Tj

(compare Fig. 2.1).

eij(z;)

Z;

FIGURE 2.1.

Remark 2.1. We could consider also other types of functions e;;(z;) as, e.g.,
eij(z;) = max (0, z; — bi;) A a;; (compare Fig. 2.2) or e;;(x;), which is no more
partially linear. We shall confine ourselves here to the simplest case e;;(z;) =
a;; A\ T, but some considerations given in the sequel can be extended to more
general cases with increasing e;;’s.

We must describe now the conditions posed on z;’s (besides the trivial condi-
tion that z; € [0,1] for all j € N). We can require for instance that z; must be
chosen in such a way that the maximal effectivity with respect to any goal i € S
is greater than or equal to a given level b; € [0, 1], i.e., rjneaj\zfc eij(z;) > b;. We will
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eij(x;)

Qij

—by; ¥

FIGURE 2.2.

require at the same time that z; is as close as possible to some “recommended”
intensities £; in the Tshebyshev norm.
Another possibility is to choose z;’s in such a way that the vector of maximal

effectivities with respect to goals 1,2, ... ,m,'(m%\)fc lij(z;), - . -, max lmj(zj)), is
' Jje S
as close as possible to some preseribed vector of levels pT — (b1,...,bm) in

the sense of the Tsebyshev norm. Using the usual notation of mathematical
optimization and the notations introduced above with Lij(z;) = ai; A zj, we
want to solve the optimization problems:

|z — &|| — min

subject to
h(Aiﬂ[X)EmaX(aij/\(Ej)Zbi, z'—l,...,m,
JEN
hj <z; < Hj, i=1...,n, (P1)

in the first case and in the second case

o | I];é%\),c(aij A ;) — b;| — min (P2)
subject to
hjS.IIjSHj, j:1,...,n,

where instead of 0 < r; <1, we require that h; & z; < Hj, where h;, H; are
some prescribed bounds from [0, 1]. The given values h;, H;, &; may follow for
instance from some technological, medical or biological considerations.

It will be shown in the sequel that the nonstandard optimization (P1), (P2)
can be solved using the results of [2], [1], respectively.
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3. Solution Method for (P1)

In order to solve problem (P1) we may use the method described in [2]. If we
set

T‘Z‘j(.'E]') ECLZ']' /\m‘j, fj((I}j)E ll‘j—.’f}j| and
V;'-E{Ij|hj§l'j_<_Hj, Tij(ﬂlj)Zbi} for all i,j,

then all assumptions of Theorem 2 of [2] (see [2], p. 360) are satisfied, if the
set of feasible solutions of (P1) is nonempty, because r;;’s are continuous and
nondecreasing and fJ’-s are continuous. We bring in the sequel a specialized

version of the algorithm from [2] for the solution of (P1).
It holds in our case:

[bi,Hj], if Qij S bi and bi S Hj,

Vij = {z; | hj <zj < Hj, aighz; 2 bi} = {Q) otherwise
, .

Therefore if R is an arbitrary subset of S and V;; # 0 for all i € R, then

M= [max by, Hy] = [b;, Hj]  for some [ € R. (3.1)
i€ER

LEMMA 3.1. Let M be the set of feasible solutions of (P1). It holds

M+#0 < Vie §3j(i) € N suchthat Vi, #0.

Proof. Let z be a feasible solution of (P1). Then for any i € S it is

Ijl’leaj\}[( Qg N Tj = Qj(4) A 10! > bi so that ‘/”(1) 7é (Z)

If the latter condition on the left in the <= -relation is satisfied, we have

maxa;; AT; > a0 N Ty = by
e i = Qij(d) i) = Y

so that z = (x1,...,T,) is a feasible solution for (P1). O

The following theorem follows immediately from a more general Theorem 2
in [2].

THEOREM 3.1. Let the set of feasible solutions of (P1) be nonempty. Let
fi(z;) = |zj — 25, Li ={j | Vij # 0} and Z;(;y for any i be defined as follows:
fj(i)(ij(i)) = min min f](mj)

JEL; z;EVy;
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Let us set further SU) = {i | j(i) = j} forall j €N,

zW = () Viy and

iesy) :
min fi(zr),  if S®) £,
opty __ zreZ k)
fr(zy™) = min  fr(zg), otherwise.
T E[hk,Hy)
Then z°P* = (z$P",... 2% is the optimum solution of (P1).

Remark 3.1. It can be easily shown that Theorem 3.1 can be extended to
the case, where e;;(x;) are arbitrary nondecreasing continuous functions.

Although this theorem is the consequence of Theorem 2 in [2], for the sake
of completeness we bring the proof of this theorem, which is independent of the
results from [2] in the Appendix.

EXAMPLE 3.1.
Let m =n =4 so that S =N = {1,2,3,4}, 5T = (0.4,1,0.2,0),

1 04 05 0.7
0.7 05 03 1
02 1 1 06 ])°
0.4 05 05 0.8

' =(0,0...,0), HT =(1,1,1,1).

A= (a;) = zT = (0.5,0.5,0.5,0.5),

We shall solve the problem
max |z; — 0.5| — min
jEN .
subject to
y i) > b; = 1,2
1}163\3;(%/\:63)_ i, 1=1,2,3,4,
0<z;>21, j5=1,2,3,4.

The sets V;; are now the following:

Vaj =10 for j=1,2,3 and Vay =[1,1];

2,1] for j=1,2,3,4;

2 1] for j=1,2,3,4.

Therefore, the set of feasible solutions of the problem is nonempty (compare

Lemma 3.1).
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Let .'I:E-i) = argmin{|z; — 0.5 | z; € Vi;} for Vi; # 0. It is then

0.5 0.5 0.5 0.5

(.’L‘(Z)) _ V21 = @ V22 = (Z) V23 = @ 1
J 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5

Let Li = {j € N | Vij #0}. Tt is then Ly = N, Ly = {4}, Ly =Ls = N.
Let |zj(;)® — 0.5 = rrelin |z;(9) —0.5| for all i € S. Then
JEeLs

23j(1)(1) =z,(0=05, wj@)(z): 2, D=1, wj(s)(?’) — 2,(3) = 0.5,
i@ =2,9=05, sothat SW={1,3,4}, SP=5%=0,
SW = {2}, ZW=Vi;NVyNVy=[04,1], ZW=Va=[11].

Therefore z°P* = (0.5,0.5,0.5,1)7 and ||z°P* — &|| = 0.5.

4. Reference on solution method for (P2)

Using the fuzzy algebra notation (A ® z); = max (aij Nzj) forall 1 €5, it
Jje
can be easily shown that our problem can be formulated as follows:
|A® z — b|| — min
subject to :
hy <z3 < Hj for ' jEN.

This problem is the same as the inverse problem solved in [1], so that the
same method as in [1] can be made use of to solve (P2). Let us remark that
in [1] the authors assume that h; =0, H; =1 for all j € N. Nevertheless the
extension to general bounds h;, H; is a purely technical problem.

Remark 4.1. Another approach to solving (P2) consists in solving a parame-
trized equivalent problem
t — min

subject to

If (t°Pt, 2°P%) is the optimum solution of the problem, then z°Pt is the optimum
solution of (P2) with the optimal value of the objective function equal to t°Pt. We
do not describe the latter approach in this contribution. Let us only remark that
unlike the method from [1], this latter approach can be relatively easily extended
to other functions ej;(,,) different from as; A z; (compare Remark 2.1).
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Appendix

According to Lemma 3.1 L; # 0, for all 5. Further, it holds : € SU®) for

any i € S. It is further moPt ANC el s [Jergl(z?)(c))b“ i) C [0, Hi)] = Vi

for any i, so that .
azip Az°EE > b,
15(z) i) = Vi
and thus
opt
I}éaj\)r{(aw A -T ) > P TONA Z(3) > b,

so that z°P* is a feasible solution of (P1). It remains to prove that
Iz = 2l > [|a°7° — &[] = fp(ap?") = |a3P* — 2|

for any feasible solution z of (P1). -
If S =0 or S® @ and at the same time f,(z,) > f,p(z°Pt), we obtain

Iz = &ll = folzp) = folzp?") = =P — 2.

It remains to investigate the case that S # @) and at the same time f,(z,) <

fp(xom)
According to (3.1) there exists an index 7 € S such that z(P) = [b;, H,] =
and thus

opty _ E
fp(:cp) y?él{,:pfp(yp) ;’Iellgl yf%l‘l} Filys) - (%)

Since x € M (M is the set of feasible solutions of (P1)), it must exist for
this index 7 and index j(z) € N such that ;) € V;;;) (otherwise it would be
a;; Nz; < b; for all j € N so that also r%a}%c(aij Az;) < b; and thus = ¢ M).

j

Then

0@ie) 2, min fioWie) 2 mo mn fiy;) =

t
= ?él‘r/:p folyp) = fp(-’fgp )y

where the last two equalities hold according to (). Therefore, we have again

lz — 2| > fia)(zim) = fplaght) = [|lz°P* — 2],
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