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ABSTRACT. Let p be an odd prime and let § denote the number of divisors
of p— 1. We show that there are at most 2P%+2 clones on p := {0,...,p — 1}
containing at least one essential affine operation. These clones form the principal
filter (in the lattice £ of clones on p) generated by the minimal clone (i.e., an atom
of £) of all idempotent affine operations. We determine this filter and show that
each of its clones is finitely generated extending thus a result of Marchenkov
(p=3) and Csiké6s (p=5). For every subset J of p and the clone K  of all
operations f on p such that f(j,...,7) = j, for all j € J, we give a canonical
(or normal) representation for each f € K.

1. Introduction

Let p be an odd prime. An n-ary operation on p := {0,...,p—1} (i.e., a map
from p™ into p) is affine if there exist ao, ..., a, € p such that f(zy,...,z,) =
ap +a1z1 + -+ + apx, (modp) holds for all z;,...,z, € p. Denote by L; the
set of all idempotent affine operations on p (most of the concepts used in this
section are defined in §2). L; is a minimal clone on p (i.e., an atom of the
lattice £ of clones on p). We describe completely the principal filter [L;) of
£ generated by L; (i.e., the interval [L;, O] of £ where O is the clone of all
operations on p) or, equivalently, all clones on p containing at least one essential
(i.e., essentially nonunary) affine operation. This principal filter consists of at
most 2P9+2 clones (where § is the number of divisors of p—1) and each of them
is finitely generated. The last fact was proved by ad hoc methods for p = 5 and
all clones containing a unary nonaffine operation in [Csi 84].

The filter [L;) contains the following 2P — 1 clones. Let J be a nonempty
subset of p and M the set of all operations f on p such that f(j,...,7) =7
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forall j € J (ie., M = () Pol{j}). In §3 we give explicitly a generating set G
jeJ

of M of cardinality p® + p+ 3 — |J| and a canonical (or normal) form for the

representation of every operation from M . This is a more involved modification

of the Post algebra generating set for O (based on max, min, the peak functions

and the constants) and is valid even for nonprime p.

The author benefited from numerous discussions with E. Fried on a sub-
problem of the main problem; namely, which clones on p contain the operation
+ of Zy.

The author is also greatly indebted to A. Szendrei for a very thorough
referee’s report which pointed out simplifications of the proofs of Lemmas 2.5-
2.7 and 2.11, and many omissions and inaccuracies (in particular, in the proofs
of Lemmas 2.6 and 2.12). Remarks 2.8-2) and 2.15-3) and the connection to
McKenzie’s results are also due to A. Szendrei.

The partial financial support provided by NSERC operating grant 5407 and
FCAR grant 93-ER-1647 is gratefully acknowledged.

2. Preliminaries and the main results

DEFINITION 2.1. Let k be a positive integer and k := {0,...,k — 1}. For a

positive integer n an n-ary operation on k isamap f: k" — k. For 1 <¢<n

the ith n-ary projection e}’ is defined by setting e}'(ai,...,an) = a; for all

ai,...,an € k. Denote by O™ the set of all n-ary operations on k and set
oo

&= | O™ _ Informally, a clone on k is a composition (i.e., substitution or
n=1

superposition) closed subset of O containing all projections; or, equivalently,

the set of all term operations of an algebra on k. Following Maltsev’s approach

[Mal 66] we give a precise definition. For f € O(™m) and g e 0™ define fxge€e

O(m+n—1) by setting

(f o g)((l]_, v aam-l—n—-l) = f(g(ala v an) y Qnp41,--- )am+n—1)
for all ai1,...,amyn—1 € k. Let f € O™ . Define

(Tf)(a’la‘ "aan) = f(a27a17a37' i 7an);

(Cf)(a’la"wan) = f(a‘Z:"'aanval))

for all ay,...,a, € k (for n =1 this is interpreted as 7f =(f :=f). If n > 1,
define Af € 0"~V by setting

(Af)((l]_, 454 ,CLn_]_) = f(a'laa17a27 oE '7a’rL—-1) )
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while Af = f for every f € O, Clearly * is a binary operation on O.
A subset C of O is a clone on k if C is closed under *,7,{ and A (ie.,
C+C C C,aC C C for every a € {r,{,A}) and €2 € C. Thus clones are
exactly the subuniverses of the algebra (O;*,7,(, A, e?) (where e€? is considered
as a nullary operation on O) and therefore the set £ of all clones on k is
closed under arbitrary intersections. In particular, for an arbitrary subset F'
of O there exists.the least clone (F') containing F'. The clone (F), called the
clone generated by F', is the set of all term operations of the algebra (k; F'). The
clones on k, ordered by containment, form an algebraic lattice £. A dual atom
(or co-atom) of £ is a mazimal clone. Thus a clone M is maximal if M # O

and M C C C O for no clone C (here C denotes the strict inclusion).

EXAMPLE. Let ¢ # B C k. Denote by Pol B the set of all f € O™ such
that f(B™) C B (n=1,2,...). It is well known that Pol B is a maximal clone
(cf. [Tab 58]).

As usual, a clone C is finitely generated if C = (F) for some finite subset
F of O. In the remainder of §2 and §3, k is an odd prime number p. For
x,y € p we denote by =z +y and zy the elements of p congruent modp to the
arithmetical sum and product of  and y. An n-ary operation f on p is affine
(also linear or quasilinear) if there exist ro,...,r, € p such that

flz1, ..., Zn) RTg+T121 + -+ - + TrZy

(here and in the sequel =~ denotes an identity over p; i.e., both sides are equal
for all z1,...,z, € p). It is well known that the set L of all affine operations
on p is a maximal clone [Iab 58]. A clone C is unary if C = {m=*el: m e M,
1 <1 < n} for some transformation monoid M on p; (ie., M C OW such that
el € M and MoM = M x M = M). It is known ([Sal 64], [B-D 82], cf. also
[Sze 86] Prop. 2.9) that the nonunary proper subclones of L are exactly:

1) Ag:={fel:f(g -,9)=q} (g€P),
2) B :={rop+riz1+ - +rpzn:n>0,7r0,...7, € p and r1+---+ry, = 1},
and

3) L;:={feB: f(0,...,0) =0}.
It is immediate that L; is the set of all idempotent affine operations on p
(where, as usual, f is idempotent if f(z,...,z) = z). It follows that L; is the
least nonunary clone of affine operations and so L; C (F') whenever (F') contains
an essentially nonunary affine operation.

S.V. Marchenkov [Mar 84] showed that every clone on 3 containing an
essentially nonunary affine operation f and a nonaffine operation g is finitely
generated. M. Csikés [Csi 84] gave another proof and generalized it to p =5
provided g is unary. Here we extend this result to all odd primes. Actually, we
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do much more by determining all clones containing the above clone L; (of all
idempotent affine operations). The main result, Theorem 2.14 below, also follows
from McKenzie’s 1976 Theorem [MK 76], which is also a consequence of
[MK 78] Theorem 22. We derive it directly using the relational description of
clones.

DEFINITION 2.2. Let h be a positive integer. A subset p of p” is an h-ary
relation on p. An n-ary operation f on p preserves p if for every h x n matrix
M = [m;;] whose columns belong to p, the values of f on the rows of M form
an h-tuple from p; in symbols,

(f(ml]_, S ,mln), v e e f(mhl, o g ,mhn)) € 1%

whenever (my1,...,mp1),...,(Min,...,Mr,) € p. In algebraic terminology, f
preserves p if p is a subuniverse (i.e., the ground set of a subalgebra) of the power
(p; f)*. Notice that every projection preserves p. The set of all operations on p
preserving p is denoted Polp.

For an h-ary operation f on p the graph of f is the (h + 1)-ary relation
fo = {(al,...,ah,f(al,...,ah)): ai,...,0ap Ep} .

For example, if h = 1, then the binary relation f° is the usual graph (or
diagram) of the selfmap f. Let g be an operation on p. We say that f and g
commute (or permute) if g € Pol f°. It is well known and easy to check that
g € Pol f° if and only if f € Polg®; and so the commutation relation on O is
symmetric.

EXAMPLE. Let m be the ternary operation on p defined by m(z,y,z) :~ = —
Yy + z. It is known that Polm® = L (cf. [Sze 86] Prop. 2.1), and so g and m
commute exactly if g is affine. The next lemma gives a necessary and sufficient
condition for the commutation of affine operations.

LEMMA 2.3. The operations

f(z1,... zn) mao + a1z + - + apza, (2.1)
9(z1,...,zn) Rby + b1z1 + -+ byzy
commute if and only if
ao(by +---+by, —1)=bolas +---+ap—1). (2.2)
Proof. The operations f and g commute if and only if
9(f(Mia), ..., f(Min)) = F(g(M1s), ..., 9(Mpy)) (2.3)
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holds for every hxn matrix M over p (where M;, and M, ; denote the ith row
vector and jth column vector of M). Set & := (a1,...,ap) and b := (by,...,b,)
and denote by &; the i-vector (1,...,1). Notice that

(F(Mar)y. ., f(Min)) = 8- M+ a0y (9(Mys),...,9(Mp.)) = b- MT + by,

(where & - M is the product of the 1 x h matrix & and the matrix M, a8, is
the product of the 1 X n matrix &, by the scalar a, and M7 is the transpose
of M). Now (2.3) can be written as

b-(a-M+ape,)T +by=2a-(b-MT +bo&n)T + ao (2.4)
which can be expressed as

b-M7T-aT +aob & +by=a-M-b” +bya-el +ag.
Notice that the 1 x 1 matrix C := b-MT . a7 satisfies b-MT - 37 = C =
CT =a-M-bT and so (2.4) simplifies to
ao(bl—l—"'+bn)+boZa()[)'ég—i—bo:boé'eg—f—ag :bo(a1+...ah)—|—a0,
which is equivalent to (2.2). O
DEFINITION 2.4. Let p be an h-ary relation on p and let 7 be a permutation
of {1,...,h}. Set
Pl = {(a,r(l), c-any): (a1,...a1) € p}. (2.5)

It is well known and easy to verify that

Pol p = Pol p(™.

In the next lemma we characterize the relations ¢ such that L; is a subclone
of Polo.

LEMMA 2.5. Let o be an h-ary relation on p such that 1 < |o| < p*. Then
L; C Polo if and only if there are: (i) 1 < j < h, (ii) affine (h—j)-ary operations
f1,...fj on p, and (iii) a permutation = of {1,...,h} such that

o™ = {(%, A(%),... f;(%)): x € p"I}. (2.6)

Proof. (=) Consider the h-ary relation o as a subset of the vector space
GF(p)", and suppose L; C Polo. Since L; is generated by z — y + z, we have
L; C Polo if and only if o is closed under x —y + 2, and this is equivalent to o
being a coset of a subspace of GF(p)”. Therefore o = p+wv for some subspace p
of GF(p)", and some element v of GF(p)". Using elementary transformations
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for bases one can easily see that for some permutation 7 of the coordinates, p(™
has a basis of the form

(O,...,O, 1 ,O,...,O,a,-’t_*_l,...,aih), ’izl,...,t,

ith place

(where t = dim p), which immediately implies that (™ is of the required form.
(«<=) Let o be of the form (2.6) and let g € L; be n-ary. By the definition
g(%) ~ a-x7 for some @ = (ay,...,a,) € p™ such that a; +---+a, = 1. To
prove that g preserves o, we must show that g commutes with every f;. The
affine (h — j)-ary operation f; satisfies fj(X) = bg + b-xT for some by € p and

some b = (by,...,b,—;) € p"J. Clearly g and f; commute by Lemma 2.3. O

LEMMA 2.6. Let fq,...,f; be n-ary operations on p and let

o= {()?,fl()?),...,fj()?)): X € p”} ;

Then
Polo = Pol f{ N ---NPol f;. (2.7)

Proof. The reader can check directly that an operation preserves ¢ if and
only if it preserves each f7. O

The next lemma determines all clones Pol f° for f affine. For a,b € p define
the selfmap s, of p by setting sqp(x) := axz + b. Set 7 := s11. The clones A4,
and B were introduced in 2.1.

LEMMA 2.7. Let f be an affine operation on p. Then Pol f° is one of the
following clones:

(i) Pols, with a € p\ 2 and b€ p,
(ii) O,B and A; (g€ p), and
(iii) L,Polx®, and Pol {g} (q € p).

Proof. Case I: f is (essentially) unary. Then Pol f° is one of the clones
PolsS, (a # 0) or Pol{q} depending on whether f is a permutation or a
constant; moreover all clones Polsj, with b # 0 are equal to Pol#®, while
Pol s3, is of course equal to O.

Case II: f is not essentially unary. Then Pol f° C Polm® = L ; i.e., by the
description of the subclones of L the clone Pol f° is one of the clones L, A,
B, L;. Here L; is not of the form Pol f°. O

Remarks 2.8. 1) The clones L, Pol7n® and Pol{¢} (¢ € p) listed in Lemma
2.7 (iil), are maximal clones ([Iab 58] §§ 16, 18, 19, cf. [P-K79] 4.3.9-15) while
it can be easily seen that L; is a minimal clone (the maximal and minimal clones
were defined in 2.1).
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2) Notice the following connection between the subclones of L and the su-
perclones of L;:

(L] = [Ls),  (fr,---5 fj) = Polff N---NPol f7

is a surjective, order reversing mapping, which is bijective when restricted to
those subclones of L which are themselves of the form [)Polhf for some—

k
not necessarily affine— operations h; on p (the so-called bicentrally closed, or
primitive positive subclones of L). Obviously, the not essentially unary subclones
of L are all of this kind, while among the essentially unary ones, a submonoid
M of the unary part of L is the unary part of a bicentrally closed clone if and
only if M contains every constant which is a fixed point of a permutation in M
(cf. [Sza 84]).

DEFINITION 2.9. Let C be a clone on p. The clone C is rational if C = Polp
for some finitary relation p on p. The clone C is irrational if it is not rational.
A set of clones on p is rational if all its members are rational.

COROLLARY 2.10. The interval [L;) := [L;, O] (of the lattice £ of clones
on p) is finite and rational.

Proof. According to Lemmas 2.5-2.7 and in view of Pol¢ = Polp" = O,
every rational clone from [L;) is the intersection of at most p? + 5 clones listed
in Lemma 2.7. By [B-K-K-R 69] every irrational clone is the intersection of a
countable chain of rational clones. Since [L;) contains at most 2P°5 rational
clones, clearly [L;) is rational and finite. O

The next two lemmas describe the subinterval J, := [A4, Pol{q}] of [L;).

LEMMA 2.11. Let ¢g,b € p and a € p\ 2. Then Pols?, € J, if and only if
sab(q) =q-

Proof. Let C:=Pol s,.
(=) If C € J,, then for the constant function ¢ we have ¢ € A; C C = Polsy,,
whence sq.(¢) =gq-
(<) Let s45(q) = ¢. Since g is the unique fixed point of s4p, it is straightforward
to check that every function commuting with s, fixes ¢. Thus C C Pol{q}.
The inclusion A, C C follows from the fact that L; and the constant g belong
to C, and that L; together with g generates A,. O

Denote by D the set of all divisors of p — 1 and set © := (D, C ) where

d C d' if d divides d'. Fix a primitive p-th root w (i.e., w € p\ {0} such that
{w,w?,...,wP~1} = p\ {0}). Fix ¢ € p and for each d € {1,...,p — 1} set

aq = w?, by :=q(l— wd), La = g by ¢ (2.8)
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Observe that if d # p — 1, then t4(z) = aqx + by is a permutation of p
with a unique fixed point g. Further, ¢,_i(z) = z. Set Cy := Polt] for d €
{1,...,p — 2}. Finally, set Cp_; := Pol{q}. The greatest common divisor of a
and b will be denoted by g.c.d. (a,b).

LEMMA 2.12. For each q € p the set J, \ {A,}Is lattice isomorphic to D .

Proof. Apart from A, and Pol{g}, among the clones listed in Lemma, 2.7
only the clones of the form Pols?, may belong to J,. According to Lemma
2.11 these are exactly the clones Cy = Polt$ where d € {1,...,p — 2} (and 4
was defined in (2.8)). For all n > 0 let 7 denote the usual nth iteration of
the map t4. An easy induction shows that ¢} = ¢,4 for all n > 1, where the
subscript of ¢ is understood modulo p — 1 (with p — 1 replacing 0). Clearly
Cq = Polty C Polt}° NPol{q} = Cpq. If g.c.d. (nd,p—1) = g.cd. (d,p—1),
then d = mnd (modp — 1) for a suitable m € p and Crhg C Cryna) = Cq
proving Cyg = Cpq. Since there exists an n > 1 such that nd = g.c.d. (d,p—1)
(modp — 1), we conclude that Cy = Cy.c.d.(d,p—1)- Thus every clone listed in
Lemma, 2.7 which belongs to Jg; \ {44} is of the form Cy with d € ®. From the
foregoing argument it follows also that Cy C Cq whenever d C d’ (d,d' € D).
Here the inclusion is sharp if d # d’. Indeed, this is obvious if d’ = p—1, and for
d' < p—1 it can be verified by observing that every nontrivial cycle of ¢4 (as a
permutation on p) belongs to Cy \ Cy. Let d,d’ € © and let § := g.c.d. (d,d').
We show that Cs = CqN Cy . As this equality is trivial if p — 1 € {d,d'}, we
assume that d,d’ < p— 1. The inclusion C follows from the fact that § divides
both d and d'. It is well known that § = ud + vd’ (modp — 1) for suitable
u,v € p. Clearly both t,4 and t,s are automorphisms of A := (p,Cy N Cy),
hence t5 = tyqotye € Aut A proving the required CyNCy C Cs. This, in fact,
proves the lemma. O

Remarks 2.13. 1) The (Hasse) diagrams of J, for p = 13,17,31 are in
Fig. 1. a)—c).

2) A part of the (Hasse) diagram of the above clones is in Fig. 2. Here
Iy :=Pol{0} N ---NPol{p — 1} is the clone of all idempotent operations on p.
The interval [I4, O] is formed by the clones () Pol{q} with Q@ C p, and is

q€eQ
lattice isomorphic to the dual of the boolean lattice of all subsets of p.

3) Fig. 2 does not show the clones

Es :=I; N Pol ug N Pol =°,

where § is a divisor of p — 1 and us(z) ~ wlz (w is a primitive root of p;

notice that Es C Pol s;, whenever a = w™ and § = g.c.d. (m,p —1)). The
clone Pol 7° has exactly two maximal subclones: B and I; N Pol n° = p—1
[Sza 84], the least clone containing I; and the ternary discriminator. The interval
[E4, Ep—q] is lattice isomorphic to ®.
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POl{q} = 012 POl{q} = 016 POl{q} = 030

04 06 Cg

Cs Cs

Cy Cy
Gy

Aq Aq Aq

a)p=13 b) p=17 c)p=31
Fia. 1.

THEOREM 2.14. Every clone on p containing an essentially nonunary affine
operation is the intersection of a subset of

{L,Pol m°} U {Pol{g}: g p} U | ] J,. (2.9)

qePp

Proof. Corollary 2.10, Lemmas 2.11-12 and B = L N Pol =°. O

Remarks 2.15. 1) There is a redundancy in (2.9). Indeed, due to 4, =
LN Pol{gq} we can replace J, by the set J, \ {Ay,Pol{q}} consisting of § — 1
clones, where ¢ denotes the number of divisors of p — 1. After this reduction
we are left with 2+ p 4 p(6 — 1) = p6 + 2 clones and so the filter [L;) consists
of at most 2P%*2 clones. This upper bound could be improved but this would

necessitate a study of the intersections of the clones from [J Jj,.
q€p

2) The clone L; is a minimal clone. As there are only finitely many minimal
clones ([Csé 83] for k = 3, [Ros 83] for k > 3, cf. [Qua 92]) while the lattice £
of all clones is of cardinality 2% [I-M 59], clearly [M) is of cardinality 2%° for
some minimal clone M . It seems that the size of [M) for M minimal clone has
not yet been investigated even for the case p = 3, where all minimal clones are
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L;

Fiac. 2.

explicitly known [Cs4 83]. The finiteness of [L;) seems to be rather exceptional
among [M), M minimal clone.

3) A similar question for the maximal clones on k was completely settled.
The ideals (M], where M is a maximal nonaffine clone, are all of size 2% . For
a maximal affine clone L on k the ideal (L] is finite if k£ is prime ([D-H 83,
Mar 79, Mar 83]) and countably infinite if & = p™, p prime and m > 1 [Lau 78].

THEOREM 2.16. Every clone from [L;) is finitely generated.
Proof. [L;) is finite and L; is finitely generated. O

3. A canonical form of j—-idempotent operations

Remark 3.1. Let £k > 1 and k := {0,...,k —1}. Let J C k and Ky :=
(N Pol{j}. Clearly K is the clone of all operations f on k such that f(j,...,7)
Jjed
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= j for all j € J. In this section we find a set G of cardinality k? +k+3 — |J|
generating K; as well as a canonical (or normal) form expressing every f € K
as a term operation of (k;G). Here G is a natural adaption of the standard
complete set for O consisting of max, min, the k& peak functions and the %
constants, often called the k-element Post algebra.

For notational simplicity we assume that J = j := {0,...,j — 1}. Indeed,
let m be a permutation of k. For each n-ary operation f on k define an n-ary
operation f™ on k by setting

(@1, zn) ma (f(r(z1), ..., m(z0)) -

Clearly 7 is an isomorphism between the algebras (k; f) and (k; f™). The self-
map ¢: f — f™ of O is an automorphism of the algebra (O;#,(,T,A,€?)
[Mal 66]; in other words, ¢ is compatible with composition. Thus results for
J can be transferred to J by choosing 7 so that 7 maps j onto J. We say
that an operation f on k is j-idempotent if f(z,...,z) = z for all z € j.
For z,y € k denote by x Vy and z Ay the greatest and the least of z,y.
Clearly V and A are the lattice operations of the chain 0 < --- < k — 1. For
n > 0 set K, :=k"\{(0,...,0),...,(j —1,...,5 — 1)}. For & € K, the
nary j-idempotent peak operation x3 at a is defined by xZ(z,...,z) := z for
all z € j, x3(@) :==k—1 and x%(x) := 0 otherwise. In Lemmas 3.2-6 we con-
struct all j—idempotent peak operations from (i) the binary ones, (ii) V, A, and
(iii) 4 additional binary j-idempotent operations. For n =1 clearly K; =k \ j
and for each a € k\ j obviously xa(z) = X{, ,)(2,2). Thus let n > 2 and let
a=(ay,...,an) € K,. Denote by A the set consisting of ay,...,a, and put

P:= {(T, s): (ar,as) € K2}7

[931,-'-73711]5 = /\ Xira5($T7mS)' (31)
(r,s)EP

LEMMA 3.2. If AZ j or |A| > 2, then [z1,...,2n]a = X2.

a
Proof. Clearly Xib and A are j-idempotent and so by (3.1) the operation
[21,...,%n]a is also j-idempotent. Next x2 , (ar,a;) = k—1 and P # ¢;
and therefore [ag,...,an]a = k — 1. Finally, let b= (by,...,b,) € K, satisfy
B = [b1,...,bn]a > 0. We distinguish two cases.
(i) Let A¢Z j. Then some a; > j and so (I,4) € P forall 1 <[ <mn, [ #1i. Set

Q={1<l<n:l#4,(b,bi) # (a,a5) } -

Consider [ € Q. From § > 0 we see that x2, (b;,b;) > 0. Combined with
(bi,b;) # (a,a;) this gives by = b; € j. Suppose @ is nonempty. Notice that
Q C {1,...,n}\ {i}, since otherwise b = (b1,...,b,) ¢ K,. Choose m €
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{1,...,n}\ @, m #i. Then (bm,b;) = (am,ai), hence b; = a; > j contrary to
bi € j. Thus Q = ¢ and b= a by (3.1).

(ii) Thus let A C j. Suppose that b # a. Then M := {(r, s): (br,bs) # (ar, as)}
is nonempty. Notice that due to 8 > 0, clearly b, = b; € j for every (r,s) € M.
Choose 1 < i < n so that a; # b; and set C := {1 < j < n:a; = a;}. For
every [ € {1,...,n}\C clearly (¢,]) € M and so b; = b;. By hypothesis |A| > 2
and hence a; # a; # b; for some 1 < j < n. Let ¢ € C be arbitrary. Clearly
(bey bj) = (be, bi) # (ac,a;) and again b, = b; = b;. Together b = (b;,...,b;) ¢
K,,. This contradiction shows the required b = 3. O

DEFINITION 3.3. For the remaining peak operations x% with A C j and
|A| = 2 we need the following additional operations.

(1) Let ¢ be any binary j-idempotent operation on k satisfying ¥(0,z) =
P(z,0) =0 and Y(z,k—1)=k—1 for all z € k\ {0}.

(2) Foreach d € {0,...,k—2} set c4(z,z) :=z forall z € § and cy4(z,y) :==d
for all (z,y) € Ks.

(3) Let n>1,let 0<r <s<jandlet a=(ay,...,a,) € {r,s}" satisfy
(ry...,m)#a#(s,...,s). Let R:={i:a; =7} and S :={i: a; = s}.

Denote by p and o the least elements of the nonempty sets R and S. Set
R’ := R\ {p} and S’ := S\ {0} and define an n-ary operation € on k by

e(@i,. . xn) m N\ col@nz)A )\ colzo, ) (3.2)
VER' ves’
(where A v:=k—1). It is easy to verify that e(b1,...,b,) =2 At if b, = 2z,
vED
by =t for all u € R, v € S while (by,...,b,) =0 otherwise. Finally, set
va(@1, ..o, Tn) Y (e(B1,. .. Tn), [T1, ..  Tp5) - (3.3)

LEMMA 3.4. If 0<r <s, then vz = x%.

Proof. vy is obviously j-idempotent. Notice that e(a) =rAs=7r >0
and [a1,...,aplz = k — 1 and therefore v3(a) = ¢(r,k — 1) = k — 1. Let
b = (b1,...,b,) € K, be such that vz(b) > 0. By Definition 3.3-1) clearly
B :=e(b) > 0. By 3) there are distinct z,¢ € k such that 8=z At, b, = z for
all u € R and b, =t for all v € S. Let b # a. From the shape of b and (3.1)

it follows that [b,...,bs]5 = 0; and therefore v5(b) = ¥(3,0) = 0. O

We turn to the case r = 0. First we consider the case s < &k — 1. Let 7
be the binary j-idempotent operation on k satisfying 7(0,k —1) =k — 1 and
7(z,y) = 0 elsewhere on Ks. Set

Aa(ze,...,zn) = T(E(ﬂ:l, cey Tn)s [T, - .,a:n]g,) .
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LEMMA 3.5. Let r =0, let s < k—1 and let @ be as in Definition 3.3. Then
/\5 = Xg .

Proof. Clearly A\3(a) =7(0,k—1) =k — 1. Let b=(by,...,b,) € K, be
such that b # & and [ := A\3(b) > 0. Let e := e(b). Observe that e < k — 1
since b € K, is distinct from (k —1,...,k — 1). Notice that e > 0 because
otherwise 0 < \z(b) = T(O, [b1, .. .,bn]g,) = 0. Thus | = z At where b, = 2z for
all u € Rand b, =t forall v e S. As b # a, clearly [by,...,b,]z = 0, and
Aa(b) = 7(e,0) =0. O

Finally, we turn to the remaining case 7 = 0 and s = k—1. Since {0,k—1} =
ACyj,clearly j =k. Let

&(z1,...,Tpn) R /\ &1 (8, Bn) 5 (3.4)

veR'

pa(ze,. .. zn) =~ T(g(ml,...,mn), [flfl,...,xn]é) .

LEMMA 3.6. Let a be an n-tuple from Definition 3.3 corresponding to r = 0,
s=k—1and j =k If R={p} then [r1,...,zn]5 = xZ. If |R| > 1 then
Ba = X3-

Proof. 1) Let R= {p} Clearly [ai,...,an]3 =k — 1. Suppose that 38 :=
[b1,...,bn] # 0 for some b= (by,..., n)EK Since b;é( y-- 1 0p), we have
(bp,by) = (0,k — 1) for some w € S and so b, = 0. By the same argument
by =k —1 for all v € S proving Bzé.

2) Let |R| > 1. Observe that c¢;(a,,a,) = ¢1(0,0) = 0 for all v € R’ and
therefore £(a) = 0. Next by (3.1) we have [a1,...,a,]z = k — 1 and so
n) =

pg(ai, ..., a 7(0,k — 1) k — 1. Suppose to the contrary. that § :=
pa(bi, ..., b,) >0 forsome b=(by,...,by) € Kp, b a.Let z:= E(byy...,bn)
and t := [by,...,by]5. From the definition of 7 either (z,t) = (0,k — 1) or
z=t€j.

(i) Let z=0 and t =k — 1. From (3.1) we obtain b, € {0,k — 1} forall u € R
and b, = k—1 for all v € S. Since b # a, clearly {b,,b,} = {0,k —1} for some
v € R'; hence c1(by,b,) =1 and z = £(by,...,b,) = 1 in contradiction to the
assumption z = 0.

(ii) Thus let z = ¢ € j. By (3.1) clearly b = (2,...,2) in contradiction to
be K,. 0

Using the j—idempotent peak operations, the j—idempotent constants, A
and V we can easily represent every j—idempotent operation by the following
canonical form.
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DEFINITION 3.7. Let f be a j—idempotent n-ary operation on k. For 0 <
b<k set F(b):= f~1(b) N K,, and

Op(T1, .oy Tn) IR \/ X5(Z1,...,Tn).
acF(b)
Clearly ¢} is j—idempotent, takes the value k—1 on F'(b) and vanishes elsewhere
on K,. Nowforall 0 <b<k—1 set

cp(z) := e (cb(. coep(T1,22)y .0,y a:n_l):cn) . (3.5)
Clearly cp is the j—idempotent n-ary constant with value b on K. Set vy;_1 :=
Yr—1 and v :=cp Ay for all 0 < b < k—1. Obviously «, is the j—idempotent

n-ary operation taking the value b on F'(b) and vanishing elsewhere on k.
From 3.7 we obtain:

THEOREM 3.8. Let 0 < j < k. If f is an n-ary j—idempotent operation on
k distinct from cfj, then

f=mV- Vg (3.6)
(where v1,...,v,—1 are defined in 3.7).

Remarks 3.9. 1) ¢} has the representation (3.5).

2) The canonical form (3.6) is based on the following binary j—idempotent op-
erations: i) 2 lattice operations: A and V, ii) k? — j operations x2,,
(ii) £ — 1 operations co,...,ck—2 and (iv) ¥ and 7. It follows that the clone
of j—idempotent operations is generated by k2 + k + 3 — j binary operations.

3) The fact that the operations listed in 2) generate Ky can be verified from
the completeness criterion for K; from [Sze 89] Cor. 2 and [Lau 92].

REFERENCES

[B-D 82] BAGYINSZKI, J.—DEMETROVICS, J.: The lattice of linear classes in prime
valued logics, in: Discrete Mathematics, Banach Center Publications, Vol. 7, 1982,
pp. 101-123.

[B-K-K-R 69] BODNARCHUK, V. G.—KALUZHNIN, L. A—KQTQV, V. N—ROMOV, B,

A.: Galois theory for Post algebras Part I, Kibernetika's (1969), 1-10; Part II,
ibid 5 (1969), 1-9 (Russian), English translation Cybernetics (1969) 243-252,
531-539.

[Csd 83] CSAKANY, B.: All minimal clones on the three-element universe, Acta Cyber-
net. 6 (1983), 227-238.

[Csi 84] CSIKOS, M. : Finitely generated clones with linear functions in Ps and Ps, Kozl.
MTA Szédmitdstech. Automat. Kutaté Int. Budapest 31 (1984), 7-21.

[Dan 81] DANILCHENKO, A. F.: On parametrical ezpressibility of the functions of
k-valued logic, in: Finite Algebra and multiple-valued Logic (Csékdny, B.; Rosen-
berg, I. G., eds.), Szeged, Hungary, 1979, Coll. Math. Soc. J. Bolyai, Vol. 28,
North Holland 1981, pp. 147-160.

214



[D-H 83]
[Iab 58]
[I-M 59]

[Lau 78]

[Lau 91]

[MK 76]

[MK 78]

[Mal 66]

[Mar 79]
[Mar 83]
[Mar 84]
[Qua 92]

[Ros 83]

[Sal 64]
[Sze 84]
[Sze 82]
[Sze 86]

[Sze 89]

CLONES ON A PRIME CARDINALITY UNIVERSE

DEMETROVICS, J.—HANNAK, L.: The number of reducts of a preprimal al-

gebra, Algebra Universalis 16 (1983), 178-185.

TABLONSKII, S. V.: Functional constructions in k-valued logic, Trudy Mat. Inst.

Steklov 51 (1958), 5-142. (Russian)

TANOV, Iu. L—MUCHNIK, A. A.: Ezistence of k-valued closed classes without

a finite basis, Doklady Akad. Nauk SSSR 127 (1959), 44-46. (Russian)

LAU, D.: Uber die Anzahl von abgeschlossenen Mengen linearer Funktionen

der n-wertigen Logik, Elektron. Informationsvearb. Kybernet. EIK 14 (1978),

567-569.

LAU, D.: Die mazimalen Klassen von () Polg{a} fir Q C E} (Ein Kriterium
a€Q

fiir endliche semi-primale Algebren mit nur trivialen Unteralgebren), preprint
Univ. Rostock 1991, rev. 1992, 27 pp.

McKENZIE, R.: On minimal locally finite varieties with permuting congruence
relations, preprint, 1976.

McKENZIE, R.: Para primal varieties: A study of finite aziomatizability and
definable principal congruences in locally finite varieties, Algebra Universalis 8
(1978), 336-348.

MALUTSEV, A. I.: Iterative algebras and Post’s varieties, Algebra i Logika 5
(1966), 5—24. English translation: The mathematics of algebraic systems, in: Col-
lected papers 1936-67, Studies in Logics and Foundations of Mathematics, Vol.
66, North Holland, Amsterdam, 1971.

MARCHENKOV, S. S.: On closed classes of selfdual functions in k-valued logics,
Problemy kibernetiki 36 (1979), 5-22. (Russian)

MARCHENKOV, S. S.: On closed classes of selfdual functions in manyvalued
logics II, Problemy kibernetiki 40 (1983), 261-266. (Russian)

MARCHENKOV, S. S.: On clones in P}, containing homogeneous functions,

. preprint Inst. Appl. Math. Acad. Sci. U. S. S. R. 35 (1984), 1-28. (Russian)

QUACKENBUSH, R. W.: A survey of minimal clones, preprint Univ. of Mani-
toba 1992; Aequationes Math. (to appear).

ROSENBERG, I. G.: Minimal clones I: the five types, in: Lectures in Universal
Algebra, Szeged, (Szabd, L.; Szendrei, A., eds.); Colloquia Math. Soc. J. Bolyai,
Vol. 43, 1983, pp. 405-427. .
SALOMAA, A.: On infinitely generated sets of operations in finite algebras, Ann.
Acad. Sc. Fenn., Ser A T 363 (1965), 1-12.

SZABO, L. : Characterization of clones acting bicentrally and containing a prim-
itive permutation group, Acta Cybernet. 7 (1984), 137-142.

SZENDREL A.: Algebras of prime cardinality with a cyclic automorphism, Arch.
Math. (Basel) 39 (1982), 417-427.

SZENDREI, A.: Clones in universal algebra, NATO Adv. Study Inst. (Montréal
1984), SMS vol 99. Les presses de I"Université de Montréal, 1986.

SZENDREIL A.: 4 classification of strictly simple algebras with trivial subalge-
bras, Demonstr. Math. 24 (1991), 149-173.

Received March 15, 1994 Département de mathématiques et de Statistique

Université de Montréal

CANADA

E-mail: rosenb@ere.umontreal.ca

215





