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DIFFERENCES ON [0, 1]

RADKO MESIAR

ABSTRACT. Differences on the unit interval [0, 1] are studied. A close relation-
ship of these differences with the nilpotent triangular conorms is shown. Conse-
quently, a representation of differences by means of normed generators is proved.
A similar representation is shown for differences on [0, 1), where the correspond-
ing generator can be unbounded.

1. Introductibn

Let S be a triangular conorm (t-conorm in short) and let T be a triangular
norm (t-norm in short), i.e., an associative, commutative, non-decreasing binary
operation on the unit interval [0,1] with the usual order and with the neutral
element 0 and 1, respectively. We can define the following binary operations on
[0,1], see, e.g., [1, 5, 7], resembling the usual difference:

b—r1a=sup(z€(0,1]; T(a,z) <b),
b—sa=inf(z €[0,1]; S(a,z) >b).

It is easy to see that if T and S form a dual pair, i.e., S(a,b) = 1-T(1—a,1-b)
for all a,b € [0, 1], then the following version of de Morgan law holds:

b—sa=(a —gb'), where z'=1—z.

Note that the operation —r is often called a fuzzy implication (and then —g
is called a fuzzy complication). Due to the previous duality, we will deal with
t-conorm based differences only. Directly from the definition we see, that for all
a,b,ce|0,1],

b—sa<b forall a,bandS (D1)

and
a<b implies c—gb<c—ga forall S. (D2)
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Further note that b —g @ = 0 whenever a > b and that b—g0 =5b.If S isa
continuous t-conorm, then the corresponding difference —g fulfills the following
associativity-like property, which is often called the ezchange principle:

(b—sa) —sCZ(b—-Sc) —sa. (D3)

Note that the exchange principle does not hold for a general t-conorm S. Take,
e.g., a t-conorm S defined for a,b € [0,1] by

S(a,b):{l’ ifmin(?,b)>%,
max(a,b), otherwise.
Then

(-sh-sh=i-s}=0#=1-s3=(-s} s}
Recently, several general structures dealing with differences (or relative inverses,
in other words) were introduced. The unit interval [0,1] equipped with the
difference —g is an abelian RI-set of Kalmbach and Rie¢anova [2]if and
only if (D3) holds, i.e., when S is a continuous t-conorm. The same is true for
the difference —g defined on the halfopen interval [0,1).
If, additionally,

b—gs(b—sa)=a ifandonlyif 0<a<b<1 (D4)

holds, then ([0,1],—s) is a full difference poset of Mesiar [4].

Finally, if we define b—ga only in the case a < b, i.e., —s is a partial binary oper-
ation on [0, 1], and (D4) holds true whenever b—ga is defined, then ([0, 1], —s)
is a difference poset of Kopka and Chovanec [3] and ([0,1),—s) is an
Abelian RI-poset of Kalmbach and Rieéanova [2].

2. Differences on [0, 1]

The main goal of this chapter is the characterization of a general difference
© on [0,1] fulfilling properties (D1)—(D4). '

THEOREM 1. Let © be a difference on [0,1], i.e., a binary operation on [0, 1]
such that for all a,b,c € [0,1] it holds

boa<b; (D1)
a<b=c0b<cOa; (D2)
(boa)oc=(odea; (D3)
bo(boa)=a<+=a<b. (D4)
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Then there is a unique nilpotent t-conorm S such that © = —s, lLe.,

b a =g~ (max(0,g(b) — g(a))),
where g is the normed generator of S.

Recall that a continuous t-conorm S is called nilpotent if it is non-strict
Archimedean, i.e., when S(a,a) > a for all a € (0,1) and there is some b € 0,1)
such that S(b,b) = 1. A nilpotent t-conorm S has a unique normed generator
g, g being an increasing bijection of the unit interval [0, 1] onto [0,1], S(a,b) =
g~ (min(1, g(a) + g(b))) . For more details see, e.g., [6].

Before proving Theorem 1, we show the continuity of the difference ©.

LEMMA 1. Let © be a difference on [0, 1] satisfying the suppositions of the
Theorem 1. Then © is a continuous binary operation on [0,1], ie, ifa, — a
and b, — b then also (b, ©a,) — (bSO a).

Proof. The proof is divided into several steps.

i) We recall first some properties of difference © which can be easily derived
from (D1)-(D4):
a) bGa=0<=a>b;
B) b©a=0 and a©b=0<=a=b;
v) a<b=a6c<bSc; A
§) a<b<c= (c©a)©o(cob)=b6a and (cea)o(boa)=cob;
e) bOa=cOa>0= b=c (cancellation law).
The property o) directly implies the continuity of © in the case when a > b.
ii) Now, we show that (b© a,) — (b© a) when a = b. Denote

Sp, = SUpP G, and ip = Inf a,,.
m>n m2>n

If a=b, then 0 <bSa, <bSi,. The sequence {b©&i,} is nonincreasing and
hence
inf(b©in) =c=1im(b 6 1,).

The property (D4) ensures i, =b6 (b9 4,) < bO ¢ and consequently
a=supi, =b<boec.
But then by (D2) and 8) it is ¢ = 0. It follows
0 <liminf(b © a,,) < limsup(b© a,) < limsup(bSi,) =0, ie.,

(boan) - 0= (bSa).

133



RADKO MESIAR

iii) For a < b, we keep the notation of ii). Similarly as above we show
a < (b©c). On the other hand,

c=inf(b61i,) > (bOsupi,) =(bSa).

Then
a<(boc)<bo(bSa)=a,

ie., by 6),
a=((b6¢c) and c=(boa),

whereas the sequence {b© s} is non-decreasing. Put
sup(b© s,) =d=1lim(bO sy).

From (bSs,) < (b©a) we get immediately that d < (b6&a) and hence a < (bSd).
Further, it is, up to possibly some finite number of indexes, s < b and thus

spn=bo(bos,) > (bed).

But then
a=infs, >{(bad).

The last inequality for a and (b© d) together with the previous one leads to

the equality
a=(bed), ie., d=((boa).

We have
(b&a) =c=1lim(b©i,) > limsup(b © a,) > liminf(b © a,) > lim(b© s,) =
=d=(boa),
which proves (b6 a,) — (bS8 a).
iv) Immediately we obtain the following:
(1eay,) — (104a);

(anOb)=(16b)6(1600ay) = (10b)0(10a)=(aOb).

v) Let s, and i, be defined as in ii) and put

S = sup by, and I, = inf b,,.
m>n m2n

Suppose that a = b ( recall that the case a > b is obvious, see i)).
Then 0 < (b© a) < (Sn ©4n). The sequence {S, © i,} is nonincreasing and
thus inf(S,, ©i,) = e = lim(S, © iy).
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Then i, = S, © (S ©in) < (S, © €) together with iv) ensure
a=supi, < (S,6e)— (boe)=(abe),
and consequently e = 0. As far as (b, © ay,) < (Sp O iy), it follows

' (bnean)fOZ(bea).

vi) Finally, let b > a. Using the previous notation, we see that

(In © 5n) < (bn © an) < (Sn Oin).

By iv), S, ©(b8a) > b6 (b©a) =a, and then by v) we have
(S.©(b©a))6in— 0 (recall that i, — a).
By the exchange principle (D3), it is
(S, ©(b6a)) ©in=(5,01n) O (b6 a).

Recall that lim(S, ©1,) = e and thus by iv) it is

(5, 0i,)0(b6a) — e (bSa),

and consequently e © (b© a) = 0. The inequalities S, > b and i, < a ensure
e > (b©a) and hence by a) itis e= (b6 a).
On the other hand, the'sequence {I,, © s,} is non-decreasing. Put

sup(I, © s,) = f =1lim(l, © s,) .

Then due to iv), f > lim(l, ©s;) = (b S sg) for all k = 1,2,... and thus
f> li{n(b— sp) = (b6 a). Then

(bea) < f=lim(l, & sp) < liminf (b, © a,) < limsup(b, S a,) <
<lim(S, 8in) =e=(bSa),
ie., (bp©a,) — (bSa). O

Proof of Theoreml. Let © be a difference on [0, 1] fulfilling (D1)-
(D4). For a,b € [0,1], put

S(a,b)=16((1ca)ob).

Due to the exchange principle (D3), S is a commutative binary operation on
[0,1]. By (D2), S is non-decreasing. Further,

S@0)=16((1ea)60)=16(16a)=a (by (D4)),
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i.e., 0 is the neutral element of S. We show the associativity of S
5(8(a,b),c) =16 ((1©5(a,b)) & ¢c)
=lo(le(le((lea)eb))eC)
=16 (((1ea)ob)oC)
=1 ((1eb)sa)oc)
=lo(((1eb)ec)ea)
= 5(S(b,c),a) = S(a,S(b,c)).

We have just shown that S is a t-conorm. Due to Lemma 1, the difference
6 is continuous and consequently also our t-conorm S is continuous. Fix an
element a € (0,1). Then also (1©a) € (0,1) and (16a) > (16a)Sa. It
follows that
a=16(16a)<16((16a)Sa)=5(a,a),
i.e., S is an Archimedean continuous t-conorm. The continuity of & ensures the
existence of an element b € (0,1) such that b=16b. Then

S(b,b)=5(,(1eb) =16 ((1eb)o(led)=100=1,

and thus S is a nilpotent t-conorm. On the other hand, b —ga =0=06a if
and only if a > b and for a < b it is

b—sa=inf(z €[0,1]; S(a,z) >b)
=inf(z €[0,1]; 16 ((16a) S z) > b)
=inf(z €[0,1]; 16b> (1S a)Oz)
=inf(z €[0,(16a);; z>(16a)o(16b) = (b6 a))
=(boa).

Let g be (the only one) normed generator generating nilpotent t-conorm S.
Then if a < b, it is

boa=b—ga=inf(z€[0,1]; g~ ' (min(L,g(a) + g(z))) > b) =
= inf(z € [0,1]; mln(l,g(a) + g(z)) > g(b)) =
=g '(9(b) — 9(a),
what proves

bSa=g '(max(0,9(b) — g(a))) forall a,be[0,1].
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We have just shown that a nilpotent t-conorm can be characterized by means
of a difference on [0,1]. Properties (D1)—(D4) of the difference © ensures all
desired properties of the corresponding binary operation S to be a nilpotent t-
conorm (commutativity, associativity, monotonicity, boundary conditions, conti-
nuity, Archimedean property, nilpotency). If S is not a nilpotent t-conorm, then
the difference —g breaks some of the properties (D1)~(D4) on [0,1]. However,
if S is a strict t-conormr (i.e., S is continuous and strictly monotone on (0, 1)%),
then —g fulfills (D1)~(D4) on [0,1), but not on [0, 1]. Note that in the last case,
(1-sa)'=1forall a € [0,1) and (1—g1) = 0, and hence (D4) cannot be true for
b=1 and a < 1. Recall that ([0,1), —g) forms an Abelian RI-poset [2] for each
continuous Archimedean t-conorm S, i.e., for strict and nilpotent t-conorms. In
the following section we show that there is one-to-one correspondence between
Abelian RlI-posets on [0,1) and continuous Archimedean t-conorms.

3. Differences on [0,1)

An Abelian Rl-poset on [0, 1) is based on a difference © fulfilling (D1)-(D4)
on [0,1) restricted to the pairs b > a.

THEOREM 2. A binary operation © is a difference on [0,1) fulfilling (D1)-
(D4) if and only if there is a continuous Archimedean t-conorm S such that © =
—s, what means that there is generator g, g: [0,1) — [0,00), g is continuous
strictly increasing, g(0) = 0, so that

bSa= g_l(max(O,g(b) — g(a))), a,be[0,1).

Proof. It is enough to show the “if”part. Lemma 1 ensures the continuity
of the difference © on each closed square [0,d]?, d € (0,1), and consequently
© is continuous on the whole halfopen square [0,1)2.

For a =0, we put obviously S(a,b) =b for each b € [0,1].

For a,b € (0,1], put S(a,b) = ¢ if a,b,c € (0,1) and (c©b) = a and
S(a,b) = 1 otherwise (i.e., if either a = 1, or b = 1, or there is no ¢ € (0,1)
such that (c ©b) = a). Note that the previous definition of S is equivalent to
the following one:

S(a,b) =sup(z €[0,1);(z0a) < b), a,bel0,1),

together with the boundary condition S(a,1) = S(1,b) = 1 for all a,b €[0,1].
The binary operation S is.well defined: if (c&b) = (d©b) = a > 0, then by the
cancellation law ¢) it is ¢ = d. It is easy to see that the binary operation S is

commutative, non-decreasing and that 0 is its neutral element. The continuity of
S on [0,1)? follows from the continuity of © on [0,1)2. The continuity of S on
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the whole square [0,1]? is ensured (due to the commutativity and monotonicity
of S on [0,1]?) by the following continuity:

an — 1= S(an,b) =1 forall bel0,1).

Taking into account 1 > S(an,b) > S(an,0) = a, — 1, the last claim is obvious.
We show the associativity of S. Suppose first that for some given a,b,c €
[0,1], it is S(S(a,b),c) =d < 1. Then (d©c) = S(a,b), ie, (dec)eb=a.
But then b = (d©¢c) ©a = (d ©a) ©c and consequently d = 5(S(b,c),a)
S (a, S(b, c)) proving the associativity of S in this case.
Now let S(S(a, b), c) = 1. If max(a, b, ¢) = 1, then obviously also S(a, S(b, c))
1 and hence S(S(a, b), c) = S’(a, S(b, c)) . Suppose that each element a,b and
is less than 1, i.e., max(a,b,c) < 1.If S(a,b) = 1, then the inequality S(b,c)
b ensures S(a, S(b,c)) > S(a,b) = 1 and consequently S(S’(a,b),c) =1
S(a, S(b,c)). The same can be easily shown in the case S(b,c) = 1. We have
to examine the last case when S(a,b) = e < 1 and S(b,c) = f < 1. Then
(eeb)=a, (fOc)="band 5(S(a,b),c) = S(e,c) =1, what implies (dec)<e
for all d € [0,1). Recall that if for some d it is (d © c) > e, then the continuity
of the difference © together with the equality, (¢ © ¢c) = 0 ensures the existence
of an element d* € [0,1) such that (d* ©c) = e and hence S(e,c) =d* <1, a
contradiction. Hence for all d € [0,1) we have:

(eob)=a, (fec)=b and (dSc)<e.

1V a

But then
(doa)=do(eob)=do (e (fE0)
=(doco(ee(foc)e0)
=(@ege(oce(fer)
=(dec)e(eo /)
<es(eof)=1,
which is equivalent to S(a, f) = S(a,S(b,c) =1 = S(S(a,b),c), proving the
associativity of S. We have just shown that S is a continuous t-conorm.
Tt remains to show S(a,a) > a for all a € (0,1). If S(a,a) = 1 for some
a < 1, then obviously S(a,a) =1 > a. If S(a,a) < 1 then thereis b € [0,1)
such that (b©a) = a > 0 and thus S(a,a) = b > a (if not, i.e., if b < a, then
(b©a) =0, a contradiction). This together with the continuity of S proves the
Archimedean property of the t-conorm S.
The coincidence of the differences © and —g follows directly from the defin-

ition of S. Let g be an additive generator of S (note that g is unique up to a
positive multiplicative constant). Similarly as in Theorem 1, we can show that

(bea) = (b—sa) =g " (max(0,9(b) — g(a))), a,b€[0,1).
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O

Due to Theorem 2, continuous Archimedean t-conorms can be characterized
by means of differences on [0, 1) fulfilling (D1)-(D4). We have to decide only
whether the corresponding t-conorm S would be a nilpotent or a strict one.
By Theorem 1, the nilpotent case allows to extend the difference © from the
halfopen interval [0,1) to the closed interval [0,1], preserving (D1)—(D4). A
similar extension in the strict case is impossible (dropping the axiom (D4)).
However, the following classification can be easily verified.

COROLLARY 1. Let © be a difference on [0,1) fulfilling (D1)-(D4) and let
S be the corresponding t-conorm. Then:

1) S is strict t-conorm if and only if for all a € [0,1) there is an element
c €[0,1) such that (c©a)=a;

2) S is a nilpotent t-conorm if and only if there is some a € [0,1) such
that (c©a) < a forall ce[0,1).

Coming back to the representation of a difference © (fulfilling (D1)—(D4))
on [0,1) by means of an additive generator g, we see that g is either bounded
(in the nilpotent case—then there is a unique normed generator g) or it is
unbounded (in the strict case), see [6]. Consequently, a difference © on [0, 1)
is either isomorphic to the ordinary difference — on [0,1) or to the ordinary
difference — on [0, 00). Note that the ordinary difference — on an interval [0,d),
d € (0,00], is defined by (b — a) = max(0,b— a).

4. Concluding remarks

i) For a given nilpotent t-conorm S, or, equivalently, for a given difference
© on [0,1] fulfilling (D1)—(D4), we can introduce a strong negation n (order-
reversing involution on [0,1]), n(a) = (1 ©a). Let T' be an n-dual t-norm to
S, i.e., for all a,b € [0,1] it is

T(a,b) = n(S(n(a),n(b))).
Then
(b6a) = (b —s a) = (n(a) —s n(2))
and '
(b—ra) = (n(a) —rn()) =nlb—sa)=n(bea).
ii) Miyakoshi and Shimbo [5] obtained results similar to Theorems 1
and 2 with respect to the difference —r, where left-continuous t-norms were as-

sumed. However, the right-continuity in the second argument for the differences
had to be supposed in [5].
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