

THE MEASURE EXTENSION THEOREM ON MV σ -ALGEBRAS

MÁRIA JUREČKOVÁ

ABSTRACT. The aim of this paper is to provide some results regarding the measure extension on MV σ -algebras.

1. Introduction

The problem of measure extension was solved by Piasecki [6] and Rie-čan [7] in soft σ -algebra and in orthomodular σ -continuous lattices and by Chovanec and Kôpka in quasi-orthocomplemented lattices [3]. In [2] Chovanec defined a state on MV σ -algebras. This was motivated by the state on D- σ -posets [4]; his definition of the state on MV σ -algebras is different from definitions in [6], [7], [3].

These results have led us to a measure extension theorem on MV σ -algebras.

2. MV σ -algebras

In [5] an MV algebra is defined as follows:

An MV algebra is an algebra $(\mathcal{F}, \oplus, \odot, *, 0, 1)$, where \mathcal{F} is a non-empty set, 0 and 1 are constant elements of \mathcal{F}, \oplus and \odot are binary operations, and * is a unary operation, satisfying the following axioms:

$$[1.1] \quad a \oplus b = b \oplus a,$$

[1.2]
$$(a \oplus b) \oplus c = a \oplus (b \oplus c)$$
,

[1.3]
$$a \oplus 0 = a$$
,

$$[1.4] \quad a \oplus 1 = 1,$$

$$[1.5] (a^*)^* = a,$$

$$[1.6] \quad 0^* = 1,$$

AMS Subject Classification (1991): 03B50.

Key words: MV σ -algebra, measure.

MÁRIA JUREČKOVÁ

[1.7]
$$a \oplus a^* = 1$$
,

[1.8]
$$(a^* \oplus b)^* \oplus b = (a \oplus b^*)^* \oplus a$$
,

[1.9]
$$a \odot b = (a^* \oplus b^*)^*$$
.

The lattice operations \vee and \wedge are defined by the formulas

$$[1.10] \quad a \lor b = (a \odot b^*) \oplus b,$$

$$[1.11] \quad a \wedge b = (a \oplus b^*) \odot b.$$

We write $a \leq b$ iff $a \vee b = b$. The relation \leq is a partial ordering over \mathcal{F} and $0 \leq a \leq 1$, for every $a \in \mathcal{F}$. An MV algebra is a distributive lattice with respect to the operations \vee , \wedge .

In [1] the following assertions have been proved:

[1.12]
$$a \odot b < a \land b < a \lor b < a \oplus b$$
, for every $a, b \in \mathcal{F}$.

[1.13] If
$$a \leq b$$
, then $a \oplus c \leq b \oplus c$ and $a \odot c \leq b \odot c$, for every $c \in \mathcal{F}$.

(i)
$$a \le b$$
, (ii) $a^* \oplus b = 1$, (iii) $a \odot b^* = 0$.

[1.15] If
$$a \leq b$$
, then $b = a \oplus (b \odot a^*)$.

[1.16]
$$(a \lor b)^* = a^* \land b^*$$
 and $(a^* \lor b)^* = a^* \lor b^*$.

In [2] a binary operation \ominus is defined on MV algebra by the formula: $b \ominus a := b \odot a^*$ for any $a, b \in \mathcal{F}$ and the next properties are proved for $a, b, c \in \mathcal{F}$:

[1.17] If
$$a \le b$$
, then $b \ominus (b \ominus a) = a$ and $b = a \ominus (b \ominus a)$,

$$[1.18] \ \ \text{If} \ a \leq b^*, \ \text{then} \ a = (a \oplus b) \ominus b,$$

[1.19] If
$$a \leq b \leq c$$
, then

(i)
$$c \ominus b \leq c \ominus a$$
 and $(c \ominus a) \ominus (c \ominus b) = b \ominus a$,

(ii)
$$b \ominus a \leq c \ominus a$$
 and $(c \ominus a) \ominus (b \ominus a) = c \ominus b$,

[1.20]
$$(a \lor b) \ominus a = b \ominus (a \land b),$$

$$[1.21] \quad (a \oplus b) \ominus a = b \ominus (a \odot b),$$

$$[1.22] \quad (a \oplus b) \ominus (a \lor b) = (a \land b) \ominus (a \odot b),$$

[1.23] let
$$a \le b$$
 and $d \le c$. If $b \ominus a = c \ominus d$, then $a \oplus c = b \oplus d$,

$$[1.24] \quad (a \lor b) \oplus (a \land b) = a \oplus b = (a \oplus b) \oplus (a \odot b),$$

[1.25] if
$$a \le b \le c$$
, then $(c \ominus b) \lor (b \ominus a) = c \ominus a$,

$$[1.26] \quad (a \wedge b) \oplus (b \ominus a) = b,$$

$$[1.27] \quad c\ominus(a\wedge b)=(c\ominus a)\vee(c\ominus b),$$

$$[1.28] \quad c \ominus (a \lor b) = (c \ominus a) \land (c \ominus b).$$

An MV algebra \mathcal{F} is said to be an MV σ -algebra, if each countable sequence of elements from \mathcal{F} has the supremum in \mathcal{F} .

3. The measure extension theorem

In the measure extension theorem we will use a σ -continuous MV σ -algebra according to the next definition:

DEFINITION 1. We will say that \mathcal{F} is a σ -continuous MV σ -algebra if it holds:

[2.1] if
$$x_n \nearrow x$$
 and $y_n \nearrow y$, then $x_n \land y_n \nearrow x \land y$,

[2.2] if
$$x_n \nearrow x$$
 and $y_n \searrow y$, then $y_n \ominus x_n \searrow y \ominus x$, $x_n \ominus y_n \nearrow x \ominus y$, where $(x_n)_n \subset \mathcal{F}$, $(y_n)_n \subset \mathcal{F}$, $x, y \in \mathcal{F}$.

It is not difficult to prove that σ -continuous MV σ -algebra is σ -complete and σ -continuous lattice such that:

[2.3] if
$$x_n \nearrow x$$
 and $y_n \nearrow y$, then $x_n \oplus y_n \nearrow x \oplus y$,

[2.4] if
$$x_n \nearrow x$$
 and $y_n \nearrow y$, then $x_n \odot y_n \nearrow x \odot y$, where $x_n, y_n, x, y \in \mathcal{F}$ for all n .

Now let \mathcal{A} be an MV subalgebra of MV σ -algebra \mathcal{F} , i.e., $\mathcal{A} \subseteq \mathcal{F}$ and \mathcal{A} is an MV algebra.

There is given a measure $m: A \to [0,1]$ satisfying the following conditions:

$$[3.1]$$
 $m(1) = 1,$

[3.2] if
$$a, b \in \mathcal{A}$$
, $a \leq b$, then $m(a) \leq m(b)$ and $m(b \ominus a) = m(b) - m(a)$,

[3.3] if
$$a_n \nearrow a$$
, $a_n, a \in \mathcal{A}$ for all n , then $m(a_n) \nearrow m(a)$.

It has been proved in [2] that the measure has the following properties:

$$[3.4] \quad m(0) = 0,$$

[3.5]
$$m(a^*) = 1 - m(a)$$
,

[3.6]
$$m(a \lor b) = m(a) + m(b \ominus a) = m(b) + m(a \ominus b),$$

[3.7] if
$$a \leq b$$
, then $m(b) = m(a) + m(b \ominus a)$,

[3.8]
$$m(a \oplus b) + m(a \odot b) = m(a) + m(b) = m(a \lor b) + m(a \land b)$$
,

[3.9] if
$$a \le b^*$$
, then $m(a \oplus b) = m(a) + m(b)$.

In the next we will require that measure m has the following property:

[3.10] if
$$a_n \setminus a$$
 and $b_n \nearrow b$, a_n , $b_n \in \mathcal{A}$, $a \leq b$, then

$$\lim_{n\to\infty} m(b_n\ominus a_n) = \lim_{n\to\infty} m(b_n) - \lim_{n\to\infty} m(a_n).$$

From the definition of m and [3.6] we can see that:

[3.11] if
$$a_n \nearrow a$$
 and $b_n \searrow b$, $a_n, b_n \in \mathcal{A}$, then

$$\lim_{n\to\infty} m(b_n) \le \lim_{n\to\infty} m(a_n) + \lim_{n\to\infty} m(b_n \ominus a_n).$$

MÁRIA JUREČKOVÁ

THEOREM 1. Let \mathcal{F} be a σ -continuous MV σ -algebra, \mathcal{A} be an MV subalgebra of \mathcal{F} and $m: \mathcal{A} \to [0,1]$ a measure on \mathcal{A} satisfying the property [3.10]. Let $\mathcal{S}(\mathcal{A})$ be an MV σ -subalgebra generated by \mathcal{A} . Then there exists exactly one measure $\mu: \mathcal{S}(\mathcal{A}) \to [0,1]$ which is an extension of m.

The extension proces will be made by a standard way:

$$A^{+} = \{ a \in \mathcal{F}; \ \exists (a_{n})_{n} \subset \mathcal{A} \colon a_{n} \nearrow a \}, \ m^{+} \colon \mathcal{A}^{+} \to [0, 1], \ m^{+}(a) = \lim_{n \to \infty} m(a_{n}),$$

$$\mathcal{A}^{-} = \{ b \in \mathcal{F}; \ \exists (b_{n})_{n} \subset \mathcal{A} \colon b_{n} \searrow b \}, \ m^{-} \colon \mathcal{A}^{-} \to [0, 1], \ m^{-}(b) = \lim_{n \to \infty} m(b_{n}).$$

It is easy to prove that m^+ and m^- are defined correctly, i.e., $m^+(a)$ $(m^-(b))$ do not depend on the choise of $(a_n)_n$ $((b_n)_n)$, they are non-decreasing, valuations (i.e., [3.6] is satisfied) and semicontinuous.

We will define the maps $m^{\circ}: \mathcal{F} \to [0,1]$ and $m_{\circ}: \mathcal{F} \to [0,1]$ by the formulas:

$$m^{\circ}(x) = \inf\{m^{+}(a), a \in \mathcal{A}^{+}, a \geq x\},$$

 $m_{\circ}(x) = \sup\{m^{-}(b), b \in \mathcal{A}^{-}, b \leq x\}.$

The last step in our construction is the set $\mathcal{L} = \{x \in \mathcal{F}; \ m^{\circ}(x) = m_{\circ}(x)\}$. Later we will prove that $\mathcal{L} \supset \mathcal{S}(\mathcal{A})$ and $m^{\circ}/\mathcal{S}(\mathcal{A})$ is the proposed extension.

Before the proof of the above mentioned theorem we will introduce some helpful lemmas.

LEMMA 1. Let $a \in \mathcal{A}^+$, then $a^* \in \mathcal{A}^-$ and $m^+(a) + m^-(a^*) = 1$.

Proof. Let $a \in \mathcal{A}^+$ and $(a_n)_n \subset \mathcal{A}$ such that $a_n \nearrow a$. Then $a^* \leq a_n^*$, $a^* \leq \bigwedge_n a_n^* = b$. Since $b \leq a_n^*$, $a_n \leq b^*$, we obtain $a = \bigvee_n a_n \leq b^*$, $b \leq a^*$. Then $a^* = \bigwedge_n a_n^*$ and $a^* \in \mathcal{A}^-$.

By [3.5] we have $m(a_n)+m(a_n^*)=1$ for all $n\in\mathbb{N}$. Taking $n\to\infty$ we obtain $m^+(a)+m^-(a^*)=1$.

LEMMA 2. The maps $m^{\circ} \colon \mathcal{F} \to [0,1]$ and $m_{\circ} \colon \mathcal{F} \to [0,1]$ have the following properties:

- [i] they are extensions of m,
- [ii] they are non-decreasing,
- [iii] $m^{\circ}(y \ominus x) \leq m^{\circ}(y) m_{\circ}(x)$, for all $x, y \in \mathcal{F}$, $x \leq y$,
- [iv] $m_o(y \ominus x) \ge m_o(y) m^o(x)$, for all $x, y \in \mathcal{F}$, $x \le y$,
- [v] $m_{\circ}(x) \leq m^{\circ}(x)$, for all $x \in \mathcal{F}$.

Proof. The first and second assertions follow from the definition of m° and m° .

[iii] Let $x, y \in \mathcal{F}, b \ge y \ge x \ge a, a \in \mathcal{A}^-, b \in \mathcal{A}^+.$

THE MEASURE EXTENSION THEOREM ON MV σ -ALGEBRAS

Then $y \ominus x \leq b \ominus a$ and [2.2] implies $b \ominus a \in \mathcal{A}^+$.

From the definition of m° , m_{\circ} and [3.10] we obtain:

$$m^{\circ}(y \ominus x) \leq m^{+}(b \ominus a) = m^{+}(b) - m^{-}(a),$$
 $m^{\circ}(y \ominus x) \leq m^{\circ}(y) - m^{-}(a),$
 $m^{-}(a) \leq m^{\circ}(y) - m^{\circ}(y \ominus x),$
 $m_{\circ}(x) \leq m^{\circ}(y) - m^{\circ}(y \ominus x)$ and hence
 $m^{\circ}(y \ominus x) \leq m^{\circ}(y) - m_{\circ}(x).$

[iv] Let $x, y \in \mathcal{F}$, $x \leq y$, $x \leq a$, $a \in \mathcal{A}^+$, $b \leq y$, $b \in \mathcal{A}^-$.

Then $y \ominus x \ge b \ominus x \ge b \ominus a$ and [2.2] implies $b \ominus a \in \mathcal{A}^-$.

Analogously as in the proof of [iii], from definition of m° , m_{\circ} and [3.11] we obtain:

$$m_{\circ}(y \ominus x) \ge m^{-}(b \ominus a) \ge m^{-}(b) - m^{+}(a)$$
,
 $m_{\circ}(y \ominus x) \ge m_{\circ}(y) - m^{+}(a)$,
 $m^{+}(a) \ge m_{\circ}(y) - m_{\circ}(y \ominus x)$,
 $m^{\circ}(x) \ge m_{\circ}(y) - m_{\circ}(y \ominus x)$ and hence
 $m_{\circ}(y \ominus x) \ge m_{\circ}(y) - m^{\circ}(x)$.

[v] Due to [3.10] it is easy to see that if $a \in \mathcal{A}^-$, $b \in \mathcal{A}^+$, $a \leq b$, then $m^-(a) \leq m^+(b)$.

Let $x \in \mathcal{F}$ be such that $a \leq x \leq b$. Then $m_{\circ}(x) \leq m^{+}(b)$. Since b is an arbitrary element from \mathcal{A}^{+} such that $b \geq x$, we have $m_{\circ}(x) \leq m^{\circ}(x)$.

The following three results can be proved by the same ways as the corresponding proofs in [3]:

Lemma 3. Let $x \in \mathcal{L}$. Then $m^{\circ}(x) + m^{\circ}(x^*) = 1$.

Proof. Take $a \in \mathcal{A}^+$, $a \geq x^*$. Then $a^* \in \mathcal{A}^-$, $a^* \leq x$. From the inequality $m_{\circ}(x) \geq m^-(a^*) = 1 - m^+(a)$ and $m_{\circ}(x) = m^{\circ}(x)$ for all $x \in \mathcal{L}$ it follows $m^{\circ}(x) + m^+(a) \geq 1$ for every $a \in \mathcal{A}^+$, $a \geq x^*$ and then $m^{\circ}(x) + m^{\circ}(x^*) \geq 1$. And now let $b \in \mathcal{A}^-$, $b \leq x$. Then $b^* \geq x^*$, $b^* \in \mathcal{A}^+$ and $m^+(b^*) \geq m^{\circ}(x^*)$. But then $1 \geq m^-(b) + m^{\circ}(x^*)$, hence $1 \geq m_{\circ}(x) + m^{\circ}(x^*) = m^{\circ}(x) + m^{\circ}(x^*)$.

LEMMA 4. Let $x \in \mathcal{L}$. Then $x^* \in \mathcal{L}$.

Proof. Take $a \in \mathcal{A}^+$, $a \ge x$. Then $a^* \in \mathcal{A}^-$, $a^* \le x^*$ and then $m^-(a^*) \le m_{\circ}(x^*)$, i.e., $1 - m^+(a) \le m_{\circ}(x^*)$, $1 \le m^+(a) + m_{\circ}(x^*)$.

Because a is an arbitrary element from \mathcal{A}^+ , using [v] in Lemma 2 we have $1 \leq m^{\circ}(x) + m_{\circ}(x^*) \leq m^{\circ}(x) + m^{\circ}(x^*) = 1$.

Therefore $m_{\circ}(x^*) = m^{\circ}(x^*)$, i.e., $x^* \in \mathcal{L}$.

LEMMA 5. Let $x_n \in \mathcal{L}$, $x_n \nearrow x$ (or $x_n \searrow x$), $x \in \mathcal{F}$. Then $x \in \mathcal{L}$ and $m^{\circ}(x) = \lim_{n \to \infty} m^{\circ}(x_n)$.

Proof. If $x_n \in \mathcal{L}$, then for every $\varepsilon > 0$ there exists $b_n \in \mathcal{A}^+$, $b_n \geq x_n$, such that for all $n \in \mathbb{N}$, $m^{\circ}(x_n) + \frac{\varepsilon}{2^n} > m^+(b_n)$. Take $u_n = \bigvee_{i=1}^n b_i$. Then $u_n \in \mathcal{A}^+$, $u_n \nearrow \bigvee_{n=1}^{\infty} u_n \geq \bigvee_{n=1}^{\infty} x_n = x$.

Since m^+ is a valuation, it implies

$$m^+(u_2) = m^+(b_1 \lor b_2) = m^+(b_1) + m^+(b_2) - m^+(b_1 \land b_2) \le$$

 $\le m^+(b_1) + m^+(b_2) - m^\circ(x_1) < \frac{\varepsilon}{2} + \frac{\varepsilon}{4} + m^\circ(x_2).$

By induction we prove $m^+(u_n) < m^\circ(x_n) + \frac{\varepsilon}{2} + \frac{\varepsilon}{4} + \dots + \frac{\varepsilon}{2^n}$ and hence $m^\circ(x) \le m^+(\bigvee_{n=1}^\infty u_n) = \lim_{n\to\infty} m^+(u_n) \le \lim_{n\to\infty} m^\circ(x_n) + \sum_{n=1}^\infty \frac{\varepsilon}{2^n} = \lim_{n\to\infty} m^\circ(x_n) + \varepsilon$. Therefore $m^\circ(x) \le \lim_{n\to\infty} m^\circ(x_n)$. The opposite inequality follows, since m^* is non-decreasing.

Further $m_{\circ}(x) \leq m^{\circ}(x) = \lim_{n \to \infty} m^{\circ}(x_n) = \lim_{n \to \infty} m_{\circ}(x_n) \leq m_{\circ}(x)$, hence $x \in \mathcal{L}$.

And now we will prove the second part of Lemma 5.

Let $x_n \searrow x$, $x_n \in \mathcal{L}$, $n \in \mathbb{N}$. Then $x_n^* \nearrow x^*$. As has been shown above $m^{\circ}(x^*) = \lim_{n \to \infty} m^{\circ}(x_n^*)$ and $x^* \in \mathcal{L}$. But then $x \in \mathcal{L}$ too and we can write:

$$m^{\circ}(x) = 1 - m^{\circ}(x^{*}) = 1 - \lim_{n \to \infty} m^{\circ}(x_{n}^{*}) = 1 - \lim_{n \to \infty} (1 - m^{\circ}(x_{n})) = \lim_{n \to \infty} m^{\circ}(x_{n}).$$

LEMMA 6. Let \mathcal{A} be an MV subalgebra of a σ -continuous MV σ -algebra \mathcal{F} . Let $\mathcal{S}(\mathcal{A})$ be the MV σ -algebra generated by \mathcal{A} and $M(\mathcal{A})$ be the least monotone set over \mathcal{A} , i.e., $\mathcal{M}(\mathcal{A})$ be the least set over \mathcal{A} closed under the monotone sequences of \mathcal{A} . Then $\mathcal{S}(\mathcal{A}) = \mathcal{M}(\mathcal{A})$.

Proof. Since $\mathcal{S}(\mathcal{A})$ is a monotone set, it is $\mathcal{M}(\mathcal{A}) \subset \mathcal{S}(\mathcal{A})$. It is necessary to prove that $\mathcal{M}(\mathcal{A})$ is an MV σ -subalgebra of \mathcal{F} . Let $x \in \mathcal{A}$. Put $\mathcal{G} = \{y \in \mathcal{M}(\mathcal{A}) \colon x \oplus y \in \mathcal{M}(\mathcal{A})\}$. Evidently $\mathcal{A} \subset \mathcal{G}$. \mathcal{G} is a monotone set, because if $y_n \in \mathcal{G}$ and $y_n \nearrow y$, then due to [2.3] $y_n \oplus x \nearrow y \oplus x$ which implies $y \oplus x \in \mathcal{M}(\mathcal{A})$ and so $y \in \mathcal{G}$. Therefore $\mathcal{M}(\mathcal{A}) \subset \mathcal{G}$. So, $x \oplus y \in \mathcal{M}(\mathcal{A})$ for all $y \in \mathcal{M}(\mathcal{A})$ and $x \in \mathcal{A}$. And now take $y \in \mathcal{M}(\mathcal{A})$ and put $\mathcal{K} = \{x \in \mathcal{M}(\mathcal{A}) \colon x \oplus y \in \mathcal{M}(\mathcal{A})\}$. $\mathcal{A} \in \mathcal{K}$. Let $x_n \in \mathcal{K}$ and $x_n \nearrow x$. Due to [2.3] $x_n \oplus y \nearrow x \oplus y$ and therefore $x \oplus y \in \mathcal{M}(\mathcal{A})$ which implies $x \in \mathcal{K}$. From this it follows that \mathcal{K} is a monotone set, $\mathcal{M}(\mathcal{A}) \subset \mathcal{K}$ and $x \oplus y \in \mathcal{M}(\mathcal{A})$ for every $x, y \in \mathcal{M}(\mathcal{A})$.

THE MEASURE EXTENSION THEOREM ON MV σ -ALGEBRAS

Similarly we can prove that if $x \in \mathcal{M}(\mathcal{A})$ then $x^* \in \mathcal{M}(\mathcal{A})$ too. As has been shown above, $\mathcal{M}(\mathcal{A})$ is closed with respect to \oplus and * for any $x, y \in \mathcal{M}(\mathcal{A})$. Since $x \odot y = (x^* \oplus y^*)^*$, $\mathcal{M}(\mathcal{A})$ is closed with respect to \odot too. We proved that $\mathcal{M}(\mathcal{A})$ is an MV σ -subalgebra of \mathcal{F} . Therefore $\mathcal{M}(\mathcal{A}) \supset \mathcal{S}(\mathcal{A})$.

And now we can prove Theorem 1.

1. Existence. As shown above, $S(A) = \mathcal{M}(A) \subset \mathcal{L}$. Put $\mu = m^{\circ}/S(A)$. It is easy to see that μ has the property [3.1] and μ is non decreasing. According to Lemma 6 $y \ominus x \in S(A) \subset \mathcal{L}$ for any $x, y \in S(A)$ and $m^{\circ}(x) = m_{\circ}(x)$ holds on \mathcal{L} . By Lemma 2 for $x \leq y$ it holds:

$$m^{\circ}(y \ominus x) \leq m^{\circ}(y) - m_{\circ}(x) = m_{\circ}(y) - m^{\circ}(x) \leq m_{\circ}(y \ominus x)$$
.

Therefore $\mu(y \ominus x) = \mu(y) - \mu(x)$ for any $x, y \in \mathcal{S}(\mathcal{A}), x \leq y$. According to Lemma 5 μ is upper continuous.

Now we have to prove [3.10] for μ .

Let for any $n \in \mathbb{N}$ x_n , $y_n \in \mathcal{S}(\mathcal{A})$ and $x_n \setminus x$ and $y_n \nearrow y$. By [2.2] $y_n \ominus x_n \nearrow y \ominus x$. Let $x \leq y$. Using the properties of μ which were mentioned above we can write:

$$\lim_{n\to\infty} \mu(y_n\ominus x_n) = \mu(y\ominus x) = \mu(y) - \mu(x) = \lim_{n\to\infty} \mu(y_n) - \lim_{n\to\infty} \mu(x_n).$$

2. Uniqueness. Let $\nu \colon \mathcal{S}(\mathcal{A}) \to [0,1]$ be a measure such that $\nu/\mathcal{A} = m$. Put $\mathcal{G} = \big\{ x \in \mathcal{S}(\mathcal{A}) \colon \mu(x) = \nu(x) \big\}$. Evidently $\mathcal{A} \subset \mathcal{G}$. But $\mathcal{G} \supset \mathcal{M}(\mathcal{A}) = \mathcal{S}(\mathcal{A})$ because \mathcal{G} is closed under limits of monotone sequences.

Therefore $\nu(x) = \mu(x)$ for any $x \in \mathcal{S}(\mathcal{A})$.

REFERENCES

- CHANG, C. C.: Algebraic Analysis of Many Valued Logics, Trans. Amer. Math. Soc. 88 (1958), 467–490.
- [2] CHOVANEC, F.: States and observables on MV algebras, Tatra Mountains Math. Publ. 3 (1994), 55-64.
- [3] CHOVANEC, F.—KÔPKA, F.: On the extension of quantum logic states, Zeszyty Nauk. Akad. Ekon. w Poznaniu seria 1, 1992, 11–18.
- [4] KÔPKA, F.—CHOVANEC, F.: D-posets, Math. Slovaca 44 (1994), 21-34.
- [5] MUNDICI, D.: Interpretation of AF C*-Algebra in Lukasiewicz sentential calculus, J. Funct. Anal. 65 (1986), 15-53.
- [6] PIASECKI, K.: Extension of fuzzy P-measure, Busefal 19 (1984), 26-41.
- [7] RIEČAN, B.: The measure extension theorem for subadditive probability measures in orthomodular σ-continuous lattices, Comment. Math. Univ. Carolin. 20 (1979), 309–315.

Received April 8, 1994

Military Academy Department of Mathematics SK-031 19 Liptovský Mikuláš SLOVAKIA