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THE MEASURE EXTENSION
THEOREM ON MV ¢-ALGEBRAS

MARIA JURECKOVA

ABSTRACT. The aim of this paper is to provide some results regarding the
measure extension on MV o¢-algebras.

1. Introduction

The problem of measure extension was solved by Piasecki [6] and Rie-
¢an [7] in soft o-algebra and in orthomodular o-continuous lattices and by
Chovanec and Kopka in quasi-orthocomplemented lattices [3]. In [2]
Chovanec defined a state on MV o-algebras. This was motivated by the
state on D—o-posets [4]; his definition of the state on MV o-algebras is different
from definitions in [6], [7], [3].

These results have led us to a measure extension theorem on MV c-algebras.

2. MV ¢-algebras

In [5] an MV algebra is defined as follows:

An MYV algebra is an algebra (F,®,®,*,0,1), where F is a non-empty set,
0 and 1 are constant elements of F, @ and ® are binary operations, and * is
a unary operation, satisfying the following axioms:

[1.1] e®b=0bDa,

1.2] (a®b)®c=a® (bdc),
[1.3] a®0=a,

[14] a®1=1,

[1.5] (a*)* =a,

[1.6] 0* =1,
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[1.7] a®a* =1,
[1.8] (a*@b)*Db=(a®b*)* Da,
[1.9] a®b=(a*Pb*)".
The lattice operations V and A are defined by the formulas
[1.10] aVb=(a®b*)DDb,
[1.11] aAb=(a®b*)®b.

We write a < b iff aVb = b.’ The relation < is a partial ordering over F
and 0 < a <1, for every a € F. An MV algebra is a distributive lattice with
respect to the operations V, A.

In [1] the following assertions have been proved:

[1.12] a®b<aAb<aVb<La®b,forevery a,b € F.

[1.13] If a <b,then a®c<bPcand a®c<bOc, for every ce F.

[1.14] The following three conditions are equivalent:

(i) a <0, (ii) a*®b=1, (i) a ® b* = 0.

[1.15] If a <b, then b=a® (bOa*).

[1.16] (aVDb)* =a* Ab* and (a* Vb)* =a" Vb".

In [2] a binary operation © is defined on MV algebra by the formula: bSa :=
b® a* for any a,b € F and the next properties are proved for a,b,c € F:
[1.17] fa <b,then b6 (bSa)=a and b=a® (bSa),
[1.18] If a < b*, then a = (a D b) O,
[1.19] If a < b < c, then
(i) cob<coa and (c0a)O(cOb)=bOa,
(i) b6a<cBa and (c0a)e(bSa)=cOb,
1.20] (avb)©a=0b0(anbd),
121] (a®b)Sa=b0(a®b),
] (a®b)o(aVd)=(aAd)E(aO®b),
1.23] let a<band d<c.If b6a=cOd, then a®c=0b®d),
] (avbd)@®(aAb)=a®b=(a®D)®(a®b),
] if a<b<c,then (cOb)V (bSa)=cOa,
1.26) (aAb)® (bSa) =0,
] co(anb)=(coa)V(cob),
] co(avb)=(cea)A(cob).
An MV algebra F is said to be an MV o-algebra, if each countable sequence
of elements from F has the supremum in F.
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3. The measure extension theorem

In the measure extension theorem we will use a o-continuous MV o-algebra
according to the next definition:
DEFINITION 1. We will say that F is a o-continuous MV o-algebra if it holds:

2.1] if 2, /= and y, /'y, then z, Ay, ~ Ay,

[22] if z, /' and y, \, y, then Yn©Zn \YOZT, TnOuyn /Oy,
where (zn)n CF, (yn)n CF, 2,y € F.

It is not difficult to prove that o-continuous MV c-algebra is o-complete and
o-continuous lattice such that:

23] if z, /z and y, /v, then 2, Dy, S zdy,

2.4] if ¢z, /= and y,, /'y, then 2, Oy, /Oy,
where z,,y,,z,y € F for all n.

Now let A be an MV subalgebra of MV o-algebra F,ie., AC F and A is

an MV algebra.
There is given a measure m: A — [0, 1] satisfying the following conditions:

3.1 m(1) =1,
[3.2] if a,b€ A, a <b, then m(a) < m(b) and m(b a) = m(b) — m(a),
[3.3] if an /" a, an,a € A for all n, then m(a,) /~ m(a).

It has been proved in [2] that the measure has the following properties:
[3.4] m(0) =0,

[3.5] m(a*)=1—mf(a),

[3.6] m(aVb)=m(a)+m(bea)=m()+m(ab),

[3.7] if a < b, then m(b) = m(a) + m(bO a),

[3.8] m(a®b)+m(a®b)=m(a)+m(b) =m(aVb)+m(anb),
[3.9] if a < b*, then m(a & b) = m(a) +m(b).

In the next we will require that measure m has the following property:
[3.10] if a, \y @ and b, /b, ayn, b, € A, a <b, then

lim m(b, © a,) = lim m(b,) — lim m(a,).
n—oo n—oo n—00-

From the definition of m and [3.6] we can see that:
[3.11] if ap /" a and b, \\ b, an,b, € A, then

lim m(b,) < lim m(a,)+ lim m(b, ©a,).
n—oo n—00 n—oQ
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THEOREM 1. Let F be a o-continuous MV o-algebra, A be an MV subalge-
bra of F ‘and m: A — [0,1] a measure on A satisfying the property [3.10]. Let
S(A) be an MV o-subalgebra generated by A. Then there exists exactly one
measure p: S(A) — [0, 1] which is an extension of m.

The extension proces will be made by a standard way:
AT ={a e F; an)n C A: a, /S a}, mt: AT —[0,1], m¥(a) = lim m(an),

A ={beF; Abp)n CA: b, \\b}, m™: A7 — [0,1], m™(b) = lim m(by).

It is easy to prove that m™ and m~ are defined correctly, i.e., m*(a)
(m~ (b)) do not depend on the choise of (an)n ((bn)n ), they are non-decreasing,
valuations (i.e., [3.6] is satisfied) and semicontinuous.

We will define the maps m°: F — [0,1] and mo: F — [0,1] by the formulas:

m®(z) = inf{m*(a), a € A*, a >z},
mo(z) =sup {m~(b),be A, b<z}.

The last step in our construction is the set £ = {z € F; m°(z) = mo(z)}.

Later we will prove that £ D S(A) and m°/S(A) is the proposed extension.
Before the proof of the above mentioned theorem we will introduce some helpful
lemmas.

LEMMA 1. Let a € At then a* € A~ and m*(a) + m~(a*) = 1.

Proof. Let a € AT and (a,), C A such that a, / a. Then a* < aj,
a* < A\aX =b. Since b < a}, a, < b*, we obtain a = Van, <b*, b<a*. Then
a* = \a} and a* € A™.

By [3.5] we have m(a,)+m(a}) =1 for all n € N. Taking n — co we obtain
m*(a) +m~(a*) = 1. O
LEMMA 2. The maps m°: F — [0,1] and mo: F — [0,1] have the following
properties:

[ij they are extensions of m,

[ii] they are non-decreasing,
] m*(yoz) <m°(y) —mo(z), forallz,y € F, z <y,
[iv] mo(y ©x) > mo(y) —m°(z), for all z,y € F, z <y,
] mo(z) <m°(x), for all z € F.

Proof. The first and second assertions follow from the definition of m°
and m°.

iii] Let z,y€F,b>y>z>a,ac A", be AT
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Then y©z < bOa and [2.2] implies bSO a € AT.
From the definition of m®, m, and [3.10] we obtain:
m®(y ©7) < m*(b©a) = m*(b) —m~(a),
m(y o z) <m(y) —m™(a),
m™(a) <m°(y) —m°(y© z),
mo(z) < m°(y) —m°(y© ) and hence
m®(y © z) <m®(y) —mo(z)
[iv] Let z,ye F,z<y,z<a,a€c AT, b<y,bec A".
Then y©z >bOz > b6 a and [2.2] implies bSa € A™.

Analogously as in the proof of [iii], from definition of m°, m, and [3.11] we
obtain:

Mmo(y ©z) > m™(b© a) >m™(b) —m*(a),
mo(y © ) > mo(y) — m*(a),
m*(a) 2 mo(y) — mo(y © x),
m°(z) > mo(y) —mo(y ©z) and hence
mo(y © T) 2 mo(y) —m°(z).
[v] Due to [3.10] it is easy to see that if a € A™, b € AT, a < b, then
m~(a) < mt(b). '
Let € F be such that a < z < b. Then mo(z) < m™*(b). Since b is an
arbitrary element from A™ such that b > z, we have m,(z) < m°(z). O

The following three results can be proved by the same ways as the corre-
sponding proofs in [3]:

LEMMA 3. Let z € L. Then m°(z) +m°(z*) = 1.

Proof. Take a € AT, a > z*. Then a* € A~, a* < z. From the inequality
mo(z) > m~(a*) = 1 —m*(a) and mo(z) = m°(z) for all z € L it follows
m°(z) + m*(a) > 1 for every a € AT, a > z* and then m°(z) + m°(z*) > 1.
And now let b€ A~, b < z. Then b* > z*, b* € AT and m™(b*) > m°(z*).
But then 1> m™(b) + m°(z*), hence 1 > mq(z) +m°(z*) = m°(z) + m°(z*).

O
LEMMA 4. Let x € L. Then z* € L.

Proof. Take a € A", a > z. Then a* € A~, a* < z* and then m~(a*) <
mo(z*), ie.,, 1 —m™T(a) < mo(z*), 1 <mt(a)+mo(z*).

Because a is an arbitrary element from A%, using [v] in Lemma 2 we have
1 <m°(z) + mo(z*) < m°(z) + m°(z*) = 1.

Therefore mo(z*) = m°(z*), i.e., z* € L. O
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LEMMA 5. Let ¢, € £, z, /' z (or z, \, z), « € F. Then z € L and

m°(z) = lim m°(z,).

Proof. If z, € L, then for every g€ > 0 there exists b, € A+ bn, > zp,
such that for all n € N, m°(z,) + —n > m*(b,). Take u, = \/ b;. Then

un € AT, u, / \/ Uy > \/ Ty =1.
Since m™ is a valuation, it implies
m+(u2) = m+(b1 \% bg) = m+(b1) -+ m+(b2) = m+(b1 AN bg) S

< mt(by) +m* () —m°(z1) < g + Z +m°(z2) .

By induction we prove m™ (u,) < m°(z,)+ E4+E4.. .+ andhence m°(z) <

2 4 2
m+( V un) = hm mt(u,) < hm m°(zn) + Z 2—n = lim m°(z,) + €.
n=1 n=1 n=xgo

Therefore m°(z) g hm me () . The opposite inequality follows, since m™* is
n—oo

non-decreasing.

Further mo(z) < m°(z) = lim m (zn) = hm mo(zn) < mo(z), hence
z€eL. e "

And now we will prove the second part of Lemma 5.

Let z, \, =, z, € L, n € N. Then z} / z*. As has been shown above

m®(z*) = lim m°(z}) and z* € L. But then z € £ too and we can write:
n—oo

m°(z) =1-m°(z*) = 1—nllnolom (zp)=1- hm (1 m°(zy,)) _nh—{réom () -

d

LEMMA 6. Let A be an MV subalgebra of a o-continuous MV o¢-algebra
F. Let S(A) be the MV o-algebra generated by A and M(A) be the least
monotone set over A, ie., M(A) be the least set over A closed under the
monotone sequences of A. Then S(A) = M(A).

Proof. Since S(A) is a monotone set, it is M(A) C S(A). It is necessary
to prove that M(A) is an MV o-subalgebra of F. Let z € A. Put ¢ = {y €
M(A): z®y € M(A)}. Evidently A C G. G is a monotone set, because if

€ G and y, /"y, then due to [2.3] y, Bz " y®z which implies ydz € M(A)
and so y € G. Therefore M(A) C G. So, z Py € M(A) for all y € M(A) and
z € A. And now take y € M(A) and put £ = {z € M(A):zdy € M(A)}.
Ae K. Let z, € K and z,, / z. Due to [2.3] z, Dy / = ®y and therefore
z®y € M(A) which implies z € K. From this it follows that /C is a monotone
set, M(A) C K and z®y € M(A) for every z,y € M(A).
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Similary we can prove that if z € M(A) then z* € M(A) too. As has been
shown above, M(A) is closed with respect to @ and * for any z,y € M(A).
Since z ©y = (z* ® y*)*, M(A) is closed with respect to ® too. We proved
that M(A) is an MV g-subalgebra of 7. Therefore M(A) D S(A). O

And now we can prove Theorem 1.

l.Existence. Asshown above, S(A) = M(A) C L. Put p = m°/S(A).
It is easy to see that p has the property [3.1] and 4 is non decreasing. According
to Lemma 6 y © z € S(A) C £ for any z,y € S(A) and m°(z) = mo(z) holds
on L. By Lemma 2 for z < y it holds:

m°(y © 2) <m°(y) — mo(z) = mo(y) — m°(z) < mo(y S ).

Therefore u(y © z) = p(y) — p(z) for any z,y € S(A), z < y. According to
Lemma 5 4 is upper continuous.

Now we have to prove [3.10] for .

Let for any n € N z,, y, € S(A) and z, \, z and y, / y. By [2.2]
Yn O zn /YO x. Let & < y. Using the properties of 4 which were mentioned
above we can write:

dim pu(yn © zn) = ply © 2) = p(y) — p(z) = Jim p(ya) — lim p(zn).

2. Uniqueness. Let v: S(A) — [0,1] be a measure such that v/A = m.
Put G = {z € S(A): p(z) = v(z)}. Evidently A C G. But G D M(A) = S(A)
because G is closed under limits of monotone sequences.

Therefore v(z) = p(z) for any z € S(A). a
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