THE MEASURE EXTENSION THEOREM ON MV σ -ALGEBRAS ## MÁRIA JUREČKOVÁ ABSTRACT. The aim of this paper is to provide some results regarding the measure extension on MV σ -algebras. ## 1. Introduction The problem of measure extension was solved by Piasecki [6] and Rie-čan [7] in soft σ -algebra and in orthomodular σ -continuous lattices and by Chovanec and Kôpka in quasi-orthocomplemented lattices [3]. In [2] Chovanec defined a state on MV σ -algebras. This was motivated by the state on D- σ -posets [4]; his definition of the state on MV σ -algebras is different from definitions in [6], [7], [3]. These results have led us to a measure extension theorem on MV σ -algebras. ## 2. MV σ -algebras In [5] an MV algebra is defined as follows: An MV algebra is an algebra $(\mathcal{F}, \oplus, \odot, *, 0, 1)$, where \mathcal{F} is a non-empty set, 0 and 1 are constant elements of \mathcal{F}, \oplus and \odot are binary operations, and * is a unary operation, satisfying the following axioms: $$[1.1] \quad a \oplus b = b \oplus a,$$ [1.2] $$(a \oplus b) \oplus c = a \oplus (b \oplus c)$$, [1.3] $$a \oplus 0 = a$$, $$[1.4] \quad a \oplus 1 = 1,$$ $$[1.5] (a^*)^* = a,$$ $$[1.6] \quad 0^* = 1,$$ AMS Subject Classification (1991): 03B50. Key words: MV σ -algebra, measure. ### MÁRIA JUREČKOVÁ [1.7] $$a \oplus a^* = 1$$, [1.8] $$(a^* \oplus b)^* \oplus b = (a \oplus b^*)^* \oplus a$$, [1.9] $$a \odot b = (a^* \oplus b^*)^*$$. The lattice operations \vee and \wedge are defined by the formulas $$[1.10] \quad a \lor b = (a \odot b^*) \oplus b,$$ $$[1.11] \quad a \wedge b = (a \oplus b^*) \odot b.$$ We write $a \leq b$ iff $a \vee b = b$. The relation \leq is a partial ordering over \mathcal{F} and $0 \leq a \leq 1$, for every $a \in \mathcal{F}$. An MV algebra is a distributive lattice with respect to the operations \vee , \wedge . In [1] the following assertions have been proved: [1.12] $$a \odot b < a \land b < a \lor b < a \oplus b$$, for every $a, b \in \mathcal{F}$. [1.13] If $$a \leq b$$, then $a \oplus c \leq b \oplus c$ and $a \odot c \leq b \odot c$, for every $c \in \mathcal{F}$. (i) $$a \le b$$, (ii) $a^* \oplus b = 1$, (iii) $a \odot b^* = 0$. [1.15] If $$a \leq b$$, then $b = a \oplus (b \odot a^*)$. [1.16] $$(a \lor b)^* = a^* \land b^*$$ and $(a^* \lor b)^* = a^* \lor b^*$. In [2] a binary operation \ominus is defined on MV algebra by the formula: $b \ominus a := b \odot a^*$ for any $a, b \in \mathcal{F}$ and the next properties are proved for $a, b, c \in \mathcal{F}$: [1.17] If $$a \le b$$, then $b \ominus (b \ominus a) = a$ and $b = a \ominus (b \ominus a)$, $$[1.18] \ \ \text{If} \ a \leq b^*, \ \text{then} \ a = (a \oplus b) \ominus b,$$ [1.19] If $$a \leq b \leq c$$, then (i) $$c \ominus b \leq c \ominus a$$ and $(c \ominus a) \ominus (c \ominus b) = b \ominus a$, (ii) $$b \ominus a \leq c \ominus a$$ and $(c \ominus a) \ominus (b \ominus a) = c \ominus b$, [1.20] $$(a \lor b) \ominus a = b \ominus (a \land b),$$ $$[1.21] \quad (a \oplus b) \ominus a = b \ominus (a \odot b),$$ $$[1.22] \quad (a \oplus b) \ominus (a \lor b) = (a \land b) \ominus (a \odot b),$$ [1.23] let $$a \le b$$ and $d \le c$. If $b \ominus a = c \ominus d$, then $a \oplus c = b \oplus d$, $$[1.24] \quad (a \lor b) \oplus (a \land b) = a \oplus b = (a \oplus b) \oplus (a \odot b),$$ [1.25] if $$a \le b \le c$$, then $(c \ominus b) \lor (b \ominus a) = c \ominus a$, $$[1.26] \quad (a \wedge b) \oplus (b \ominus a) = b,$$ $$[1.27] \quad c\ominus(a\wedge b)=(c\ominus a)\vee(c\ominus b),$$ $$[1.28] \quad c \ominus (a \lor b) = (c \ominus a) \land (c \ominus b).$$ An MV algebra \mathcal{F} is said to be an MV σ -algebra, if each countable sequence of elements from \mathcal{F} has the supremum in \mathcal{F} . ## 3. The measure extension theorem In the measure extension theorem we will use a σ -continuous MV σ -algebra according to the next definition: **DEFINITION 1.** We will say that \mathcal{F} is a σ -continuous MV σ -algebra if it holds: [2.1] if $$x_n \nearrow x$$ and $y_n \nearrow y$, then $x_n \land y_n \nearrow x \land y$, [2.2] if $$x_n \nearrow x$$ and $y_n \searrow y$, then $y_n \ominus x_n \searrow y \ominus x$, $x_n \ominus y_n \nearrow x \ominus y$, where $(x_n)_n \subset \mathcal{F}$, $(y_n)_n \subset \mathcal{F}$, $x, y \in \mathcal{F}$. It is not difficult to prove that σ -continuous MV σ -algebra is σ -complete and σ -continuous lattice such that: [2.3] if $$x_n \nearrow x$$ and $y_n \nearrow y$, then $x_n \oplus y_n \nearrow x \oplus y$, [2.4] if $$x_n \nearrow x$$ and $y_n \nearrow y$, then $x_n \odot y_n \nearrow x \odot y$, where $x_n, y_n, x, y \in \mathcal{F}$ for all n . Now let \mathcal{A} be an MV subalgebra of MV σ -algebra \mathcal{F} , i.e., $\mathcal{A} \subseteq \mathcal{F}$ and \mathcal{A} is an MV algebra. There is given a measure $m: A \to [0,1]$ satisfying the following conditions: $$[3.1]$$ $m(1) = 1,$ [3.2] if $$a, b \in \mathcal{A}$$, $a \leq b$, then $m(a) \leq m(b)$ and $m(b \ominus a) = m(b) - m(a)$, [3.3] if $$a_n \nearrow a$$, $a_n, a \in \mathcal{A}$ for all n , then $m(a_n) \nearrow m(a)$. It has been proved in [2] that the measure has the following properties: $$[3.4] \quad m(0) = 0,$$ [3.5] $$m(a^*) = 1 - m(a)$$, [3.6] $$m(a \lor b) = m(a) + m(b \ominus a) = m(b) + m(a \ominus b),$$ [3.7] if $$a \leq b$$, then $m(b) = m(a) + m(b \ominus a)$, [3.8] $$m(a \oplus b) + m(a \odot b) = m(a) + m(b) = m(a \lor b) + m(a \land b)$$, [3.9] if $$a \le b^*$$, then $m(a \oplus b) = m(a) + m(b)$. In the next we will require that measure m has the following property: [3.10] if $$a_n \setminus a$$ and $b_n \nearrow b$, a_n , $b_n \in \mathcal{A}$, $a \leq b$, then $$\lim_{n\to\infty} m(b_n\ominus a_n) = \lim_{n\to\infty} m(b_n) - \lim_{n\to\infty} m(a_n).$$ From the definition of m and [3.6] we can see that: [3.11] if $$a_n \nearrow a$$ and $b_n \searrow b$, $a_n, b_n \in \mathcal{A}$, then $$\lim_{n\to\infty} m(b_n) \le \lim_{n\to\infty} m(a_n) + \lim_{n\to\infty} m(b_n \ominus a_n).$$ ### MÁRIA JUREČKOVÁ **THEOREM 1.** Let \mathcal{F} be a σ -continuous MV σ -algebra, \mathcal{A} be an MV subalgebra of \mathcal{F} and $m: \mathcal{A} \to [0,1]$ a measure on \mathcal{A} satisfying the property [3.10]. Let $\mathcal{S}(\mathcal{A})$ be an MV σ -subalgebra generated by \mathcal{A} . Then there exists exactly one measure $\mu: \mathcal{S}(\mathcal{A}) \to [0,1]$ which is an extension of m. The extension proces will be made by a standard way: $$A^{+} = \{ a \in \mathcal{F}; \ \exists (a_{n})_{n} \subset \mathcal{A} \colon a_{n} \nearrow a \}, \ m^{+} \colon \mathcal{A}^{+} \to [0, 1], \ m^{+}(a) = \lim_{n \to \infty} m(a_{n}),$$ $$\mathcal{A}^{-} = \{ b \in \mathcal{F}; \ \exists (b_{n})_{n} \subset \mathcal{A} \colon b_{n} \searrow b \}, \ m^{-} \colon \mathcal{A}^{-} \to [0, 1], \ m^{-}(b) = \lim_{n \to \infty} m(b_{n}).$$ It is easy to prove that m^+ and m^- are defined correctly, i.e., $m^+(a)$ $(m^-(b))$ do not depend on the choise of $(a_n)_n$ $((b_n)_n)$, they are non-decreasing, valuations (i.e., [3.6] is satisfied) and semicontinuous. We will define the maps $m^{\circ}: \mathcal{F} \to [0,1]$ and $m_{\circ}: \mathcal{F} \to [0,1]$ by the formulas: $$m^{\circ}(x) = \inf\{m^{+}(a), a \in \mathcal{A}^{+}, a \geq x\},$$ $m_{\circ}(x) = \sup\{m^{-}(b), b \in \mathcal{A}^{-}, b \leq x\}.$ The last step in our construction is the set $\mathcal{L} = \{x \in \mathcal{F}; \ m^{\circ}(x) = m_{\circ}(x)\}$. Later we will prove that $\mathcal{L} \supset \mathcal{S}(\mathcal{A})$ and $m^{\circ}/\mathcal{S}(\mathcal{A})$ is the proposed extension. Before the proof of the above mentioned theorem we will introduce some helpful lemmas. **LEMMA 1.** Let $a \in \mathcal{A}^+$, then $a^* \in \mathcal{A}^-$ and $m^+(a) + m^-(a^*) = 1$. Proof. Let $a \in \mathcal{A}^+$ and $(a_n)_n \subset \mathcal{A}$ such that $a_n \nearrow a$. Then $a^* \leq a_n^*$, $a^* \leq \bigwedge_n a_n^* = b$. Since $b \leq a_n^*$, $a_n \leq b^*$, we obtain $a = \bigvee_n a_n \leq b^*$, $b \leq a^*$. Then $a^* = \bigwedge_n a_n^*$ and $a^* \in \mathcal{A}^-$. By [3.5] we have $m(a_n)+m(a_n^*)=1$ for all $n\in\mathbb{N}$. Taking $n\to\infty$ we obtain $m^+(a)+m^-(a^*)=1$. **LEMMA 2.** The maps $m^{\circ} \colon \mathcal{F} \to [0,1]$ and $m_{\circ} \colon \mathcal{F} \to [0,1]$ have the following properties: - [i] they are extensions of m, - [ii] they are non-decreasing, - [iii] $m^{\circ}(y \ominus x) \leq m^{\circ}(y) m_{\circ}(x)$, for all $x, y \in \mathcal{F}$, $x \leq y$, - [iv] $m_o(y \ominus x) \ge m_o(y) m^o(x)$, for all $x, y \in \mathcal{F}$, $x \le y$, - [v] $m_{\circ}(x) \leq m^{\circ}(x)$, for all $x \in \mathcal{F}$. Proof. The first and second assertions follow from the definition of m° and m° . [iii] Let $x, y \in \mathcal{F}, b \ge y \ge x \ge a, a \in \mathcal{A}^-, b \in \mathcal{A}^+.$ #### THE MEASURE EXTENSION THEOREM ON MV σ -ALGEBRAS Then $y \ominus x \leq b \ominus a$ and [2.2] implies $b \ominus a \in \mathcal{A}^+$. From the definition of m° , m_{\circ} and [3.10] we obtain: $$m^{\circ}(y \ominus x) \leq m^{+}(b \ominus a) = m^{+}(b) - m^{-}(a),$$ $m^{\circ}(y \ominus x) \leq m^{\circ}(y) - m^{-}(a),$ $m^{-}(a) \leq m^{\circ}(y) - m^{\circ}(y \ominus x),$ $m_{\circ}(x) \leq m^{\circ}(y) - m^{\circ}(y \ominus x)$ and hence $m^{\circ}(y \ominus x) \leq m^{\circ}(y) - m_{\circ}(x).$ [iv] Let $x, y \in \mathcal{F}$, $x \leq y$, $x \leq a$, $a \in \mathcal{A}^+$, $b \leq y$, $b \in \mathcal{A}^-$. Then $y \ominus x \ge b \ominus x \ge b \ominus a$ and [2.2] implies $b \ominus a \in \mathcal{A}^-$. Analogously as in the proof of [iii], from definition of m° , m_{\circ} and [3.11] we obtain: $$m_{\circ}(y \ominus x) \ge m^{-}(b \ominus a) \ge m^{-}(b) - m^{+}(a)$$, $m_{\circ}(y \ominus x) \ge m_{\circ}(y) - m^{+}(a)$, $m^{+}(a) \ge m_{\circ}(y) - m_{\circ}(y \ominus x)$, $m^{\circ}(x) \ge m_{\circ}(y) - m_{\circ}(y \ominus x)$ and hence $m_{\circ}(y \ominus x) \ge m_{\circ}(y) - m^{\circ}(x)$. [v] Due to [3.10] it is easy to see that if $a \in \mathcal{A}^-$, $b \in \mathcal{A}^+$, $a \leq b$, then $m^-(a) \leq m^+(b)$. Let $x \in \mathcal{F}$ be such that $a \leq x \leq b$. Then $m_{\circ}(x) \leq m^{+}(b)$. Since b is an arbitrary element from \mathcal{A}^{+} such that $b \geq x$, we have $m_{\circ}(x) \leq m^{\circ}(x)$. The following three results can be proved by the same ways as the corresponding proofs in [3]: **Lemma 3.** Let $x \in \mathcal{L}$. Then $m^{\circ}(x) + m^{\circ}(x^*) = 1$. Proof. Take $a \in \mathcal{A}^+$, $a \geq x^*$. Then $a^* \in \mathcal{A}^-$, $a^* \leq x$. From the inequality $m_{\circ}(x) \geq m^-(a^*) = 1 - m^+(a)$ and $m_{\circ}(x) = m^{\circ}(x)$ for all $x \in \mathcal{L}$ it follows $m^{\circ}(x) + m^+(a) \geq 1$ for every $a \in \mathcal{A}^+$, $a \geq x^*$ and then $m^{\circ}(x) + m^{\circ}(x^*) \geq 1$. And now let $b \in \mathcal{A}^-$, $b \leq x$. Then $b^* \geq x^*$, $b^* \in \mathcal{A}^+$ and $m^+(b^*) \geq m^{\circ}(x^*)$. But then $1 \geq m^-(b) + m^{\circ}(x^*)$, hence $1 \geq m_{\circ}(x) + m^{\circ}(x^*) = m^{\circ}(x) + m^{\circ}(x^*)$. **LEMMA 4.** Let $x \in \mathcal{L}$. Then $x^* \in \mathcal{L}$. Proof. Take $a \in \mathcal{A}^+$, $a \ge x$. Then $a^* \in \mathcal{A}^-$, $a^* \le x^*$ and then $m^-(a^*) \le m_{\circ}(x^*)$, i.e., $1 - m^+(a) \le m_{\circ}(x^*)$, $1 \le m^+(a) + m_{\circ}(x^*)$. Because a is an arbitrary element from \mathcal{A}^+ , using [v] in Lemma 2 we have $1 \leq m^{\circ}(x) + m_{\circ}(x^*) \leq m^{\circ}(x) + m^{\circ}(x^*) = 1$. Therefore $m_{\circ}(x^*) = m^{\circ}(x^*)$, i.e., $x^* \in \mathcal{L}$. **LEMMA 5.** Let $x_n \in \mathcal{L}$, $x_n \nearrow x$ (or $x_n \searrow x$), $x \in \mathcal{F}$. Then $x \in \mathcal{L}$ and $m^{\circ}(x) = \lim_{n \to \infty} m^{\circ}(x_n)$. Proof. If $x_n \in \mathcal{L}$, then for every $\varepsilon > 0$ there exists $b_n \in \mathcal{A}^+$, $b_n \geq x_n$, such that for all $n \in \mathbb{N}$, $m^{\circ}(x_n) + \frac{\varepsilon}{2^n} > m^+(b_n)$. Take $u_n = \bigvee_{i=1}^n b_i$. Then $u_n \in \mathcal{A}^+$, $u_n \nearrow \bigvee_{n=1}^{\infty} u_n \geq \bigvee_{n=1}^{\infty} x_n = x$. Since m^+ is a valuation, it implies $$m^+(u_2) = m^+(b_1 \lor b_2) = m^+(b_1) + m^+(b_2) - m^+(b_1 \land b_2) \le$$ $\le m^+(b_1) + m^+(b_2) - m^\circ(x_1) < \frac{\varepsilon}{2} + \frac{\varepsilon}{4} + m^\circ(x_2).$ By induction we prove $m^+(u_n) < m^\circ(x_n) + \frac{\varepsilon}{2} + \frac{\varepsilon}{4} + \dots + \frac{\varepsilon}{2^n}$ and hence $m^\circ(x) \le m^+(\bigvee_{n=1}^\infty u_n) = \lim_{n\to\infty} m^+(u_n) \le \lim_{n\to\infty} m^\circ(x_n) + \sum_{n=1}^\infty \frac{\varepsilon}{2^n} = \lim_{n\to\infty} m^\circ(x_n) + \varepsilon$. Therefore $m^\circ(x) \le \lim_{n\to\infty} m^\circ(x_n)$. The opposite inequality follows, since m^* is non-decreasing. Further $m_{\circ}(x) \leq m^{\circ}(x) = \lim_{n \to \infty} m^{\circ}(x_n) = \lim_{n \to \infty} m_{\circ}(x_n) \leq m_{\circ}(x)$, hence $x \in \mathcal{L}$. And now we will prove the second part of Lemma 5. Let $x_n \searrow x$, $x_n \in \mathcal{L}$, $n \in \mathbb{N}$. Then $x_n^* \nearrow x^*$. As has been shown above $m^{\circ}(x^*) = \lim_{n \to \infty} m^{\circ}(x_n^*)$ and $x^* \in \mathcal{L}$. But then $x \in \mathcal{L}$ too and we can write: $$m^{\circ}(x) = 1 - m^{\circ}(x^{*}) = 1 - \lim_{n \to \infty} m^{\circ}(x_{n}^{*}) = 1 - \lim_{n \to \infty} (1 - m^{\circ}(x_{n})) = \lim_{n \to \infty} m^{\circ}(x_{n}).$$ **LEMMA 6.** Let \mathcal{A} be an MV subalgebra of a σ -continuous MV σ -algebra \mathcal{F} . Let $\mathcal{S}(\mathcal{A})$ be the MV σ -algebra generated by \mathcal{A} and $M(\mathcal{A})$ be the least monotone set over \mathcal{A} , i.e., $\mathcal{M}(\mathcal{A})$ be the least set over \mathcal{A} closed under the monotone sequences of \mathcal{A} . Then $\mathcal{S}(\mathcal{A}) = \mathcal{M}(\mathcal{A})$. Proof. Since $\mathcal{S}(\mathcal{A})$ is a monotone set, it is $\mathcal{M}(\mathcal{A}) \subset \mathcal{S}(\mathcal{A})$. It is necessary to prove that $\mathcal{M}(\mathcal{A})$ is an MV σ -subalgebra of \mathcal{F} . Let $x \in \mathcal{A}$. Put $\mathcal{G} = \{y \in \mathcal{M}(\mathcal{A}) \colon x \oplus y \in \mathcal{M}(\mathcal{A})\}$. Evidently $\mathcal{A} \subset \mathcal{G}$. \mathcal{G} is a monotone set, because if $y_n \in \mathcal{G}$ and $y_n \nearrow y$, then due to [2.3] $y_n \oplus x \nearrow y \oplus x$ which implies $y \oplus x \in \mathcal{M}(\mathcal{A})$ and so $y \in \mathcal{G}$. Therefore $\mathcal{M}(\mathcal{A}) \subset \mathcal{G}$. So, $x \oplus y \in \mathcal{M}(\mathcal{A})$ for all $y \in \mathcal{M}(\mathcal{A})$ and $x \in \mathcal{A}$. And now take $y \in \mathcal{M}(\mathcal{A})$ and put $\mathcal{K} = \{x \in \mathcal{M}(\mathcal{A}) \colon x \oplus y \in \mathcal{M}(\mathcal{A})\}$. $\mathcal{A} \in \mathcal{K}$. Let $x_n \in \mathcal{K}$ and $x_n \nearrow x$. Due to [2.3] $x_n \oplus y \nearrow x \oplus y$ and therefore $x \oplus y \in \mathcal{M}(\mathcal{A})$ which implies $x \in \mathcal{K}$. From this it follows that \mathcal{K} is a monotone set, $\mathcal{M}(\mathcal{A}) \subset \mathcal{K}$ and $x \oplus y \in \mathcal{M}(\mathcal{A})$ for every $x, y \in \mathcal{M}(\mathcal{A})$. ## THE MEASURE EXTENSION THEOREM ON MV σ -ALGEBRAS Similarly we can prove that if $x \in \mathcal{M}(\mathcal{A})$ then $x^* \in \mathcal{M}(\mathcal{A})$ too. As has been shown above, $\mathcal{M}(\mathcal{A})$ is closed with respect to \oplus and * for any $x, y \in \mathcal{M}(\mathcal{A})$. Since $x \odot y = (x^* \oplus y^*)^*$, $\mathcal{M}(\mathcal{A})$ is closed with respect to \odot too. We proved that $\mathcal{M}(\mathcal{A})$ is an MV σ -subalgebra of \mathcal{F} . Therefore $\mathcal{M}(\mathcal{A}) \supset \mathcal{S}(\mathcal{A})$. And now we can prove Theorem 1. 1. Existence. As shown above, $S(A) = \mathcal{M}(A) \subset \mathcal{L}$. Put $\mu = m^{\circ}/S(A)$. It is easy to see that μ has the property [3.1] and μ is non decreasing. According to Lemma 6 $y \ominus x \in S(A) \subset \mathcal{L}$ for any $x, y \in S(A)$ and $m^{\circ}(x) = m_{\circ}(x)$ holds on \mathcal{L} . By Lemma 2 for $x \leq y$ it holds: $$m^{\circ}(y \ominus x) \leq m^{\circ}(y) - m_{\circ}(x) = m_{\circ}(y) - m^{\circ}(x) \leq m_{\circ}(y \ominus x)$$. Therefore $\mu(y \ominus x) = \mu(y) - \mu(x)$ for any $x, y \in \mathcal{S}(\mathcal{A}), x \leq y$. According to Lemma 5 μ is upper continuous. Now we have to prove [3.10] for μ . Let for any $n \in \mathbb{N}$ x_n , $y_n \in \mathcal{S}(\mathcal{A})$ and $x_n \setminus x$ and $y_n \nearrow y$. By [2.2] $y_n \ominus x_n \nearrow y \ominus x$. Let $x \leq y$. Using the properties of μ which were mentioned above we can write: $$\lim_{n\to\infty} \mu(y_n\ominus x_n) = \mu(y\ominus x) = \mu(y) - \mu(x) = \lim_{n\to\infty} \mu(y_n) - \lim_{n\to\infty} \mu(x_n).$$ 2. Uniqueness. Let $\nu \colon \mathcal{S}(\mathcal{A}) \to [0,1]$ be a measure such that $\nu/\mathcal{A} = m$. Put $\mathcal{G} = \big\{ x \in \mathcal{S}(\mathcal{A}) \colon \mu(x) = \nu(x) \big\}$. Evidently $\mathcal{A} \subset \mathcal{G}$. But $\mathcal{G} \supset \mathcal{M}(\mathcal{A}) = \mathcal{S}(\mathcal{A})$ because \mathcal{G} is closed under limits of monotone sequences. Therefore $\nu(x) = \mu(x)$ for any $x \in \mathcal{S}(\mathcal{A})$. #### REFERENCES - CHANG, C. C.: Algebraic Analysis of Many Valued Logics, Trans. Amer. Math. Soc. 88 (1958), 467–490. - [2] CHOVANEC, F.: States and observables on MV algebras, Tatra Mountains Math. Publ. 3 (1994), 55-64. - [3] CHOVANEC, F.—KÔPKA, F.: On the extension of quantum logic states, Zeszyty Nauk. Akad. Ekon. w Poznaniu seria 1, 1992, 11–18. - [4] KÔPKA, F.—CHOVANEC, F.: D-posets, Math. Slovaca 44 (1994), 21-34. - [5] MUNDICI, D.: Interpretation of AF C*-Algebra in Lukasiewicz sentential calculus, J. Funct. Anal. 65 (1986), 15-53. - [6] PIASECKI, K.: Extension of fuzzy P-measure, Busefal 19 (1984), 26-41. - [7] RIEČAN, B.: The measure extension theorem for subadditive probability measures in orthomodular σ-continuous lattices, Comment. Math. Univ. Carolin. 20 (1979), 309–315. Received April 8, 1994 Military Academy Department of Mathematics SK-031 19 Liptovský Mikuláš SLOVAKIA