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BOOLEAN UNIVERSE VERSUS FUZZY SETS

PETER VOJTAS

ABSTRACT. We construct the universe of fuzzy sets in analogy with the Boolean
valued universe of set theory (with urelements, respectively) and we discuss their
connection for measure algebras. We define elements of £°° to be fuzzy reals as
counterpart of reals in the Boolean universe and investigate some notions and
operations. We note that both Boolean and fuzzy two valued sets and notions
coincide with those for classical sharp sets.

In many areas of mathematics and its applications multivalued logic and
multivalued objects have appeared. Besides fuzzy sets ([Z]) and fuzzy logic recall
at least Boolean valued universe of set-theoretical forcing constructions ([C, Sc,
So, Vo)), model theory and the use of multivalued logic in expert systems and
artificial intelligence (approximate reasoning and/or uncertain reasoning).

In this paper, we give first a brief review of the construction of Boolean valued
universe in set theory and we develop similar transfinite construction for real-
valued —i.e., fuzzy-sets. For Boolean algebras with measure there is a natural
translation of Boolean sets to fuzzy sets. Note that there are connections of
our presentation to the one which in different setting and motivation appeared
in [DMS] and [St] already. Moreover note, that our approach is not the one of
nonstandard analysis. Our standard reference source for set theory is [J] and for
fuzzy sets [M].

Construction of the Boolean valued universe of set theory. Assume
B to be a Boolean algebra. By U we denote the (possibly empty) set of urele-
ments. We think of Boolean valued universe as of a generalization of sharp sets
represented by 0, 1-valued characteristic functions. Here we take characteristic
functions taking values in a Boolean algebra B (with 0,1 represented as that
of B). Moreover in a typical case (mainly in applications) fuzziness appears
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just from a certain level on (say, e.g., by reals or sets of reals). That is why we
construct our universe from urelements (which are untouched by fuzziness, e.g.,
natural numbers or reals).

DEFINITION. For a Boolean algebra B and a set of urelements U we define
the Boolean valued universe VB(U) by transfinite induction:

1) v#(U)=U,
(2) VB, (U)={f: dom(f) CVE(U) and rng(f)C B},
(3) VE(W)= U VE(U) for A limit,

a<A

@ VEO)= U ViWU).

aceOn

Note that for main applications we do not work with whole VZ(U) defined
along all ordinals but it is enough to work with V}{i (U) or sometimes even just
with VE(U).

Recall from [J] the definition of Boolean truth value ||4|| 5, ¥ being a closed
formula or a formula with parameters from VZ(U). Up to this point note that
VEB(U) is a well-founded universe, i.e., to each f € VB(U) we can assign its
rank o, where « is the first step where f in transfinite construction occurred.
Note that h € dom(f) implies rank(h) < rank(f). Now assuming that values
for smaller ranks (in the lexicographical order of pairs of ordinals) are already
defined (for elements of U take classical 0,1 values) we define Boolean truth
values first for atomic and then for more complex formulas.

DEFINITION.
Ifeglls= D (IF=rlzrgh),
hedom(g)
lfCdlz= [J[ (FR)=lrecgls),
hedom(f)

for further logical connectives and quantifiers just develop the process using
appropriate Boolean operations, see [J].
OBSERVATION. For A C U the intersection of two f,g: A — B is defined
by

(FNg)(u) = Fu) Ag(u),
and the union by

(fUg)(u) = f(u)Vg(u).

Proof. Notice that fng fulfills the formula being an intersection of f and

g with Boolean value 1g. O

Construction of the fuzzy universe. Let [0,1] denote the unit interval.
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DEFINITION. For a set of urelements U we define the fuzzy universe F )
by transfinite induction:

(1) RU)=U,
(2) Farr(U) = {/: dom(f) C Fa(U) and mg(f) C [0,1]},

(3) FA(U)= U F.(U) for A limit,
a<A

(4) FU)= U Fa(U).
acOn

To analogize the definition of truth values we need to replace Boolean join
and union by some t-norm and its conorm. Nevertheless there is a problem that
in the definition of || ||z some— possibly infinite— joins and meets appeared.
We can try to overcome this for the countable case, where we define for a € {52,
IaIOO S 17

Tlg) = nh_}n;o T(ag,a1,...,a,), ifit exists.
For fuzzy sets taking uncountably many values, we can approximate them by
functions taking at most countably many values. A limit according to the net of
approximations, if it exists, could be used as an appropriate fuzzy truth value.
We will do this at some other place, here we use Boolean values translated by
some measure.

Boolean universe versus fuzzy sets. We interpret Boolean sets to fuzzy
sets, roughly speaking, along the transfinite construction in such a way that
whenever the value is = € B, the fuzzy target will have the value u(z).

DEFINITION. Assume p: B — [0,1] to be a measure on a Boolean algebra,
U to be the set of urelements. We define

iy: VE(U) — F(U)
by transfinite induction as follows
zeU=VP(U), thenput i,(z)==z

having defined i,|V2(U): VE(U) — F,(U), then for f € VE ((U) we define
i,(f) as follows ‘

dom (i, (f)) = {iu(h): h € dom(f)} C Fo(U)
Z,u(f) (Zu(h)) = U(f(h)) .

Note that it would be probably better to define
iw(f)(u(h) = n(llh € fllg),

but in this paper it makes no difference.

and
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NOTATION.
(1) From now on, elements of VB(U) will be denoted by 8. g8, ... and
elements of F(U) by fF,¢%,...

(2) Moreover, fix B being the algebra of Borel subsets of unit interval
factorized by the ideal of sets of measure zero.

OBSERVATION AND/OR EXAMPLE.

(1) Assume fF € F1(U) and U # 0, then there are at least 2Ro_many
different Boolean names f? such that i,(fB) = fF.

(2) As for any z,y € B

max (0, u(z) + p(y) — 1) < p(z Ay) < min(u(z), u(y)),

we get the same estimation for values of i,(fZ N g®) according to

values i,(f2) and i,(f®) (which clearly points to extremal t-norms
To and Teo of Frank’s family, see [F| and [M]).

This gives us the possibility to define the set of all possible fuzzy truth values
as a p-interpretation of the boolean truth values of all possible Boolean sources
of parameters involved.

DEFINITION. Assume f{,ff ..., fF € F(U) and 9 to be a statement. Then
the set TV(1/1( 2% PV )) of all fuzzy-Boolean supported-truth values is
defined to equal the set of all reals of the form ,u(”@!z(ng, P, ... ,gf)HB) where
g2 range through all objects with i,(g7 = ff')

This gives us a possibﬂity to define (Boolean supported ) fuzzy truth values

DEFINITION. Assume f{,ff,...,fF € F(U) and 9 to be a statement. Then
put

inf

lo(E, £ S = inf (TY QT £ D).

and
sup

[0 £ DT = sup(TV U A )
OBSERVATION. Assume z € U and f: A — [0,1] for some A C U, then

|z e 7 g =
= max(0, f7(2) +9"(2) — 1) = Too [z € 717, llz € 7117,

and

sup

e € £ 067 = min(f7 (@), 7(@) = To|le € 72 flo € aF2).
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Proof. In this case, we use the fact that we confined ourselves to the case
where p takes all values in [0, 1]. i

Note that according to [P], [STJ, [STV] and [U] we can discuss also other
structures as values of our many-valued universe (e.g., relational valued or lattice
valued sets) and then translate them to fuzzy sets according to some submeasure
or real valued evaluation of the structure.

Fuzzy reals and operations on them. We look for fuzzy reals as fuzzy
analogue (via 4, ) of Boolean reals and such which in the sharp case coincides
with classical reals. As both Boolean and fuzzy approach generalizes sharp sets
being 0 — 1-valued characteristic functions (and all we did up to now was consis-
tent with and coincided in classical, sharp case), we have to use a representation
of reals along this lines—these are reals in binary expansion.

Indeed, a real (we restrict ourselves to the unit interval with operations
modulo one) z = 0.g¢e1...6,... (where g; € {0,1}) can be identified with
f: N — {0,1}, where f(n) = e,, that is with the characteristic functions of
subsets of natural numbers. So it is natural to consider Boolean subsets of N
and fuzzy subsets of N.

DEFINITION. A function fZ € V;B(N) is said to be a Boolean real. A function
¥ € Fi(N) is said to be a fuzzy real.

To define sum (modulo 1) of Boolean and /or fuzzy reals we represent the sum
of two classical reals z = 0.epe1...€5,... and y = 0.6061...6, ... as a limit

lim (0.e0...,07 +0.6p...6;07)

11— 00

and recall the rule when digit 1 transfers to the left. For f2 € V;Z(N) we think
of fB(n) as of Boolean truth value of the statement that on the nth position
there is the digit 1, so here we have to transfer to the left the Boolean value
of the fact that two (or three, with the one already transfered from before) 1’s
appeared. Note that following algorithm coincides in the sharp case with the
classical one.

Let A denote the symmetric difference and n ={0,1,...,n — 1}.

ALGORITHM B. Let n € N and B, g2 € VZ(N). By induction through
i =0 to n—1 we construct r(¢) € B and (fZ + g®)(n — i) € B as follows:

step i = 0: (f2 +gB)(n—1) = fB(n—1) A gB(n—1);
r(0) = fB(n—-1)AgP(n—1),

step i+ 1: put j=n— (i+1) and fB(j) =a, ¢B(j) = b and (i) = c, then
(FP+9")(45) = (a=(bVe)) vV (b—(aVe)) V(c—(aVb)) V(aAbAc),
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these are the elements of B carrying information of one or three 1’s which should
be transferred to the left, and

r(i+1)=(aAbd)V(bAc)V(aAc),
this are elements of B carrying information of two or three digits 1.
OBSERVATION. For any fB, g% € VB(N) the limit lim (fB|n+g”®|n) exists
n—oo

(up to the fact that we work with one-to-one representation of reals, i.e., we do
not handle reals taken from a point on all values equal 1).

Proof. VB(N) is a Boolean model of ZFC, see [J]. O

For the fuzzy case, fix some t-norm 7', corresponding conorm S and sym-
metric difference Ar.

ALGORITHM F. Let n € N and fF, ¢ € Fi(N) and T be a fixed t-norm.
By induction through i = 0 to n — 1 we construct r(i) € [0,1] and (fF @r
g¥)(n —1i) € [0,1] as follows:
step i =0: (fF @rg")(n—1) = fF(n—-1)Argf(n—1), and
r(0) =T(fF(n~1),¢"(n-1)).
step i+ 1: Put j=n—(i4+1) and fF(j) =a, g"'(j) =b and r(i) = c, then
(fF @r ¢")() = S(z,y,u,v),

where = = T(a, 1—5(b, c)), Y= T(b, 1— S(a,c)), U= T(c, 1 - 5(a, b)) and
v=1T(a,b,c), and

r(i+1) = S(T(a,b),T(b,c), T(a,c)).
Recall that ¢y are sequences of reals with the limit equal to 0.

THEOREM. Assume that ¥, g € Fi(N)Ncy and T, is the smallest Archime-
dean t-norm. Then

lim (fF|n &, gFIn)
n—oo
exists (and we can put it equal to f¥ @1 g¥').

Proof. As lim fF(n) = lim g¥(n) =0 the new information that occurs
n—oo n—0o0

at in the last digit position, and which possibly transfers to the left, is (from a
point on) smaller than ¢ = 7 > 0. But then 7(0) = T(fF(n), gf(n)) = 0
and so the digits established in previous steps do not change anymore and
(fF @, gF)(n) = fF(n) + g¥(n) (the usual sum of reals). |

184



BOOLEAN UNIVERSE VERSUS FUZZY SETS

OBSERVATION. Assume that f8 € VB(N) is such that there is a P C B
which is a partition of unity in B which refines the matrix {{f?(n),—fB(n):
n € N}} consisting of elements of B. Then there are sharp reals {z,: A € P}
such that for every A € P, “fB = a:AHB =A.

Proof. For every A € P define ef = 1 if A < fB(n) and €2 = 0 if
A< —fB(n). Then |f® =08 ...en...| 5 =A. O

An analogue of this in fuzzy case is the following

OBSERVATION. Assume ff ¢ Fi(N) and £ = 0.9...€,... to be a classical
sharp real number. Denote f¥(n)° =1— f¥(n) and f¥(n)' = f¥(n). Then

7 =afp 2 1= (1~ F(m)),

n=0

and
sup .
|5 ==|, =inf{fF(n)":neN}.
We will finish our paper with a discussion on rational and/or irrational num-
bers. There are several possibilities to define a fuzzy real to be irrational.

Using previous theorem in Boolean case we have
“fB is irrational HB = \/ {A: z4 is irrational }

so we could try to do the same in the fuzzy case, but we should be careful because
of the following example.

EXAMPLE. Let ff(n) =1 for all n € N. Then there is no sharp real z with

HfF = a:”;lf > 0. On the other hand, for every sharp real z, ||fF = mHi;lp = %

For sharp reals in binary expansion to be rational also means to have just
finitely many 1’s—1i.e., the sum of digits is < co. So to generalize this to fuzzy

o0

case we can define a fuzzy real f¥ to be rational provided Y. f¥(n) < oo,
n=0

otherwise it is said to be irrational. So for an f¥ € ¢y we take the ideal

e ={XCN: Y f7(n) <1}.
nex

Then )
HfF has on X digits 0 H?f >1- Z fE(n).
neX
So in a sense for X infinite, with N\ X being infinite too, this says f is
irrational. These ideals are closely related to the structures in the following
theorem.
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THEOREM. ([V]) If p = cf(2%°), then the Boolean algebras RO(£ \ ¢!, <*)
and RO(P(N)/in,C*) are isomorphic.

In this paper, we tried to give some motivation, how using Boolean concepts

one can define corresponding (boolean supported) fuzzy concepts. We did not
formulate any problem, because there are many problems concerning relation-
ships and properties of all these new objects.
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