

COMPATIBILITY IN D-POSETS OF FUZZY SETS

FRANTIŠEK KÔPKA

ABSTRACT. In this paper the notion of compatibility in D-posets of fuzzy sets is introduced. Further the characterization of the finite compatible subsets of D-poset of fuzzy sets is given.

1. Introduction

In many structures of fuzzy sets, for example, in fuzzy measurable spaces introduced by Klement [8], soft σ -algebras introduced by Piasecki [15], F-quantum spaces introduced by Riečan [17], F-quantum posets introduced by Dvurečenskij and Chovanec [6], the original Zadeh [18] fuzzy connectives, which are induced by the partial ordering of fuzzy sets, are used.

There are a lot of systems of fuzzy sets, for example, fuzzy quantum logic introduced by Pykacz [16], fuzzy measurable spaces introduced by Butnariu [1] and Mesiar [13], T-measurable spaces introduced by Butnariu and Klement [2], h-fuzzy quantum logics and full fuzzy difference posets introduced by Mesiar [11], [12], in which the operations of fuzzy sets are defined by Gilles connectives [7], or they are introduced by means of t-conorms and t-norms.

Recently has appeared a new mathematical model, a D-poset of fuzzy sets or difference poset of fuzzy sets, introduced by author [9], in which a difference operation is a primary notion and, moreover, a difference of fuzzy sets has the same properties as the difference of crisp sets.

Some questions of the probability theory have been studied on D-posets of fuzzy sets (see [3], [4]). The aim of this paper is to study a compatibility in D-posets of fuzzy sets, which is a useful notion from the mathematical point of view and, on the other hand, it has its own physical meaning. Compatible pairs play an important role in the axiomatics of D-posets of fuzzy sets theories, since they represent simultaneously verifiable events.

AMS Subject Classification (1991): 03G12, 81P10. Key words: D-poset of fuzzy sets, quantum logic, compatibility.

Though the compatibility of a finite set of elements in a quantum logic means that they belong to the same Boolean sublogic [14], in general, we cannot say anything similar about the existence of such a Boolean subalgebra in the case of D-posets of fuzzy sets, which enable a new look at the compatibility.

We note that there is a generalization of D-posets of fuzzy sets on any partially ordered set, a D-poset, introduced by the author and F. Chovanec [10]. D-posets generalize, for example, quantum logics, orthoalgebras, the set of efects, MV algebras.

2. D-posets of fuzzy sets

A *D*-poset of fuzzy sets [9] is a partially ordered set $\mathcal{F} \subseteq [0,1]^X$ with a partial ordering \leq , a greatest element 1(x) = 1 for every $x \in X$ and with a partial binary operation $\sim : \mathcal{F} \times \mathcal{F} \to \mathcal{F}$, called a difference, such that, for $f, g \in \mathcal{F}$, $g \setminus f$ is defined if and only if $f \leq g$, and for \sim the following axioms hold for $f, g, h \in \mathcal{F}$:

- (1) $g \setminus f \leq g$,
- (2) $g \setminus (g \setminus f) = f$,
- (3) if $f \le g \le h$, then $h \setminus g \le h \setminus f$ and $(h \setminus f) \setminus (h \setminus g) = g \setminus f$.

The following statements have been proved in [10].

PROPOSITION 1. Let f, g, h, d be the elements of a D-poset of fuzzy sets \mathcal{F} . Then

- (i) $1 \setminus 1$ is the least element of \mathcal{F} ; denote it by 0.
- (ii) $f \setminus 0 = f$.
- (iii) $f \setminus f = 0$.
- (iv) If $f \leq g$, then $g \setminus f = 0$ if and only if g = f.
- (v) If $f \leq g$, then $g \setminus f = g$ if and only if f = 0.
- (vi) If $f \le g \le h$, then $g \setminus f \le h \setminus f$ and $(h \setminus f) \setminus (g \setminus f) = h \setminus g$.
- (vii) If $g \le h$ and $f \le h \setminus g$, then $(h \setminus g) \setminus f = (h \setminus f) \setminus g$.
- (viii) If $f \leq g \leq h$, then $f \leq h \setminus (g \setminus f)$ and $(h \setminus (g \setminus f)) \setminus f = h \setminus g$.
 - (ix) If $f \le h$ and $g \le h$, then $h \setminus f = h \setminus g$ if and only if f = g.
 - (x) If $d \le f \le h$, $d \le g \le h$, then $h \setminus f = g \setminus d$ if and only if $h \setminus g = f \setminus d$.

3. \bigoplus -orthogonal systems of fuzzy sets

Let $\mathcal F$ be a D-poset of fuzzy sets. We put $f^{\perp}:=1\smallsetminus f$ for any $f\in\mathcal F$. Then the unary operation \perp on $\mathcal F$ has the following properties: (i) $(f^{\perp})^{\perp}=f$; (ii) if $f\leq g$ then $g^{\perp}\leq f^{\perp}$.

We say that two fuzzy sets f and g are *orthogonal*, and write $f \perp g$, if $f \leq g^{\perp}$ (or equivalently $g \leq f^{\perp}$). For orthogonal fuzzy sets f and g we define their sum as follows:

$$f \oplus g := (g^{\perp} \setminus f)^{\perp}.$$

The partial binary operation \oplus on \mathcal{F} is commutative and associative (see [5]). It is not difficult to verify that the sum of orthogonal fuzzy sets has the following properties:

PROPOSITION 2. Let \mathcal{F} be a D-poset of fuzzy sets.

- (1) If $f \leq g^{\perp}$ then $f \leq f \oplus g$ and $g \leq f \oplus g$;
- (2) If $f \leq g^{\perp}$ then $(f \oplus g) \setminus f = g$ and $(f \oplus g) \setminus g = f$;
- (3) If $f, g, h \in \mathcal{F}$, $f \leq g \leq h$, then there exists $(h \setminus g) \oplus (g \setminus f)$ in \mathcal{F} and $(h \setminus g) \oplus (g \setminus f) = h \setminus f$.

Let $F = \{f_1, \ldots, f_n\}$ be a finite sequence of \mathcal{F} . According to [5], recursively we define for $n \geq 3$

$$f_1 \oplus \cdots \oplus f_n := (f_1 \oplus \cdots \oplus f_{n-1}) \oplus f_n$$

supposing that $f_1 \oplus \cdots \oplus f_{n-1}$ and $(f_1 \oplus \cdots \oplus f_{n-1}) \oplus f_n$ exist in \mathcal{F} . Definitorically we put $f_1 \oplus \cdots \oplus f_n := f_1$ if n = 1, and $f_1 \oplus \cdots \oplus f_n := 0$ if n = 0. Then for any permutation (i_1, \ldots, i_n) of $(1, \ldots, n)$ and any k with $1 \leq k \leq n$ we have

$$f_1 \oplus \cdots \oplus f_n = f_{i_1} \oplus \cdots \oplus f_{i_n},$$

$$f_1 \oplus \cdots \oplus f_n = (f_1 \oplus \cdots \oplus f_k) \oplus (f_{k+1} \oplus \cdots \oplus f_n).$$

Let \mathcal{F} be a D-poset of fuzzy sets. We say that a finite system $F = \{f_1, \dots, f_n\}$ of \mathcal{F} is \oplus -orthogonal iff $f_1 \oplus \dots \oplus f_n$ exists in \mathcal{F} and write $f_1 \oplus \dots \oplus f_n = \bigoplus_{i=1}^n f_i$. An arbitrary system G of \mathcal{F} is \oplus -orthogonal if every finite subsystem F of G is \oplus -orthogonal.

4. Compatibility in D-posets of fuzzy sets

In this section we give the definition of compatibility of two fuzzy sets and the definition of a compatible subset of D-poset of fuzzy sets.

DEFINITION 1. Let \mathcal{F} be a D-poset of fuzzy sets. We say that two fuzzy sets $f,g\in\mathcal{F}$ are compatible (in \mathcal{F}) if there exist such fuzzy sets $u,v\in\mathcal{F}$ that $v\leq f\leq u,\ v\leq g\leq u$ and $u\smallsetminus f=g\smallsetminus v$. We write $f\leftrightarrow g$.

The definition of compatibility of two elements is correct by the Proposition 1, statement (x).

PROPOSITION 3. Let \mathcal{F} be a D-poset of fuzzy sets.

- (i) If $f \leq g$, then $f \leftrightarrow g$.
- (ii) If f, g, h are elements of \mathcal{F} , $f \leq h$, $g \leq h \setminus f$ then $f \leftrightarrow g$.

Proof.

- (i) It suffices to put u=g and v=f. Then $u \smallsetminus f = g \smallsetminus f = g \smallsetminus v$.
- (ii) From $f \leq h$ and $g \leq h \setminus f$ we get $f = h \setminus (h \setminus f) \leq h \setminus ((h \setminus f) \setminus g),$ $g = h \setminus (h \setminus g) \leq h \setminus (h \setminus g) \setminus f = h \setminus ((h \setminus f) \setminus g).$

We put $u = h \setminus ((h \setminus f) \setminus g)$ and v = 0. Then

$$u \smallsetminus f = \big[h \smallsetminus \big((h \smallsetminus f) \smallsetminus g\big)\big] \smallsetminus f = (h \smallsetminus f) \smallsetminus \big((h \smallsetminus f) \smallsetminus g\big) = g = g \smallsetminus 0.$$

THEOREM 1. Let \mathcal{F} be a D-poset of fuzzy sets and let $f, g \in \mathcal{F}$. Then the following four assertions are equivalent.

- 1) There exist $u, v \in \mathcal{F}$, $v \leq f \leq u$, $v \leq g \leq u$ such that $u \setminus f = g \setminus v$.
- 2) There exists $u \in \mathcal{F}$, $f \leq u$, $g \leq u$ such that $u \setminus f \leq g$, $u \setminus g \leq f$, respectively.
- 3) There exists $v \in \mathcal{F}$, $v \leq f$, $v \leq g$ such that $g \setminus v \leq 1 \setminus f$, $f \setminus v \leq 1 \setminus g$, respectively.
- 4) There exists \oplus -orthogonal triplet $\{f_1, g_1, h_1\}$ of fuzzy sets from \mathcal{F} , such that $f = f_1 \oplus h_1$, $g = g_1 \oplus h_1$.

Proof. Let the assertion 1) hold, then the assertion 2) is evident. Let us suppose that the assertion 2) is true, i.e., there exists $u \in \mathcal{F}, \ f \leq u, g \leq u$ and $u \setminus g \leq f$. Then

$$f \smallsetminus (u \smallsetminus g) = \left(u \smallsetminus (u \smallsetminus f)\right) \smallsetminus (u \smallsetminus g) = \left(u \smallsetminus (u \smallsetminus g)\right) \smallsetminus (u \smallsetminus f) = g \smallsetminus (u \smallsetminus f) \,.$$

Put $v = f \setminus (u \setminus g) = g \setminus (u \setminus f)$. Then $v \le f$, $v \le g$ and $g \setminus v = g \setminus (g \setminus (u \setminus f)) = u \setminus f \le 1 \setminus f$. The assertion 3) is proved.

COMPATIBILITY IN D-POSETS OF FUZZY SETS

Let there exist $v \in \mathcal{F}, \ v \leq f, \ v \leq g$ such that $g \setminus v \leq 1 \setminus f$, and $f \setminus v \leq 1 \setminus g$, respectively. Then

$$(1 \setminus g) \setminus (f \setminus v) = (1 \setminus g) \setminus [(1 \setminus v) \setminus (1 \setminus f)]$$

$$= (1 \setminus g) \setminus [((1 \setminus v) \setminus (g \setminus v)) \setminus ((1 \setminus f) \setminus (g \setminus v))]$$

$$= (1 \setminus g) \setminus [(1 \setminus g) \setminus ((1 \setminus f) \setminus (g \setminus v))]$$

$$= (1 \setminus f) \setminus (g \setminus v).$$

We put $u = 1 \setminus [(1 \setminus f) \setminus (g \setminus v)] = 1 \setminus [(1 \setminus g) \setminus (f \setminus v)]$. Then $1 \setminus f \ge (1 \setminus f) \setminus (g \setminus v)$ and so $f \le 1 \setminus [(1 \setminus f) \setminus (g \setminus v)] = u$. The proof of the inequality $g \le u$ is similar.

Then we have

$$u \smallsetminus f = \left[1 \smallsetminus \left((1 \smallsetminus f) \smallsetminus (g \smallsetminus v)\right)\right] \smallsetminus f = (1 \smallsetminus f) \smallsetminus \left[(1 \smallsetminus f) \smallsetminus (g \smallsetminus v)\right] = g \smallsetminus v\,,$$
 and

$$u \setminus g = [1 \setminus ((1 \setminus g) \setminus (f \setminus g))] \setminus g = (1 \setminus g) \setminus [(1 \setminus g) \setminus (f \setminus g)] = f \setminus g,$$

i.e., 1) is true. We have just shown the equivalency of assertions 1)-3).

Finally we prove the equivalence of the assertion 1) with the assertion 4). Let the assertion 4) hold. We put $u = f_1 \oplus g_1 \oplus h_1$ and $v = h_1$. Then

$$u \ge f, g, \quad v = h_1 = g \setminus g_1 \le g, \quad v = h_1 = f \setminus f_1 \le f,$$

and

$$u \setminus f = u \setminus (f_1 \oplus h_1) = g_1 = g \setminus h_1 = g \setminus v$$
.

Now let there exist $v, u \in \mathcal{F}, \ v \leq f, \ g \leq u$ such that $u \setminus g = f \setminus v$ and $u \setminus f = g \setminus v$, respectively. Put

$$f_1 = f \setminus v = u \setminus g$$
, $g_1 = g \setminus v = u \setminus f$, $h_1 = v$.

Then

$$f = (f \setminus v) \oplus v = f_1 \oplus h_1$$
 and $g = (g \setminus v) \oplus v = g_1 \oplus h_1$.

The \oplus -orthogonality of triplet $\{f_1, g_1, h_1\}$ is evident.

DEFINITION 2. Let \mathcal{F} be a D-poset of fuzzy sets. We say that the finite subset $F = \{f_1, f_2, \ldots, f_n\} \subseteq \mathcal{F}$ is *compatible* (in \mathcal{F}) if there exists a \oplus -orthogonal system G of elements of \mathcal{F} , $G = \{g_t, t \in T\}$, such that $f_i = \oplus \{g_t; t \in T_i\}$, where T_i is a finite subset of T, for every $i = 1, \ldots, n$.

An arbitrary subset $E \subseteq \mathcal{F}$ is compatible (in \mathcal{F}) if every finite subset of E is compatible (in \mathcal{F}).

If we consider pairs in \mathcal{F} , our "general" definition, Definition 2, agrees with Definition 1.

A D-poset ([10]) is a partially ordered set P with a partial ordering \leq , maximal element 1, and with a partial binary operation \sim : $P \times P \rightarrow P$, called a difference, such that, for $a,b \in P$, $b \sim a$ is defined if and only if $a \leq b$, where the following axioms hold for $a,b,c \in P$: (i) $b \sim a \leq b$; (ii) $b \sim (b \sim a) = a$; (iii) $a \leq b \leq c \Rightarrow c \sim b \leq c \sim a$ and $(c \sim a) \sim (c \sim b) = b \sim a$.

If \mathcal{B} is a Boolean algebra and $a, b \in \mathcal{B}$, $a \leq b$, then $b \setminus a := b \wedge a^{\perp}$ is a difference on \mathcal{B} , hence \mathcal{B} is a D-poset.

Let P_1 and P_2 be two D-posets. According to [10] we say that a mapping $w: P_1 \to P_2$ is a morphism if $w(1_{P_1}) = 1_{P_2}$, $a, b \in P_1$, $a \leq b$, implies $w(a) \leq w(b)$ and $w(b \setminus a) = w(b) \setminus w(a)$.

LEMMA 1. Let \mathcal{F}_1 , \mathcal{F}_2 be two D-posets of fuzzy sets. Let $w: \mathcal{F}_1 \to \mathcal{F}_2$ be a morphism. Let F be a \oplus -orthogonal system of \mathcal{F}_1 . Then w(F) is an \oplus -orthogonal system of \mathcal{F}_2 .

P r o o f. By the definition of the operation \oplus we have

$$w(f \oplus g) = w[1 \setminus ((1 \setminus f) \setminus g)] = w(1) \setminus [(w(1) \setminus w(f)) \setminus w(g)] = 1 \setminus [(1 \setminus w(f)) \setminus w(g)] = w(f) \oplus w(g).$$

Let $G = \{w(f_1), \ldots w(f_n), f_1, \ldots f_n \in F\}$ be an arbitrary finite system of w(F). Then, by previous, there exists $w(f_1 \oplus \cdots \oplus f_n) = w(f_1) \oplus \ldots w(f_n)$ in \mathcal{F}_2 . Hence the system w(F) is \oplus -orthogonal.

The previous Lemma implies the following theorem.

THEOREM 2. Let \mathcal{F}_1 , \mathcal{F}_2 be two D-posets of fuzzy sets. Let $w: \mathcal{F}_1 \to \mathcal{F}_2$ be a morphism. Let $F \subseteq \mathcal{F}_1$ be a compatible subset of fuzzy sets of \mathcal{F}_1 . Then w(F) is a compatible subset of fuzzy sets of \mathcal{F}_2 .

The following theorem deals with the characterization of finite compatible subsets of D–poset of fuzzy sets.

THEOREM 3. Let \mathcal{F} be a D-poset of fuzzy sets. The finite subset $F = \{a_1, \ldots, a_n\} \subseteq \mathcal{F}$ is compatible if and only if there exist a Boolean algebra \mathcal{B} and morphism $w \colon \mathcal{B} \to \mathcal{F}$ such that $F \subseteq w(\mathcal{B})$.

Proof. Let \mathcal{B} be a Boolean algebra, $w \colon \mathcal{B} \to \mathcal{F}$ is a morphism and $F \subseteq w(\mathcal{B})$. Let $C = \{b_1, \ldots, b_n\} \subseteq \mathcal{B}$ be a subset of elements of \mathcal{B} such that $w(b_i) = a_i$ for every $i = 1, \ldots, n$. Denote $\bigvee B = b_{B_1} \vee \cdots \vee b_{B_k}$, and $\bigwedge B = b_{B_1} \wedge \cdots \wedge b_{B_k}$ for every $B = \{b_{B_1}, \ldots, b_{B_k}\} \subseteq C$, $2 \le k \le n$.

If k = 1 then $\bigvee B = \bigwedge B = b_{B_1}$, if k = 0 then $\bigvee B = 0_{\mathcal{B}}$ and $\bigwedge B = 1_{\mathcal{B}}$. Then in the system G_C of \mathcal{B}

$$G_C = \{d_B = (\bigwedge B) \land [\bigvee (C \setminus B)]^{\perp}, \ B \subseteq C\}$$

COMPATIBILITY IN D-POSETS OF FUZZY SETS

the following conditions are satisfied:

- (i) $d_B \leq b_i$ for every $b_i \in B$;
- (ii) $d_B \perp b_j$ for every $b_i \in C$, $b_i \notin B$;
- (iii) $b_i = \bigvee \{d_B, B \subseteq C, b_i \in B\}, i = 1, \dots, n.$

Therefore the system G_C is the system of mutually orthogonal elements. Since the operation \oplus in \mathcal{B} is identical with the operation \vee , G_C is \oplus -orthogonal system. The morphism properties imply \oplus -orthogonality of $G=w(G_C)$, and further

$$a_i = w(b_i) = w(\bigvee \{d_B, B \subseteq C, b_i \in B\}) = \bigoplus \{w(d_B), B \subseteq C, b_i \in B\},\ i = 1, ..., n.$$

Conversely, suppose that $F \subseteq \mathcal{F}$ is a compatible set, i.e., there exists a \oplus -orthogonal system G of elements of \mathcal{F} , $G = \{g_t; t \in T\}$, such that $a_i = \oplus \{g_t; t \in T_i\}$, where T_i is a finite subset of T, $i = 1, \ldots, n$.

Denote $S = \bigcup_{i=1}^{n} T_i$ and $h = \bigoplus \{g_t; t \in S\}$. Let \mathcal{B} be the algebra of all subsets of the set $\{g_t; t \in S\} \cup \{1 \setminus h\}$. The map $w : \mathcal{B} \to \mathcal{F}$ such that

- (i) $w(\lbrace g_t \rbrace) = g_t$, for every $t \in S$;
- (ii) $w(\{1 \setminus h\}) = 1 \setminus h;$
- (iii) $w(B) = \bigoplus \{w(\{b\}); b \in B\}$ for every $\in \mathcal{B}$ is the morphism. Further it holds

$$w(\{g_t; t \in T_i\}) = \bigoplus \{w(\{g_t\}); t \in T_i\} = \bigoplus \{g_t; t \in T_i\} = a_i$$

for every i = 1, ..., n. Hence $F \subseteq w(\mathcal{B})$.

REFERENCES

- BUTNARIU, D.: Fuzzy measurability and integrability, J. Math. Anal. Appl. 117 (1986), 385–410.
- [2] BUTNARIU, D.—KLEMENT, E. P.: Triangular norms and some applications to measure and game theory, in: Fuzzy Approach to Reasoning and Decesion-Making, Academia, Praha, 1992, pp. 89–105.
- [3] CHOVANEC, F.—JUREČKOVÁ, M.: Law of large numbers on D-posets of fuzzy sets, Tatra Mountains Math. Publ. 1 (1992), 15-19.
- [4] CHOVANEC, F.—KÔPKA, F.: On a representation of observables in D-posets of fuzzy sets, Tatra Mountains Math. Publ. 1 (1992), 19-25.
- [5] DVUREČENSKIJ, A.: Tensor product of difference posets, Trans. Amer. Math. Soc. (to appear).
- [6] DVUREČENSKIJ, A.—CHOVANEC, F.: Fuzzy quantum spaces and compatibility, Internat. J. Theoret. Phys. 27 (1988), 1069–1082.

- [7] GILES, R.: Lukasiewicz Logic and fuzzy set theory, Internat. J. Man-machine Stud. 81 (1976), 83-89.
- [8] KLEMENT, E. P.: Fuzzy σ -algebras and fuzzy measurable functions, Fuzzy Sets and Systems 4 (1980), 83–93.
- [9] KÔPKA, F.: D-posets of fuzzy sets, Tatra Mountains Math. Publ. 1 (1992), 83-89.
- [10] KÔPKA, F.—CHOVANEC, F.: D-posets, Math. Slovaca 44 (1994), 21-34.
- [11] MESIAR, R.: h-fuzzy quantum logics, Internat. J. Theoret. Phys. 33 (1994), 1417–1425.
- [12] MESIAR, R.: Fuzzy diference posets and MV algebras (to appear).
- [13] MESIAR, R.: Fuzzy measurable functions (to appear).
- [14] NEUBRUNN, T.—PULMANNOVÁ, S.: On Compatibility in Quantum Logics, Acta Math. Univ. Comenian. XLII-XLIII (1983), 153–168.
- [15] PIASECKI, K.: On the Bayes formula for fuzzy probability measures, Fuzzy Sets and Systems 18 (1986), 183–185.
- [16] PYKACZ, J.: Probability measures in the fuzzy set approach to quantum logics, in: Proc. of the First Winter School on Measure Theory, Liptovský Ján, 1988, pp. 124–128.
- [17] RIEČAN, B.: A new approach to some notions of statistical quantum mechanics, BUSE-FAL 35 (1988), 4-6.
- [18] ZADEH, L. A.: Fuzzy sets, Inform. and Control 8 (1965), 338-353.

Received March 30, 1994

Military Academy Dept. of Mathematics SK-03119 Liptovský Mikuláš SLOVAKIA