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THE DIFFERENCE POSET OF
MONOTONE FUNCTIONS

JURGEN FLACHSMEYER

ABSTRACT. The finite chains are the simplest ordered structures which can be
organized into a difference poset (D-poset). But even in easy cases the set of
all monotone functions from one chain into another endowed with the pointwise
order will not carry any difference structure. If one sharpens the pointwise order
to the monotone difference order, the monotone functions from one D—poset into
another D-poset again form a D—poset.

1. Ideals and cartesian products of D—posets

Kopka and Chovanec [4] have introduced the notion of a difference
poset (D—poset). Soon it became clear that this influenced a fruitful investigation

(e-g., [1], [2], [5], [6])-
We assume a D-poset to be a mathematical object of the following kind

D = (D,S,O,—):

1. (D, <,0) is a partial ordered set (poset) with the smallest element 0.
2. — is a partial defined binary operation on D such that the following
conditions are satisfied:
(i) b—a is defined iff a < b.
(i) a—0=a forall ae D.
(i) For all a < b it always holds b—a < b and b— (b—a) = a.
(iv) For a < b < c it always holds b—a = (c —a) — (c — b).
Remark. We do not assume that there must be a greatest element—a
so-called order unit 1. (For such generalized difference posets see [3] or the
RI-posets of Kalmbach and Rie¢anov4).
(N, <,0,—) —the chain of natural numbers with respect to the natural order
and natural difference structure is a D—poset.
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The following facts can be easily seen.

PROPOSITION 1. Let D = (D, <,0,—) be a D-poset and I an order ideal of
(D,<), i.e., I is a non-empty inductive subset of D:

z<yel = xel.

Then I = (I,<,0,—) with respect to the induced order and the difference is a
D-—poset.

PROPOSITION 2. Let (Dy)aca be any family of D-posets. Then the cartesian
product [] D, with respect to the coordinatewise order and coordinatewise

aEA
operation is a D—poset, too. This will be called the cartesian product D =

1] Do of the family.
a€A

EXAMPLES.
1.1. Each finite chain is order-isomorphic to an ideal of the D—poset IN . Thus
it is a D—poset with a unit. (For the unicity of the difference structure see [6]).

1.2. The non-isomorphic order ideals of the cartesian product of a two-element
chain and a 3-element chain with itself are listed in Figure 1.

chain product possible proper ideals

D, I D;? ‘<> ° a\@
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FicURE 1. Table for examples 1.2.
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1.3. The subset X (see Fig. 2) of the product D52 is not an ideal in D,?,
but it can be organized into a suitable D—poset having b —a = a = ¢ — a,
b—b=c—c=a—a=0.

1.4. The product D;? of the two-element chain carries the D-structure of
the Boolean algebra 22 but it can be organized also into another D-—poset which
is not Boolean, namely, we put 1 —a =:a, 1 — b =: b. Thus the 4-point lattice
D;? is the smallest poset with two non-isomorphic D-poset structures!

1.5. The subset Y (see Fig. 2) of the product D;® is not an ideal in this
product but it can also carry two non-isomorphic difference structures, namely,
1 —z = z for all three atoms a, b, ¢ or only for one atom, e.g., * = a and,
furthermore, 1 —b=¢c, 1 —c=2b.
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FIGURE 2. Concerning examples 1.3, 1.5.

2. Monotone functions on D—posets

Let D; and D; be two given D-posets. By Mon(D;, D) we understand
the set of all monotone functions from D; into D5, ie., f € Mon(Dy, Ds) <
[+ D1 — Dy which leaves the order invariant, thus flz) < f(y) forall z <y
in _D1 .

EXAMPLES 2.1. For the chains D; :, Dy : of two resp. three elements the set
Mon(Dy, D5) has a table of elements given in Fig. 3.

With respect to the pointwise order it gives the shown Hasse diagram (see
Fig. 3). This poset cannot be equipped with any difference structure such that
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FIGURE 3. Lattice of monotone functions
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it would be a D—poset. Namely, for a < b < d and a < ¢ < d it should be
d—a>d—b,d—a>d—c.Ifd—a=band d—b=a there must be d—c=a
but for the tripes 0 < ¢ < d it hastobe c—0=(d—0) —(d—c)=d—a=b,
which is a contradiction.

By this argumentation we have seen that the poset [ (see Fig. 3) cannot carry
any difference structure. This and it dual are the smallest possible examples of
this kind (an example with 7 points has been given in [6]).

2.2. The D-posets D1, D of Fig. 4 have the poset Mon(D1, D5) with the
following table of monotone functions and the given Hasse diagram with respect
to its pointwise order.

0 010

—R|IOoO| O[O0 |O
el Rl Ral E=R K= R
—l=lOo|l~|lOo|T

Mon Dl,l;\

FIGURE 4. Another lattice of monotone functions.

But this ordered set cannot carry any difference structure, either.

Now we consider some special monotone functions for D-posets which pre-
serve all of the D—structure. Thus a function f: D; — D, from D1 into Ds
has to be called a D-morphism, i.e., f is a D-morphism = 1. f is monotone,
2. f(0) =0, 3. f is subtractive:

flz—y)=f(z)— f(y) forall z<yeD;.
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EXAMPLES. 2.3. A finite chain D with at least 3 elements has only the trivial
2-valued D—-morphism f = 0. Namely, let D = {0, 1, .yn}, m > 2. Then, for
2€D, f(2) - f(1) = f(2—1) = f(1). Thus f(1) =0 and therefore f(2) =0.
By induction one gets for every « € D the value f(z) = 0.

2.4. A chain D-poset D (abbreviated by D-chain) may have a non-trivial
2-valued D-morphism. It is not clear yet which chains can be made into a
D-—chain. The existence of a non-trivial 2-valued D-morphism on a D-chain is
equivalent to the following property: There exists a decomposition D = (I, I;)
into Io(# () —the set of “small points”, and I ( () — the set of “large points”,
Il =D \ I[), for which

(1) Io is an order ideal (a inductive set: [y 3z >y = y € Ip).
(2) I is an anti-order ideal (; Dy <z = z € Iy).

(8) ze€l and ye Iy = z—yc I (the difference of a large point and
a small point is big).

(4) z€handyel withz>y = z—yel, (the difference of large
points is always small).

For the wanted D-morphism one has only to take I, as the kernel. The
decomposition property occurs for example in the following chain.

C=1,Ul;, where IO:{(O,n);nEN}, Ilz{(l,n);nEN},

with the order

(0,n) < (0,m) <= n <m,
(I,n) < (1,m) <= n>m,
(0,n) < (1,m) for every n,m € N.

The difference is as follows
(0,m) — (0,n) = (0,m — n) for m>n,
(1,m) —(0,k) = (1,m + k) for arbitrary m, k&,
(1,m) —(1,n) = (0,n — m) for n>m.
(é{in’c: The construction of IyUI; is a specialization of an embedding procedure
of

general D—poset into a D—poset with unit given by J. Hedlikov4 and
S. Pulmannovi [3].

Remark. On a D-poset D each pair z,y with = — y = y belongs to the
kernel of each 2-valued D-morphism f, i.e., f(z) = f(y) = 0.
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3. The monotone difference order

By examples 2.1. and 2.2. it becomes clear that we have to look for another
suitable order in Mon(D;, Ds) for D-posets D1, Dy. The following sharpening
of the pointwise order will be referred to as the monotone difference order in
Mon(D1, D5):

1. f<g pointwise and

< D —
fSmg { 2. g—f is monotone.

Hence we get the

THEOREM.

1. Let Dy, Dy be two D-posets. The monotone difference order in the set
Mon(D;, D) of all monotone functions from D, into Dy makes it into a
D-poset with the zero-element f =0 and the pointwise difference.

2. The D-poset Mon(Dy, D5) has a greatest element iff (D; has only one
element and Dy has a unit element) or (D has only one element).

Proof. 1. For two given functions f, g from D; into D, the pointwise
difference g — f is defined only in the case of f <, g and g — f has to be
monotone to ensure g — f € Mon(Dy, D5).

2. If there is a unit in Mon(Dy, D3), then this function is greater than any
constant function. This concludes that D, has a unit 1 and f = 1 has to be the
function unit. If card Dy > 2, then the function g with g(0) =0, g(z) =1 for
all z # 0 is different from f.But f—g is not monotone. Therefore card D; = 1.

Now we show some examplesof Mon(D;, D5) with monotone difference order
and also Hom(D;, D3), whereby the latter means the set of all D-morphisms
from D, into D, .

Domain| Range Mon(X,Y)

X Y | pointwise order / monotone differerice order

| <>
/N

Jil B

J,
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Domain

Range

Mon(X,Y)

X

Y

pointwise order| monotone difference order

i N
% %
¢ | %
3N
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