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ABSTRACT. We establish a new representation theory for bounded lattices,
which generalizes the well known Priestley duality. Our basic tool is the concept
of a maximal partial homomorphism.

There exist several representation theories for lattices. Out of these Priestley
duality for bounded distributive lattices (cf. [4]) is well known. This duality
is natural in the sense of B. A. Davey and H. Werner ([1]). For obvious
reasons, it is impossible to build a natural duality for the variety of all bounded
lattices. In our representation we try to preserve as much from the natural
dualities theory as possible. ;

Our theory has common points with other representation theories for lattices.
It is especially close to A. Urquhart’s theory developed in [5]. In fact, in both
cases the dual spaces have the same elements and the same topology, but they
differ in relational structure. Qur choice of relational structure seems to be the
most natural from the point of view of natural dualities.

1. The representation theorem

We work with bounded lattices as algebras of the signature (2,2,0,0). A partial
map f: L — Lo between bounded lattices is called a partial homomorphism if
its domain dom(f) is a 0, 1-sublattice of L; and the restriction f [ dom(f) is
a bounded lattice homomorphism. A partial homomorphism is called mazimal
(MPH, for short), if there is no partial homomorphism properly extending it.
Let us notice that by Zorn’s lemma, every homomorphism can be extended to a
MPH.
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Let 2 denote the 2-element lattice with elements 0, 1. For any bounded lattice
L, let D(L) be the set of all MPH’s L — 2 equipped with a binary relation F
defined by the rule

(frg9) e B iff f(z) <g(z) for every = dom(f) N dom(g)

and with the topology 7 whose subbass of closed sets consists of all sets of the
form Az ={f| f(z) =0} and B, ={f | f(z) =1} (z € L).

It is easy to prove that if the lattice L is distributive, then any MPH L — 2
is a total map (its domain is the whole L), E is a partial ordering and D(L) is
the usual dual space corresponding to L in the Priestley duality.

There is another way how to regard MPH’s. It is easy to see that MPH’s
L — 2 correspond to so-called maximal filter-ideal pairs in L. If F is a filter
and I is an ideal in L such that F'NI = 0, then (F,I) is called a filter-ideal pair.
Such a pair is said to be mazimal, if neither F' nor I can be enlarged without
breaking the disjointness. For any MPH f: L — 2 the pair (f~*(1), f~1(0)) is
maximal; for any maximal pair (F,I) the partial map f: L — 2 defined by

0, ifzel,
flx)=<X 1, ifzekF,

undefined otherwise,
is a MPH. If we regard D(L) as the set of all maximal filter-ideal pairs, then
(F,I),(G,J)) e E if FNnJ=0.

Further, A, = {(F,I) |z €I}, B, ={(F,I)|z € F}.

Hence, for every bounded lattice L, its dual space D(L) is a set equipped
with a reflexive binary relation and a topology. Any object of this type will be
called a topological graph. We keep the reflexivity assumption throughout the
paper.

Now we describe how to reconstruct a lattice from its dual space. A map
: (X1, E1,71) — (Xo, B2, 72) between topological graphs is called morphism if
it preserves the binary relation (ie., (z,y) € F1 implies (¢(z), ¢(y)) € E>) and
if it is continuous with respect to 7y and 75. A partial map ¢: (X1, E1,7) —
(Xa, E5, T) is called a partial morphism if its domain is a 71-closed subset of X;
and the restriction of ¢ to its domain is a morphism. (We assume that dom(y)
inherits the binary relation and the topology from X;.) A partial morphism
is called maximal (MPM, for short), if there is no partial morphism properly
extending it.

Let 2 denote the set {0,1} equipped with the discrete topology and the
binary relation < (0 < 1). Hence, 2isa topological graph.
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1.1. LEMMA. Let L be a bounded lattice and h: L —2 a MPH. If z € L is
such that z ¢ h™'(0), then thereisa MPH k: L — 2 such that h=1(0) C k~1(0)
and k(z) =1.

Proof. The partial map k': L — 2 defined by
0, ifyeh 1(0),
Ky)=4q1, ify>az,
undefined otherwise,

is a partial homomorphism and can be extended to a MPH k, which obviously
has the required properties. O

1.2. LEMMA. For every bounded lattice L and any z € L, the evaluation
function e;: D(L) — 2 defined by

ez(f):{f(x)’ ifz € dom(f),

undefined otherwise,

is a MPM.

Proof. Clearly, f € dom(e;) iff z € dom(f), hence dom(e;) = A, U B,
which is a closed set. Since the sets A, = e;1(0) and B, = e; (1) are closed,
the restriction of e, to its domain is continuous.

Further, let f, g € dom(e;), (f,g) € E. We have to show that e,(f) < ex(g),
or f(z) < g(z). But this follows directly from the definition of F.

It remains to prove the maximality of e,. Let ¢: D(L) — 2 be a partial
morphism, e; C ¢. Let h: L — 2 be a MPH such that h ¢ dom(e,), i.e.,
z ¢ dom(h). We have to show that h ¢ dom(y). By 1.1, there is a MPH hq
such that hg'(0) D A=%(0), ho(z) = 1. Similarly, we can find a MPH hy with
h'(1) 2 A7Y(1), hi(z) = 0. Now clearly (ho,h) € E, (h,hy) € E and ho,hy €
dom(e;) C dom(p). Hence, h € dom(p) would imply ¢(hg) < p(h) < p(hi),
which is impossible because p(ho) = ez(ho) = ho(z) =1 and p(h1) = ex(h1) =
hl(iL') =0. O

It is easy to see that the topology of D(L) is always T;. Moreover, this
topology is always compact. (See [5, Lemma 6] for the proof.)

1.3. LEMMA. Suppose that X = (X, E,T) is a topological graph equipped
with a T'; snug-topology 7. Let ¢ be a MPM X — 2. Then

(i) ¢7'(0)={z € X | thereis no y € p~(1) with (y,z) € E};

(i) ¢7*(1) = {= € X | there is no y € ¢~1(0) with (z,y) € E}.

Proof. We prove (i). If z € »p=1(0), then for every y € ¢~!(1) we have
1=¢(y) £ ¢(z) =0. Since ¢ preserves E, we obtain (y,z) ¢ E.
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To prove the other inclusion, suppose that z € X is such that there is no
y € ¢ Y1) with (y,z) € E. Then ¢ U {(.’L‘,O)} is a partial morphism. (Its
continuity follows from the fact that the topology 7 is T; and therefore the set
{z} is closed.) The maximality of ¢ yields that ¢(z) = 0. O

1.4. LEMMA. Let L be a bounded lattice, ¢: D(L) — 2 a maximal partial
morphism and xz € L. Then

(i) ¢1(0)N By =0 implies ™*(0) C Aq;

(i) ¢ 1(1)N A, =0 implies p~1(1) C B,.

Proof. It is enough to prove (i). Suppose that there is a MPH r with
r ¢ A (ie, r(z) = 1 or r(z) is undefined) and ¢(r) = 0. By 1.1 there
exists a MPH p such that »~1(0) C p~!(0) and p(z) = 1, hence p € B,.
Further, for every s € ¢~ !(1) we have (s,7) ¢ E, because ¢(s) £ ¢(r). Hence
s7H1) N r~1(0) # 0 and then also s7'(1) N p~1(0) # 0, which means that
(s,p) ¢ E.By 1.3, p€ o 1 (0)N B, #0. O

1.5. LEMMA. Let L be a bounded lattice. Then every MPM ¢: D(L) — 2 is
of the form e, for some x € L.

Proof. Let ¢ be a MPM. For every p € »~1(0), ¢ € ¢ (1) we have
(¢,p) ¢ E, hence there is z] € L with g(z) = 1, p(z]) = 0. The set X] =
{r € D(L) | r(zg) # 0} is open and the family A, = {XZ | ¢ € ¢ (1)}
covers the set ¢~1(1) because ¢ € XZ. Since the set (p“l(l) is compact (it
is a closed subset of the compact space D(L)), there are z1,.. »Tn € p~1(0)

such that ¢=1(1) C U {r € D(L) | r(z;) # 0}. Let us set z, = \/ z;. Then

p(zp) =0 and o~ ( C {r € D(L) | r(zp) #0}. By 1.4, ¢ 1(1) C {r € D(L) |
r(zp) = 1}. The compact set ©~1(0) is covered by the open sets of the form
{r e D(L) | r(:vp) # 1}, where p € ¢~*(0). Hence, there are z!,...,2™ € L
with ¢~1(0) C U {r e D(L) | 7(z*) # 1} and ¢~ (1) C ﬂ{r € D(L) |
rlw?] = 1}. Letusset & = /\:E Then ¢™*( 1)C{TEDL)|7”( =1} and

©~1(0) C {r € D(L) | r(:c) 75 1}. From 1.4 we obtain that ¢1(0) C {r €
D(L) | r(z) =0} . Hence, ¢ C e, and the maximality of ¢ yields p =e,. O

Lemmas 1.2 and 1.5 establish a correspondence between elements of L and
MPM’s D(L) — 2. In order to reconstruct lattice L from its dual space we need
to intraduce lattice operations on the set of all MPM’s. This is not a problem in
the Priestley duality for distributive lattices (or in any other natural duality).
If L is distributive, then all MPM’s D(L) — 2 are total maps and the lattice
operations can be defined pointwise. In general however, if X is any topological
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graph and ¢, ¥: X — 2 are MPM’s, then the pointwise meet ¢ A% (defined
on dom(p)Ndom(v)) is a partial morphism, but not necessarily maximal. And,
even if X is a dual space of some lattice, the maximal extension of ¢ A 1 need
not be unique. But, fortunately, we are able to recover the order relation of L.

1.6. LEMMA. Let L be a bounded lattice. For elements z,y € L the following
conditions are equivalent:

(i) =<uy;
(i) ez*(0) 2 e, '(0);
(iii) ez'(1) Cey*(1)-

Proof. If £ < y then, for every MPH f: L — 2, f(z) = 1 implies f(y) =1
and f(y) = 0 implies f(z) = 0. Hence, (i) implies (ii) and (iii). Conversely,
if z £ y, then there exists a MPH f with f(z) = 1 and f(y) = 0, hence
ez2(0) 2 e;(0) and ez (1) € e (D). O

As a consequence we obtain our representation theorem.

1.7. THEOREM. Any bounded lattice L is isomorphic to the set of all MPM’s
D(L) — 2 ordered by the rule ¢ < v iff =(1) C ¢~1(1).

Our way of reconstructing a lattice from its dual space is similar to the meth-
ods used in the formal concept analysis of R. Wille ([7]). If L is a finite lattice,
then we can consider the triple (D(L), D(L), —E) as a context (using the termi-
nology from [7]), where —FE is the complement of the relation E. It is easy to see
that the concepts connected with this context are precisely the pairs of the form
(¢71(1),¢71(0)), where ¢ is any MPM D(L) — 2. By 1.7, any finite lattice
is isomorphic to the concept lattice of the context (D(L), D(L),—E). The gen-
eralization to the infinite case cannot be straightforward, since concept lattices
are always complete. There is a representation theory of G. Hartung ([2]),
where the notion of a topological context was introduced in order to represent
all bounded lattices. The relationship between Hartung’s theory and our rep-
resentation is essentially explained in [2], since this paper discusses Urquhart’s
representation, which is very close to our theory.

We close this section with one example, which shows how our representation
works. Let L be the lattice depicted in Figure 1. Its dual space is drawn in Figure
2. The arrows indicate the relation F, the topology is discrete. The transition
between L and D(L) is described by the table in Figure 3. In this table, the rows
are MPH’s L — 2 and the columns are MPM’s D(L) — 2 (i.e., evaluation maps
corresponding to the elements of L). This example also illustrates the remark
preceding 1.6. The pointwise meet e, Ae, defined on dom(e,)Ndom(e,) = {f, g}
is a partial morphism whose extension to a MPM is not unique.
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N, Qe
pd

T Yy z
NJ 7 ey
0
FIGURE 1 FIGURE 2

0 0 z vy z v w 1
f10 1 0 0 1 0 1
gl|0 O 0 1 0 1 1
h|{0 O 1 — 1 1 1
7 0O — 0 1 1 1 1

FiGure 3.

2. Urquhart’s representation

A. Urquhart in [5] introduced two binary (quasiorder) relations <;, <,
on the set of all MPH’s L — 2 as follows:

f<ig it f7H1) Cg7(1);

f Loy 58 FTH0) € g 0)-
So his dual of a lattice L is the set of all MPH’s L — 2 equipped with <, <,
and the same topology 7 as in our representation.

2.1. THEOREM. Let L be a bounded lattice and let f, g be MPH’s L — 2.
Then

(i) (f,g) € E iff there is a MPH h with f <; h and g <5 h;
(ii) f <o g iff there is no MPH h with (h,g) € E and (h, f) ¢ E;
(iii) f <1 g iff there is no MPH h with (g,h) € E and (f,h) ¢ E.

Proof. (i) If (f,g9) € E, then f~(1) N g=(0) = 0. The filter-ideal pair
(f7%(1),97%(0)) can be extended to a MPH h for which we have f~1(1) C
h~'(1) and g~1(0) C h71(0). Conversely, if f <; h, g <5 h, then f1(1) N
g~1(0) Ch7H(1)NA~1(0) = 0, hence (f,g) € E.

(ii) Let f <o g. Then for any MPH h with (h,g) € E we have h=1(1) N
g~'(0) = 0, which implies that A~*(1) N f~(0) = @, hence (h, f) € E. Con-
versely, if f=1(0)  g=*(0) then we have z € £~1(0) \ ¢g~1(0) and by 1.1 there
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exists a MPH h with g~1(0) C A™'(0) and h(z) = 1. Clearly, (h,g9) € E,

(hf) ¢ E. |
The proof of (iii) is similar to (ii). O

In order to recover a lattice from its dual space, Urquhart introduces the
following concepts.
Let L be a bounded lattice. For a set Y C D(L) we define

I(Y)={f € D(L) |there is no g € Y with f <1 g};
r(Y) = {f € D(L) |there is no g € Y with f <s 9}-
The set Y is called stable if Y = Ir(Y). The set Y is called doubly closed if

both Y and r(Y) are (topologically) closed. Notice that the operators r and [
are inclusion-reversing, i.e., Y C Z implies r(Y) D r(Z), I(Y) 2 I(2).

2.2. THEOREM. Let L be a bounded lattice. For a set Y C D(L) the following
are equivalent:

(i) Y is a doubly closed stable set;
(i) Y = ¢ 1(1) for some MPM ¢: D(L) — 2.

Proof. Let Y be a doubly closed stable set. Let us define a partial map
¢: D(L) — 2 by
( )_{ 1, iffpeY,
PPZ o, iffpen(y).

Since Y N7(Y) = 0, ¢ is well defined. Further, its domain is closed and it is
continuous. We claim that ¢ preserves E. By way of contradiction, suppose that
p,q € dom(p) are such that (p,q) € E and ¢(p) £ ¢(q). Necessarily, ¢(p) =1,
w(qg) =0, hence pe Y =1r(Y), g € r(Y). By 2.1 (i) there is h € D(L) with
p <1 h, ¢ <5 h. By the definition of the operator I, p € l(r(Y)) implies that
h ¢ r(Y). By the definition of r, there is k € Y with h <5 k. Since the relation
<, is transitive, we obtain that ¢ < k, hence ¢ ¢ 7(Y); a contradiction. Thus,
¢ preserves E. To show maximality, let ¥» O ¢ be a partial morphism. Then
Y C %71(1) and r(Y) C %71(0). Since ¢ preserves E, we have (p,q) ¢ E
whenever p € ¥ 71(1), ¢ € ¥1(0). Thus, neither p <; g nor ¢ <, p can
hold for such p, g. We obtain that ~1(1) C I(¢=(0)), ¥»~(0) C r(»~1(1)).
Consequently, ¥ = Ir(Y) 2 I(¥~1(0)) 2 4~1(1) and therefore Y = 3~1(1)
and 7(Y) = ¢~1(0). Hence, ¢ = 1. We have proved that ¢ is a MPM with
¥ ==L},

Conversely, let ¢: D(L) — 2 be a MPM. By 1.5 we can assume that ¢ = e
for some z € L. Let Y = ¢p~1(1). Then Y = B, and we claim that 7(Y) = A,.
Indeed, if p € A;, g € B, then p £ q, hence A, C r(B,;). On the other
hand, if p ¢ A, then 1.1 yields ¢ € D(L) such that p~1(0) C ¢~1(0) and
g(z) = 1, hence p ¢ r(B;). Symmetrically we can show that B, = l(Az).
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Thus, Ir(Y) = Y, which means that YV is a stable set. The continuity of ¢
implies that both Y and r(Y") are closed. O

Putting together 1.7 and 2.2 we obtain the representation theorem from [5]:
any bounded lattice is isomorphic to the set of all doubly closed stable sets
ordered by the set inclusion.

Theorems 2.1 and 2.2 provide transition between our and Urquhart’s du-
als of bounded lattices. They allow to translate Urquhart’s characterization of
dual spaces and his results about representation of complete lattices, surjective
homomorphisms, congruences, etc. We will not carry out these tasks here.

3. More about dual spaces

Our aim in this section is to obtain some information about topological graphs
that arise as duals of bounded lattices. It turns out however, that a wider class
of topological graphs can be interesting for representing bounded lattices.

First, let us notice that for any topologlcal graph X = (X,E,7) with 7 a
T ;-topology, the set of all MPM’s X —2is partially ordered by the rule

<y iff o H(1)CyTI(1).

Indeed, only the antisymmetry is not quite trivial. But, by 1.3, ¢~1(1) = ¥~1(1)
implies o~ 1(0) = ¥~1(0) and hence ¢ = 1. The partially ordered set of all
MPM’s need not be a lattice in general. But it will be a lattice under some
condition.

If ¢ and 3 are MPM’s X — 2 then we define the partial maps AWI,,
k¢, : X —{0,1} by

" (1, iffp(z)=1and ¢(z) =1,
g ()_{O, iff p(z) =0or ¢(z) =0,

v 1, iffp(z)=1ory(z)=1,
k w(x) =
’ 0, iff (z) =0 and ¢(z) =0.
We claim that these maps are partial morphisms. The partial map k& = klg,d,
preserves E. Indeed, if (k(z),k(y)) ¢ E, then k(z) = 1 and k(y) = 0 and
without loss of generality ¢(z) =1, ¢(y) = 0. Since ¢ preserves E, we obtain
(z,y) ¢ E. Further, k is continuous and its domain is closed, since £~ 1(0) =
e~ H0) Up~1(0) and k(1) = ¢~ 1(1) N9p~1(1) are closed sets. Hence k is a
partial morphism. The proof for &, is similar.

‘We say that X satisfies the condition (EXT) if, for every MPM’s ¢ and 1,
the partial maps &2 ot kY o CAILl be extended to MPM’s.
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3.1. LEMMA. Let X = (X,E,T) be a topological graph with a T- topology
T satisfying (EXT). Then the ordered set of all MPM’s X — 2 is a bounded
lattice.

Proof. Let ¢, ¥ be MPM’s. To prove the existence of @ A1) it is sufficient
to find a MPM 7 with 7~ *(1) = ¢~ *(1)N~(1). Let 1 be the MPM extending
k =k}, Then k~'(1) C 77'1(1), it remains to show that £~1(1) D n~1(1).
Let n(m) = 1. Then (z,y) € E holds for no y € n71(0) 2 ¢~(0) Uy~1(0). By
1.3 (ii) we obtain that ¢(z) =1, ¥(z) =1 and hence k(z) = 1.

We have proved that ¢ A 1 exists for every ¢, 9. The proof for ¢ V9 is
analogous. The universal bounds are the constant maps. O

G

0

G S

0 ‘1

FIGURE 4.

3.2. ExaMPLE. The condition (EXT) cannot be omitted in 3.1. We define X =
(X, E, ) as follows. (See Figure 4.) We set X = {a,bg,b1} U{c; | i € w}U{d; |
i € w} (all the elements are distinct). Further, (z,y) € E iff:

T =1y or

z € {bo,b1} and y € {¢; | i Ew} or

z€{c;|i€w} and y € {bg,b1}.

Finally, a set Y C X will be closed in 7-if it is finite or contains the element

. Tt is easy to see that 7 is a T;-topology. Now we define MPM’s ¢ and %
by ©~1(0) = {bo}, ¢7H(1) = {a,b1,do,d1,dg, ...}, ¥7H(0) = {bu}, ¥7I(1) =
{a,bo,do,dy,dz,...}. It is not difficult to check that we indeed have MPM’s. We

prove that ¢ A ¢ does not emsts Suppose that n is a MPM, 1 < ¢, n < 9.
By the definition of ordering, n71(1) C ¢~ 1(1) Ny ~1(1) = {a do,dy,dg,...}.
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By 1.3 (i), n7%(0) 2 {bo, b1,¢0,¢1,¢2,.-- }. The set n~1(0) is closed and infinite,
hence a € n7(0). Then a ¢ n~!(1) and therefore ~1(1) must be a finite
subset of {dy,d1,ds,...}, which implies that n71(0) = X \ n~%(1).

We have shown that the lower bounds of the set {¢,%} are exactly such
MPM’s 7, for which n7(1) is a finite subset of {do,d;,ds,...} and n=1(0) =
X \n71(1). Among them, there is no largest element, and that is why ¢ A ¢
does not exist.

Notice that (EXT) is satisfied whenever X is isomorphic to the dual of some
bounded lattice. (Indeed, if ¢ = e, ¢ = ey, then ezpy extends k), .) Further, it
is obviously satisfied, whenever X is finite (or, more generally, When the topology
is discrete). In the ﬁmte case, even a stronger condition is satisfied: every partial
morphism can be extended to a MPM. A question now arises, whether this
(simpler) condition could replace (EXT). However, the next example shows that
duals of bounded lattices need not satisfy it.

/ 1
Y by by bo
ag
ay
ag
0
FIGURE 5.

3.3. EXAMPLE. Let L be the lattice depicted on Figure 5. We shall exhibit a
partial morphism ¢: D(L) — 2 that cannot be extended to a MPM.

Let A= {f € D(L)| f(y) =0}, B={f € D(L) | f(y) = 1}. It is not
difficult to verify that A consists of a single h € D(L) defined by

0, ifz<
h(w):{ , ifz<y,

1, otherwise,
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while B = {fo, f1, f2,--- }, where
0, ifz<b;,
filz)=4 1, ifz>y,
undefined otherwise .

By the definition of the topology in D(L), the sets A and B are closed. Further,
(h,fi) ¢ E for any i € w. Hence the partial mapping @: D(L) — 2 defined by
© 1(0) = B, ¢~1(1) = A, is a partial morphism. For the contradiction, suppose
that ¢ can be extended to a MPM . By 1.5, 9 = e, for some z € L. For
any ¢ € w we have f;(z) = e,(f;) = ¢(fi) = 0. The only z € L satisfying this
condition is z = 0. But this is impossible, since eg(h) =0 # @(h).

Hence, any topological graph with T;-topology satisfying (EXT) represents
some bounded lattice. However, not all such topological graphs are equally ad-
vantageous for representing bounded lattices. Some of them contain redundancies
and are unnecessarily large. That is why we introduce another condition, which
ensures that any two points can be properly distinguished by a MPM.

Let X = (X, E,T) be a topological graph. For any = € X we denote 2™ =
{ye X |(z,y) € E}, 2~ ={y e X | (y,2) € E}. We say that X satisfies (SEP)
if, for any z,y € X such that z # y, (z,y) € E and (y,z) € E, the following
conditions are satisfied:

1) 2" #yt orz” #Fy7;
(2) if 2~ €y theny~ €z~;
(8) if 2t € y* then y* Z zT.
3.4. LEMMA. If X = D(L) for some bounded lattice L, then X satisfies
(SEP).
Proof. Let f, g be MPH’s L — 2, f#g, (f,9) €E, (9,f) € E.

(1) Without loss of generality, f~(0) € g~*(0), hence there is z € L with
f(z) = 0 and g(z) undefined. By 1.1 there is a MPH h with g—!(0) C h=1(0)
and h(z) = 1. Obviously, (h,g) € E, (h,f) ¢ E, hence f~ #g~.

(2) Suppose that f~ € g~ . Then we have a MPH h with (h, f) € E, (h,g) ¢
E. There must be z € L with h(z) =1, g(z) = 0 and f(z) # 0, hence g~*(0) ¢
f~1(0). We claim that also f~1(0) € g~'(0) Indeed, if f~1(0) € g~1(0), then
the maximality of f implies that g='(0) N f~1(1) # 0, hence (f,g9) ¢ F, a
contradiction. Thus, f~*(0) ¢ ¢~!(0) and by the same argument as in (1),
there exists a MPH h’ with (h',g) € E, (R, f) ¢ E.

(3) can be proved similarly. O

We have found out that if a topological graph X has a T 1-topology and
satisfies (EXT) then the set of all MPM’s X — 2 forms a lattice. We denote this
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lattice by C(X). Thus, 1.7 says that L = C'(D(L)) holds for any bounded lattice
L. Now we are going to prove that if X in addition satisfies (SEP) and is finite,
then X is canonically embedded in D(C(X )) Since the following assertion
concerns finite graphs only, the condition (EXT) is automatically satisfied. We
do not know if a similar statement (with (EXT) added) holds for the infinite
case.

Let X be a topological graph with a Ti-topology and (EXT). For every
z € X we define the evaluation function £,: C(X) — {0,1} by the rule

) { o(z), if z € dom(y),
€z =
it undefined otherwise.

3.5. LEMMA. Let X = (X,E,T) be a finite topological graph with a
T;-topology (necessarily discrete), satisfying (SEP). Then

(i) for every z € X, €, is a MPH C(X) — 2;
(i) for any z,y € X, (z,y) € E iff (e4,64) € E;
(ii) for any z,y € X, if x #y then e, # €.

Proof. (i) Let z € X. If 0 € C(X), ¢ > ¢ and ¢ € ;(0), then
¢(z) = 0 and by the definition of the ordering in C (X) we obtain that ¥(z) =
and hence ¥ € £;%(0). Further, if p,% € €;1(0), then ¢(z) = ¢(z) = 0.
From the proof of 3.1 one can see that (¢ V )71(0) = ¢=(0) N~*(0), hence
(V) (z) =0 and (¢ V1) € e71(0). We have proved that £;'(0) is an ideal
in C(X). Similarly, we can prove that e;(1) is a filter. Hence, ¢, is a partial
homomorphism. It remains to prove the maximality of e, . Let us define partial
maps Yo, ¥1: X -2 by

[0, ify==2 g B BT
%(y)_{l, it (y,2) ¢ E, Q/Jl(y)—{O, if (z,9) ¢ E.

Since F is reflexive, the maps are well defined and it is easy to see that they are
partial morphisms. Let ¢g and @; be their extensions to MPM’s.

Suppose that ¢ is a MPM X — 2 with ¢ ¢ dom(e,), ie., z ¢ dom(p).
We claim that ¢ A @1 < g holds in C( ~) and we will prove it by showing the
inclusion ¢~ 1(1) N7 1(1) Cwy(1). Let y € p~1(1) Ny 1(1), hence p(y) =1,
@1(y) = 1. We need to show that ¢g(y) = 1. This is clear if (y,z) ¢ E,
because then vy(y) = 1. Let us suppose that (y,z) € E. We will show that
this assumption leads to a contradiction. We have (z,y) € E because otherwise
©1(y) = ¥1(y) = 0. Further, = # y because ¢ ¢ dom(y), y € dom(yp). Since
x ¢ o (1), by 1.3 there is z € ¢~1(0) with (z,2) € E. Clearly (y,2) ¢ E,
hence z+ ¢ y*. By (SEP) there is u € X such that (z,u) ¢ E, (y,u) € E.
Then ¢;(u) = 91 (u) = 0, which implies that ¢;(y) # 1, a contradiction.
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Hence, pAp; < pp and similarly one can prove that ¢Vyg > ;. This means,
that if f D €, is a partial homomorphism, then ¢ ¢ dom(f). Indeed, if f(¢) =1
(the case f(p) =0 is similar), then f(p A1) = f(o) A flp1) = 1Aez(p1) =1,
while f(po) = ez(po) = 0. Hence, &; is a MPH.

(ii) If (z,y) € E, then ¢(z) < ¢(y) holds for every MPM ¢ with z,y €
dom(¢). In other words, e,(p) < &,(¢) holds for every ¢ € dom(e;)Ndom(ey),
which by the definition of E' means that (eg,€,) € E.

Conversely, if (z,y) ¢ F, then we can find a MPM ¢ with ¢(z) = 1,
©(y) =0, which shows that (eg,ey) ¢ E.

(iii) Let  # y. If (z,y) ¢ E thenthemap k: {z,y} — {0,1} with k(z) =1,
k(y) = 0 is a partial morphism and can be extended to a MPM ¢: X - 3.
Clearly ez(p) = 1 # 0 = ey(yp). If (y,z) ¢ E, we use a similar argument.
Suppose now that (x,y) € E, (y,z) € E. By (SEP) we can assume (without
loss of generality) that z* ¢ y*. Hence, there is z € X with (z,2) € E,
(y,2) ¢ E. The map k: {y,z} — {0,1} defined by k(y) =1, k(z) =0 can be
extended to a MPM ¢. Then ¢(y) = 1, ¢(z) = 0 and, since ¢ preserves E,

o(z) # 1. Hence, e4(p) =1 # (). O

Hence, under the conditions of 3.5, the assignment z — £, is an embedding
X - D(C’ ()Z' )) . Of course, this embedding is an isomorphism if and only if X
is a dual space of some bounded lattice. In general however, this embedding is
proper. For example, consider X as a 3—element set {z,y, z} equipped with the
binary relation F = {(cc,a:),(y,y), (z, 2), (z,y), (v, 2), (z,a:)} and the discrete
topology. It is not hard to verify that C’()A(: ) is the 5—element modular nondis-
tributive lattice M3 and that D(M;3) has 6 elements. This shows that in some
cases there exist topological graphs smaller than D(L) which represent L (more
effectively, one could say). However, D(L) reflects the properties of L better.
For example, L and D(L) have the same automorphism group, which need not
be true for other topological graphs representing L.

In some cases (for instance, if L = Nj, the 5-element nonmodular lattice)
D(L) is minimal in the sense that there is no proper subgraph of D(L) repre-
senting L. It is not clear which lattices have this property.

Finally, let us mention that some (rather complicated) characterization of
topological graphs that are the duals of bounded lattices can be obtained by
translating the characterization in [5].

4. Concluding remarks

Several questions of a general nature arise in connection with our represen-
tation. The notions of MPH and MPM are applicable also for other algebras and
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relational structures. One can try to build similar representations for various
classes of algebras. This effort is especially promising when one starts from some
natural duality (as the Priestley duality in our case). In an implicit form, rep-
resentations of this kind can be found in the literature. For example, Isbell’s
proof in [3] that every median algebra is embeddable in a lattice provides a rep-
resentation that is (at least in the finite case) a generalization of Werner’s
duality for symmetric median algebras ([6, appendix|) via MPH’s.

There are unanswered questions in our representation itself. Some of them
have been mentioned in the previous text. In fact, it is not quite clear whether the
variety of bounded lattices is the “right” class of algebras for the representation
based on 2 and 2. There might be an algebra A which is not a lattice (but of
the same signature), for which elements of A are in a one-to-one correspondence
with MPM’s D(A) — 2 and whose operations can be in some way recovered from
D(A). The Priestley duality works with the fact that the variety of bounded
distributive lattices is generated by the algebra 2. The relationship between the
variety of all bounded lattices and 2 is not that tight. What might be a key
property of bounded lattices is that their elements can be effectively separated
by MPH’s into 2. However, we are unable to specify the word “effectively”.
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