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ABSTRACT. For any ordinal e > 1 we define a category of monorelational
systems of type a and show that each of these categories is an exponential su-
percategory of the category of preordered sets. We also give an application of the
results obtained into topology.

The categories in which there exist well-behaved function spaces play im-
portant roles in many branches of mathematics and nowadays they have been
intensively used in computer science. It is therefore worthwhile to deal with such
categories and the presented note is a contribution to this area.

Given an ordinal a > 1, by a relation R of type a on a set X we understand
a subset R C X*. The pair (X, R) is then called a relational system of type c.

A relational system of type « is said to be strongly regular if the following
two conditions are satisfied:

(i) (z; | i < a) € R whenever there is z € X such that z; = z for all
ordinals 7 < «,

(i) if (=; | ¢ < @) € X has the property that for any ordinal ip, 0 < g <

a, there are (y; | j < @) € R and an ordinal jp, 0 < jo < a, such

that z;, = y;, and {y;: 7 <Jjo} C {z;i: 7 <ip}, then (z; | i < @) € R.

All categories in this note are supposed to be concrete categories of structured

sets and structure-compatible maps. We denote by Rel, the category of strongly

regular relational systems of type o with relational homomorphisms (i.e., maps

f:r (X,R) — (Y, 8) fulfilling (z; | i < @) € R= (f(zi) | i < a) € 5) as

morphisms. For any pair of objects G, H € Rel, we denote by Hom (G, H) the
set of all homomorphisms of G into H.
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ExaMPLE. Let Top be the category of Cech’s topological spaces [1] with con-
tinuous maps as morphisms, i.e., the category whose objects are pairs (X,u)
where u: expX — expX is a map with u) = 0, A C X = A C ud and
AC B C X = uA C uB, and whose morphisms are maps f: (X,u) — (Y,v)
fulfilling f(uA) C vf(A) whenever A C X. Let @ > 1 be an ordinal and for
any space (X,u) € Top let R, C X* be the relation given by (z; | i < a) €
R, & z;, € u{z;: i < ip} for all ordinals 4p, 0 < 79 < a. Then (X,R,) is a
strongly regular relational system and the assignation (X,u) + (X, R,) defines
a concrete functor from Top into Rel,.

Let f{aa denote the full subcategory of Rel, given by the objects (X, R) €
Rel,, that are diagonal, i.e., that fulfil the following condition:

if ((z;; | j < @) | i < a) € R* has the property that (z;; | i <o) € R
for each j < «, then (z;; |1 < a) € R.

Now, in accordance with [6], we define

DEFINITION. If I is a category with finite products and £ its full isomor-
phism-closed subcategory, then I is called an exponential supercategory of L
provided that for any pair of objects G € £, H € I there exists an object
GH ¢ £ with | G¥ | = Morx(H, G) such that the pair (G¥,e), where e is the
evaluation map for G¥ (i.e., the map e: H x GF — G given by e(y, f) = f(v)),
is a co-universal map for G with respect to the functor H x — : K — IC.

The objects G from the definition will be called powers of G and H.

The substantial property of the exponentiality defined is the validity of the
first exponential law (GH )K = GH*EK for the powers. (Of course, the powers
are unique whenever K is transportable.) If IC is an exponential supercategory
of itself, then K is cartesian closed in the sense of [3].

THEOREM 1. Rel, is an exponential supercategory of ’R\aa for any ordinal
a>1.

Proof. It is obvious that Rel, has finite products. Let G = (X, R) € ﬁ\eia,
H = (Y,8) € Rel, be a pair of objects and put G¥ = (Hom(H, G),T) where
T C (Hom(H,G)) isgiven by (f; |1 <a) €T < (fi(y) | i < @) € R for each
y € Y. Then evidently G¥ ¢ ?P:e/la. Let e: H x G¥ — G be the evaluation map
for G¥. Denote (Z,U) = H x G¥ and let (g; | i < @) € U. Then there are
(y; |i<a) €S and (f; | i < @) €T such that g; = (y;, f;) for each i < a.
Now we have ((fi(y;) |7 <a)|i<a) € R* (because f; € Hom(H,G) for each
i < a)and (fi(y;) | i < a) € R for each j < . Hence (f;(y:) |7 < ) € R.
But (fi(y:) | i <) = (e(vi, fi) | i < a) = (e(gs) | i < o). We have shown
that e € Hom(H x G¥,G). Let K = (W,V) € Rel, and h € Hom(H x K, G).
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Let h*: W — Hom(H,G) be the map given by h*(w)(y) = h(y,w). (Indeed,
h*(w) € Hom(H,G) whenever w € W because for any (y; | i < o) € S we
have (h*(w)(y;) | i < @) = (h(ys,w) | i < a) € R.) Let (w; | i < @) € V.
For any y € Y we have (h*(w;)(y) | i < a) = (h(y,w;) | 4 < @) € R, hence
(h*(wz) | i < a) € T. Consequently, h* € Hom(K,G¥). As h* is clearly the
only map with h = eo (idy x h*), the pair (G¥,e) is a co-universal map for G
w.r.t. the functor H x — : Rel, — Rel,. O

Remark. For @ =2 the Theorem is quite obvious because Rely is the cate-
gory of reflexive binary relational systems and Rels is the category of preordered
sets.

THEOREM 2. ﬁ\e/la is concretely isomorphic to ﬁ\e/IQ for each ordinal o« > 1.

Proof. For any object (X,R) € Rely let rr C X? be given by (z,y) €
TR < thereis (z; | 4 < o) € R such that o = z and z;, = y for each ordinal
ip, 0 < ip < c. In [6] it is shown that the assignation (X, R) — (X,rr) defines
a concrete isomorphism of f{\aa onto f{\az. O

Let a,8 > 1 be ordinals. For any object (X, R) € Rel, put F, g(X,R) =
(X,S) where S C XP is given by (y; | j < B) € S iff for each ordinal 7o,
0 < jo < B, there are (z; | 7 < a) € R and an ordinal ig, 0 < iy < «, such that
Yjo = Tio and {z;: ¢ < ig} C {y;: j <Jjo}.

The following statement is obvious

THEOREM 3. Fy g is a concrete functor from Rel, into Relg for any ordinals
a,B>1.

THEOREM 4. Let o, be ordinals, 1 < a < 8. Then F, g is a full concrete
embedding of Rel, into Relg.

Proof. In virtue of Theorem 3, F, g is a concrete functor from Rel, into
Relg. Let (X, R;),(X,Ry) € Rel, and suppose that there is (X,S) € Relg
with Fo (X, R1) = Fop(X,R2) = (X,S5). Let (z; | i < @) € R; and let
(yi | i < B) € XP be the sequence given by y; = z; for all ordinals i < «
and y; = zo for all ordinals i, & < ¢ < 8. Then (y; | i < 8) € S. Thus,
for each ordinal ip, 0 < 49 < 3, there are (z; | j < &) € R2 and an ordinal
Jo, 0 < jo < a, such that y;, = z;, and {z;: j < jo} C {yi: i < ip}. This
yields (y; | ¢ < @) = (z; | # < @) € Ry. Hence R; C Ry. As the inverse
inclusion can be proved in an analogous way, F, g is injective on objects. To
prove that Fy g is full, let (X, Ry), (Y, Rz) € Rel, and (X,S1) = F, (X, Ry),
(Y, Sz) = Fa’ﬂ(}f, Rz) Let f € HOHI((X, S]_), (K Sz)) and (ZBZ I 1< Od) € Ry. Let
(yi | i < B) € XP be the sequence given in the same way as in the first part of the
proof, i.e., y; = z; for all ordinals 7 < & and y; = z¢ for all ordinals 7, o <3 <
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B. Then (y; | ¢ < 8) € S1 and hence (f(yl) |7 < ﬂ) € S, . Thus, for each ordinal
ip, 0 < 19 < 3, there are (z; | j < a) € Ry and an ordinal jo, 0 < jo < &, such
that f(yi,) = 25, and {z;: 7 < jo} C {f(yz) 1< io}. This yields (f(yi) BE
a) = (f(acz) |7 < a) € R,. Consequently, [ € Hom((X, Ry), (Y, Rz)), ie., Fop
is full. O

In the Example we have shown that there is a certain connectedness between
the category Top and the categories Rel,. Now we are going to present a result
that originates in this connectedness.

Let Tops be the full subcategory of Top given by the objects (X, u) € Top
having the property that for any subset A C X and any point € uA there exist
an ordinal 49 > 0 and a sequence (z; | i < i) € A% such that z; € u{z;: i < j}
for each ordinal 7, 0 < j <ig, and = € u{z;: 7 < ip}.

It can easily be shown that Tops is a coreflective modification of Top (i.e.,
a coreflective subcategory of Top with identity maps acting as coreflectors).

We denote by Qcat the quasicategory of all categories (with functors as
morphisms).

THEOREM 5. In Qcat, Top; is a direct limit of the diagram {Rely: a > 1
an ordinal} with embeddings Fo 5, 1 < oo < 3, as morphisms.

Proof. Foranyordinal @ > 1 and any object (X, R) € Rel, put Go(X, R)
= (X,u) where u: expX — expX is given by ud = {z € X: there are
(z; | i < @) € R and an ordinal iy, 0 < ip < a, such that z = z;, and z; € A
for all 4 < 4p}. It is evident that G, is a full concrete embedding of Rel, into
Tops and for arbitrary object (X,u) € Topy we have (X, u) € Go(Rely) iff for
any subset A C X and any point z € uA there exist an ordinal g, 0 < 7g < «,
and a sequence (z; | i < ig) € A" such that z; € u{z;: ¢ < j} for each
ordinal j, 0 < j < ip, and = € u{z;: i < ip}. As Go = Ggo F,p clearly
holds whenever 1 < a < f, the system G,: Rel, — Topy, a > 1 ordinals,
is a natural sink in Qcat. We are to show that, in Qcat, for any natural sink
H,: Rely, — K, a > 1 ordinals, there is a unique functor H: Topy — K such
that H, = H o G, for all ordinals « > 1. Obviously, the functor H can be
obtained as follows: For any object (X,u) € Topy we put H(X,u) = Ho(X, R)
where a > 1 is the least ordinal with (X,u) € G4(Rel,) and (X, R) € Rel, is
the object with Go(X, R) = (X, u); for any morphism f: (X,u) — (Y,v) we
put Hf = H,f where a > 1 is the least ordinal with both (X,u) € G4(Rely)
and (Y,v) € G4(Rely). This completes the proof. O

Denote by Topg the full subcategory of Top given by those objects (X, u) €
Top that are finitely generated topological spaces, i.e., that fulfil vud = ud =

U u{z} whenever 0 # A C X . Clearly, Topg is a (full) subcategory of Topr.
TEA
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As it is well known that Topg is concretely isomorphic to f&ig, the previous
results yield

COROLLARY. Tops is an exponential supercategory of Topg .

EXAMPLES.

1. Let X = {a,b,c} and define u: exp X — exp X as follows: ul) = 0, u{a} =
{a,b}, u{b} = {b}, u{c} = {c}, u{a,b} =ufa,c} =uX = X, u{b,c} = {b,c}.
Then (X,u) € Topy (but (X,u) ¢ Topg).

2. Let (w + 1,u) be the topological space defined by uf) = 0, ud = w
whenever A C w and 0 < card A < w, uAd = w+ 1 otherwise. Then (w+1,u) €
Topr, (w+1,u) ¢ Topg, and the topology u is additive, i.e., u(AUB) = uAUuB
whenever 4, B Cw+ 1.
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