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THE ENTROPY BASED ON
PSEUDO-ARITHMETICAL OPERATIONS

JAN RyYBARIK

ABSTRACT. The entropy of the partitions of measurable spaces equipped with
al-decomposable or @-decomposable measure (L is a continuous Archimedean
t-conorm, @ is a pseudo-addition) is presented. The pseudo-arithmetical opera-
tions are used to build it up. Further the relationship between this kind of the
entropy and the classical (Kolmogorov—Sinaj) entropy is shown.

1. Introduction

The entropy of partitions of the probability space introduced by Kolmo-
gorov and Sinaj [2, 8] can be assumed to be a suitable tool for studying
of the dynamics systems. One of successful attempts to generalize the notion of
probability space has been made by Weber [9]. Weber replaced the probability
measure by a |-decomposable measure, where L is a continuous Archimedean
t-conorm, and he used these spaces for the building up of a non-additive theory of
integration. The similar access can be found in Sugeno and Murofushi [4],
though they worked with a more general model using ®-decomposable measure,
where @ is the pseudo-addition. Now we will extend the entropy of partitions
on these spaces using the pseudo-arithmetical operations introduced in paper
[3]. Later we will prove that this type of entropy is a g-transformation (where
g is a generator of pseudo-arithmetical operations and of t-conorm L as well)
of the entropy on a probability space corresponding to the given space. In the
end we will introduce the conditional g-entropy and we will show that the same
conclusions hold for it. 1
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2. Preliminaries

Let X be a nonempty set, (X,S) be a measurable space and the function
g be a generator of the consistent system of pseudo-arithmetical operations
{®,0,0,0} (see [3]). Thus g : [—00,400] — [~00,+0o0] is such a continuous,
strictly increasing and odd function that g(0) = 0, g(1) = 1, g(+o00) = +o0
and

c®y=9 '(9(z) +9(), zoy=g"(9(z) 9¥),
9(z)

zoy =g "(9(z) — 9(¥)), w®y=g‘1(@>, (1)

for every x,y € [—o0, +00] where expressions g(z) —g(y) and % make sense.
If we take the restriction of this function g on the interval [0,1] then, by
Schweizer and Sklar [7], the binary operation L:[0,1] — [0,1] given
by

alb=gV (g(a) + g(b)) (2)

is a continuous Archimedean t-conorm where g(~1) is the pseudo-inverse of g,
ie., g (z) = g~ (min{z,1}), Vz € [0, +00). Moreover, it is nonstrict, there-
fore, it is nilpotent.

On the other hand, if L is a continuous Archimedean t-conorm, then
there exists such a continuous, strictly increasing function h: [0,1] — [0, +o0],
h(0) = 0; that the t-conorm L is generated by the formula

a L b=hV(h(a) + k(b))

Let the conorm L be nonstrict (it is nilpotent); then the function h is bounded,
so we can take a normalized generator g (g(1) = 1) and extend it on the interval
[0, +00] so that it generates the pseudo-arithmetical operations on [0,+o0] and
further on [—oco,+o00] (Remark 3.12, [3]).

Now let the function m: & — [0, 1] have the following properties:
(Ml) m(@) =0, m(X) =1,
(M2) A,BeS,AnB=0 = m(AUB)=m(A) L m(B),
(M3) {A,}CS, A, /A = m(A,) /" m(A).
Then m is said to be a L-decomposable measure on S (see [9]). If we replace
the property (M2) by
(M2) A,BeS, AnB=0 = m(AUB)=m(A)®m(B),
then m will be called a @-decomposable measure on S (see [4]).
It is obvious that this measure m is o-L (@)-decomposable too, i.e.,
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M4) A €S, n=1,2,..., A;NA;=0,i+#j
= m(Yan) = 4@ )mian).

Using some results by Klement and Weber [1] we can divide the
L-decomposable measures m: S — [0,1] into two types (L is an Archimedean
t-conorm with the additive generator g):

— m is of the type (A) iff g om is a o-additive measure on S, ie.,

(ho m)( U An> = > (hom)(A,) for every sequence {A,}nen of
neN neN
disjoint sets in S,
— m is of the type (P) iff g o m is a pseudo-o-additive measure on S ,
Le., there exists such a sequence {A,},en of disjoint sets in S that
(hom)( U An) < X (hom)(An).
neN neN
Considering that the t-conorm L is nonstrict only, according to the classi-
fication by Weber [9], the measure m of the type (A) is always of the type
(NSA), therefore, gom is a finite o-additive measure. Similarly, the measure of
the type (P) is identical to the type (NSP).

3. g-entropy

Let (X,S) be a measurable space and {®,®, S, @} be a consistent system
of pseudo-arithmetical operations on [—o0,+00] generated by the function g.
Further, let m be a |-decomposable measure on S , where L is a nilpotent
t-conorm with the normalized additive generator g (the formula (2)). Note that
this condition is not the restriction, since gom is an infinite o-additive measure
for strict Archimedean t-conorms and this fact excludes the possibility of defining
the entropy.

DEFINITION 3.1. A finite collection A = {A1,Ay,...,An} C S, is said to be
a measurable partition of X iff it satisfies the following conditions:

(P1) A;NA; =0, i#j, i,j=1,2,...n,
mn

(P2) | A; =X.
=1

Remark 3.2. If A={A;,A,,... ,Ap} is a measurable partition then

2

zlm(Ai) =1 because 1=m(X)= m(L—Jl Ai> = i-:Ll m(A;).
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DEFINITION 3.3. Let A= {A;,As,...,A,} be a measurable partition of X.
Then its g-entropy is defined by

Hp(A) = — P 2(m(A))
i=1
where
0, if x =0,
&(z) = r@logz, ifz >0,
g
and logz = g~*(log g(z)) is the g-logarithmic function (see [6]).
g

The following theorem states the relationship between this entropy and the
entropy introduced by Kolmogorov and Sinaj [2,8].

THEOREM 3.4. Let a |-decomposable measure m on the measurable space
(X,S) be of the type (NSA). Then there exists such a probability measure P on
S that m = g~ ' o P where g is the normalized additive generator of t-conorm
1 and

Hp(A) = g7 (Hp(A)),

for every measurable partition A.

The quantity Hp(A) is an entropy of the partition A on the probability
space (X,S,P), i.e,

n

Hp(A) = —ZSD(P(Ai)) ;

i=1

0, ifx=0,
() = :
z-logz, ifz>0.

where

Proof. Let m: S — [0,1] be a _L-decomposable measure of the type
(NSA), L be a continuous Archimedean t-conorm given by the formula (2) and
the function g be a generator of the consistent system of pseudo-arithmetical
operations {®,®,5,®} (and also a normalized generator of the t-conorm ).
By Weber [9] g om is a finite o-additive measure on S and, moreover,
(gom)(X) = g(m(X)) — 1, therefore P = gom isa p on S. Hence m = g~ 'oP.
Further, let A = {A;,A,,...,A,} be a measurable partition of X and

Hy(A) =— é ®(m(A;)) be its g-entropy.
i=1

Assume that m(A;) >0, i=1,2,...,n (m(B) =0 = P(B) = g(m(B)) =
0); using formula (1) and the definition of the function ®, we can rewrite the
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previous oy
_ é@(m(Ai)) . é@(g—l(zﬂmi))) =
_ _@(g P(A) Olog g~ (P(49)) =
_ _@<g (4:)) 57" (log 9(s7 (P(A)))) =
=~ (s (P(&) 108 P(&)) = =g~ (3 (P(AL) -1og P(A)) =

=1 i=1

=7 (= 2o (P(A)) - log P(4))) =7 (Hp(A),

=1

where Hp(A) = — Z (P(A;)-log P(A;)) is the entropy of the partition on the

probability space (X S , P). O

By Lemma 2.2 [1] it follows that this theorem also holds conversely: If
(X, S8, P) is a probability space and a function g is the generator of the con-
sistent system of pseudo-arithmetical operations (and the normalized generator
of the t-conorm L given by the formula (2) as well) then m = g~ o P is a
| -decomposable measure of the type (NSA) on S.

Moreover,

Hp(A) = g(Hm(A))
for every measurable partition A.

In consequence of Theorem 3.4 we can easily transform the questions con-
nected with the g-entropy of the partitions on measurable spaces (X, S) equipp-
ed with a |-decomposable measure m into probability spaces (X,S, P) where
P = gom. Thus we obtain directly the properties of g-entropy by the corre-
sponding g-transformation, for instance:

Let A= {A;,A,,...,A,} and B = {B1,B,,...,B,,} be two measurable
partitions of X. Then

AVB={A;NB;; AicA, B;eB,i=12...,n,j=12..,m}

is a measurable partition of X, too. For the entropy of these partitions on a
probability space (X,S, P) it holds

HP(AVB) < HP(A)—I-HP(B)
Then
“H(Hp(AVB)) < g ' (Hp(A)+ Hp(B)),
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(Hp(AVB) < g7 (9(g7 (Hp(A) + a(97(Hp(B))),

and hence
-t (HP(.A Vv B)) < g_l (HP(A)) @® g_l (HP(B)) 3
Using Theorem 3.4. we have the following property for the g- entropy

Hp(AV B) < Hn(A) @ Hi(B) -

If a l-decomposable measure m on a measurable space (X,S) is of the type
(NSP), then the notion of the g-entropy is meaningless. The fact that the mea-
sure g o m is only pseudo-additive often evokes the defect in the informative
sense of the g-entropy (see the following example). O

EXAMPLE 3.5. Let X = [0,2), S = B([0,2)) and m: § — [0,1]; m(A) =
mln{l A A)} where ) is the Lebesgue measure on S. Take the generator
g(z) = = that generates the system of common arithmetical operations and
define the t-conorm L by formula (2). Then

alb=gD (g(a) + g(b)) = min{a + b,g(1)} = min{a + b,1},

so that t-conorm L is identical with the Giles operation S

It is easy to see that m is the l-decomposable measure on & of the type
(NSP).

Further consider the measurable partition A = {A1, Ay}, where A; =[0,1)
and As = [1,2). Obviously m(A;) = m(Az) = 1. Then the g-entropy of this
partition is

éw

—((m(Al) © 1c;g m(A1)) ® (m(Az) © ltzg m(Az)))

=1

(( © g (log 9(1))) (1©g*(log g(l))))
=—(1e0a(160) =

Thus the g-entropy is equal to zero for the non-trivial partition.
Now we describe the relationship between the partition of a measurable space
and the _L-decomposable measures of the type (NSP) on this space.

LEMMA 3.6. A |-decomposable measure m is of the type (NSP) iff there
exists such a partition A = {A1,As,...,A,}, n € N (either finite or infinite)

of the measurable space (X,S) that 3 g(m(A;)) > 1.
i=1
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Proof. Let a 1-decomposable measure m on S be of the type (NSP), i.e
(go m)< U Bk) < Y. (gom) (By) for the same disjoint system {By}ren C S.
kEN kEN

From formula (2) and the properties (M2) and (M3) it follows

m(U Br) =9 (X (gom)(By)).
keN

keN
Hence if m( U Bk> <1, then (gom)( U Bk) = > (gom)(Bg).
kEN kEN keN

This means that it holds m( U Bk> =1 and subsequently > (gom)(By) > 1
kEN kEN
(the equality is excluded by the introductory condition).

Let us consider the system A = {A,}nen, where A; = ( U Bk) and Ay =

By, k=1,2,.... It is evident that this system is the parﬁgon of a measurable
space and

Z(gom) >Zgom) (Br)>1.

neN keN
The opposite implication will be obvious. O

Remark 3.7. Let a measure m on a measurable space (X, S) be ®-decompo-
sable where @ is a pseudo-addition (see [4], [3]). Then the notion of g-entropy
is significative only if @ = 1, where L is an Archimedean t-conorm. But this
case has been studied above.

Now we will introduce the conditional g-entropy on measurable spaces (X, S)
with a |-decomposable measure m. Note that g is a generator of the consistent
system of pseudo-arithmetical operations {®,®,6,@}.

DEFINITION 3.8. Let (X,S) be a measurable space, m be a |-decomposable
measure on S and A = {A;,A,,...,A,} be a finite measurable partition of
X.If D €S, then the conditional g-entropy of the partition A given by D is
defined via

m(A/D) = EB ®(m(A;/D))
where
)_{0, if m(D) =0,
I mA;ND), ifm(D)>0.
If B={B;,Bs,...,B,,} is a finite measurable partition of X, then the condi-
tional g-entropy of A given by B is defined via

ﬂ@(Ai/I)

m

Hy(A/B) = P (m(Bj) © Hn(A/B;) .

Jj=1
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It is easy to see that if A = {A4,...,A,} and B = {By,...,Bn} are
measurable partitions on (X,S), then

Hm(A/B) = — D P m(A:nB;) ©logm(A,/B;),
i€l jeJ g
where

J={je{1,2,...,m}; m(B;) >0} and
I={i€{1,2,...,n}; m(A;/B;) >0, jeJ}.

Remark 3.9. The same conclusions hold for the conditional g-entropy as it
has been shown for the g-entropy in Theorem 3.4. Thus, if the measure m is
of the type (NSA) then H,,(A/B) = g~*(Hp(A/B)), where Hp(A/B) is the
conditional entropy on the probability space (X,S,P), P = g o m. Therefore
the properties of the conditional g-entropy can be obtained by the corresponding
properties of the conditional entropy on this probability space, for example:

from

Hp(AV B) = Hp(A/B) + Hp(B)

we obtain

Ho(AV B) = Hy(A/B) @ H(B).
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