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G-NORMALITY OF A SEQUENTIAL
CONVERGENCE ON AN /~GROUP
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Dedicated to Professor J. Jakubik on the occasion of his 70th birthday

ABSTRACT. We show that for an f-group G a compatible convergence £ is
determined by the set £ of all positive sequences which converge to the neutral
element of G. A characterization of £ in terms of G-normality and an example
of £ which is not a normal subset of the set of all positive sequences of G are
given.

Sequential convergences on different types of algebras with and without an or-
der were investigated by J. Novdk [8], by J. Jakubik [5] and others (cf. [2]).
Some concrete convergences on f-groups were dealt with in [1, 6, 9]. For groups,
abelian {-groups and Boolean algebras a compatible convergence of sequences
is determined by the set of all neutrz{ml sequences, i.e., sequences converging to
the neutral element, and their characterization can be found in [3, 4] and [5],
respectively.

We show that for an /-group G a compatible convergence £ is determined
by the set £% of all positive neutral sequences and give a characterization of
£*1 in terms of G-normality. We construct an example such that £F fails to be
a normal subset of the set (G1)N of all positive sequences.

1. Preliminaries

A triple (G,+,<) is said to be an f-group, if G is a group with respect to
+, G is a lattice with respect to < and a < b implies g; +a+g2 < g1 + b+ go
whenever a,b,g1,92 € G.

The following notation will be used:

N (Z, R) denotes the set of all positive integers (integers, real numbers);
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0 denotes the neutral element of the group (G,+);

la] = —aVa;

AN denotes the set all of sequences with elements belonging to A;
G7T denotes the set of all positive elements of G;

< denotes the order on G or the pointwise order on GV;
Mon denotes the set of all monotone mappings of N into N;
u,v,w denotes elements of Mon;

S o u denotes a subsequence of the sequence S;

S(n) denotes the n-th term of the sequence S;

const(g) denotes the constant sequence {g}";

R+ S denotes the sequence whose n-th term is R(n) + S(n);
RAS, RV S, —S, |S| are defined analogously;

(z;y) denotes an ordered pair.

Instead of S + const(g) we write simply S + g, similarly S <g, |S —g|,
etc.

1.1. DEFINITION. Let (G,4+, <) be an /f-group. A set £ C GN x G is said to
be a convergence on (G, +, <), if the following conditions are satisfied:
(i) (S;s) € £ implies (Sowu;s) € £ for every u € Mon.
(ii) If (S;s) € GN x G and for each u € Mon there exists v € Mon such
that (Souowv;s) € £, then (S;s) € £.
(iii) (const(s);s) € £ whenever s € G.
(iv) (S;a) € £ and (S;b) € £ imply a =b.
(v) (S;s) € £ implies (—5;—s) € £.
(vi) (R;r) € £ and (S;s) € £ imply (R+ S;r+s) € £.
(vii) (R;r) € £ and (S;s) € £ imply (RAS;rAs) € L.
(viii) (R;r) € £ and (S;s) € £ imply (RV S;rVs)e L.
(ix) If (R;g) € £ and (T;g) € £ and R< S <T, then (S;g) € £.

Conditions (i) —(vi) define a convergence group (cf. [8]) or a FLUSH-conver-
gence on G (see [7]). The last three conditions concern the compatibility of a
convergence with the order on G.

If (S;s) € £ then we say that S converges to s and we denote by ConvG
the set of all convergences on G.

1.2. LEMMA. If £ € Conv G then the following conditions are equivalent:

(S;s) e £ (a)
(IS—s;0) e £; (b)
(J-s+8];0)eg. (c)
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Proof. (a)implies (b): Let (S;s) € £. By (ii) and (vi) we have (S—s;0) €
£. From (iii), (v) and (vi) we get (s — S;0) € £. Applying (viii) we obtain (b).
(b) implies (a): If (]S — s|;0) € £ then by (v) also (—|S — s|;0) € £. But
—|§—s| <8 —5<|S—s| and so with respect to (ix) it is (S —s;0) € £. Now,
by (iii) and (vi) the condition (a) is fulfilled. The equivalence of (a) and (c) can
be shown analogously. O

The previous lemma indicates that a convergence can be given by the set of
positive sequences which converge to the neutral element of G. This fact will be
described precisely in Theorem 2.3 below.

2. Main results
Let us denote the set {S € (G+)N: (S;0) € £} by £F.

2.1. DEFINITION. The subset P of (G+)" is G-normal if'g+S —g € P
whenever S € P and g € G.

2.2. LEMMA. Let £ € ConvG. Then £ is a convex G—normal subsemigroup
of the semigroup (G"T)N with the following properties :
(o) £7% is closed under taking subsequences.

(B) Let S € (GH)N. If for every u € Mon there exists v € Mon such that
Souowve £F, then S € £F.

() const(s) € £ if and only if s =0.
The proof is straightforward and it is omitted. O
The next theorem shows that also the converse assertion is true.

2.3. THEOREM. Let P be a convex G—normal subsemigroup of the semigroup
(GH)N and let (o))—(vy) be fulfilled when £V is replaced by P. Then there exists
£ € Conv G such that £ = P. Moreover, if K € ConvG and K+ = P, then
K=2g.

The proof of Theorem 2.3 is based on the next three lemmas.

2.4. LEMMA. Let P be a convex subsemigroup of the semigroup (G*)N con-
taining const(0) and let S € GN, s € G. Then the following conditions are
equivalent :

(a) |S—s| €eP.

(b) There exist A, B € P such that S=A— B +s.

(¢) There exist A,B € P such that S=—-B+ A+s.
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Proof. (a) implies (b) and (c):

Let |S —s| € P. Let us denote A = (S —s)V0 and B = (s—S) V0. Since
S—s+B=A, wehave S = A— B+ s. Analogously A+ s — S = B gives
S=-B+A+s.8nce 0<A=(5—s)vV0< |S—s| and P is a convex set,
A€ P. Similarly, 0 < B< [s— 5| = |S — 3| gives B € P.

(b) implies (a) (and in the same way also (c) implies (a)):

Let A,B€ P andlet S=A—B+s.Then 0 < |S—s| < |A—B| < A+B+A.
Again, P is convex and thus |S — s| € P. a

2.5. LEMMA. Let P be a convex subsemigroup of the semigroup (G*)N con-
taining const(0) and let S € GN, s € G. Then the following conditions are
equivalent:

(a) |—s+S8| eP.

(b) There exist A,B € P such that S =s+ A — B.

(c) There exist A,B € P such that S=s— B+ A.

Proof. Put A= (—s+S5)Vv0 and B = (—S+s) V0 and continue as in
the previous proof. O

2.6. LEMMA. Let P be a G-normal subset of the set (GT)N and let S € GV,
s€G. Then |S—s| € P ifand only if | — s+ S| € P.

Proof. The assertion follows easily from the fact that s +| — s+ S| =
|S —s|+s. O

The proof of Theorem 2.3.

Let £={(S;s) e GNxG:|S—s| € P} . First we prove that £ € Conv G.
Conditions (i) - (iii) are trivial.

(iv): If (S;a) € £ and (S;b) € £, then |[S—a| € P and |S —b| € P.
Moreover, 0 < |a —b| = [a—S+S—b] < |a—S|+|S —b|+ |a — S| and so
const (Ja —b|) € P. Thus |[a—b] =0 and a = b.

(v): Let (S;s) € £. Then |S—s| € P and by Lemma 2.6 also | —s+ 5| € P.
Therefore (—S;—s) € £.

(ix): Let (R;9) € £, (T;9) € £, S € GN and R < S < T. Accord-
ing to Lemma 2.4 there are elements Ag, Br, Ar, Br in P such that
R=g+Ar—Bpg and T = g— Br + Ar. If we denote by Ag = —g+ S+ Bp and
Bg = Bg, then S =g+ As — Bg. Since Ap=—-9g+R+Br<—-g+S+Bp=
As < —g+ T+ Bgr = —Br +Ar +Bp < A1 + Bg, we obtain Ag € P. By
applying Lemmas 2.5 and 2.6 we have |S — g| € P and thus (S;g) € £.

(vi): Let (R;r) € £ and (S;s) € £. There are A, B, C, D in P such that
R=A-B+r, S=s5—C+D. Let us denote by E and F the sequences
(r+s)+C—(r+s) and (r+s)+ D — (r + s), respectively. Since P is a
convex semigroup and 0 < [R— S —(r+s)| = |[A—B—-E+F| < |A-B| +
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|-E+F|+|A-B|<A+B+A + E+F+E + A+B+A,wehave
(R4 S;r+s)e L.

(vii): Let (R;r) € £ and (S;s) € £. If we denote by Ry = R — r and
S1 =8 —s, then |R1] € P and ISl, € P. Since 0 < |R1 V51| < |R1| + |Sll
and 0 < [Ry ASi| < |Ry|+]S1], then |Ry V Si| € P and |R; A S;| € P. Hence
(B1V S1;0) € £ and (R; A S1;0) € £. Now, RiAS; = (R—7)A(S—s) <
(R—[—(—rV—s))/\(S—{—(—rv—s)) = (RAS)—(rAs) = (RAS—r)V(RAS)—s) <
(R—7)V (S —s) =Ry VS; and by the properties (ix), (iii) and (vi) which we
have proved, (RA S;r As) € £.

(viii): Let (R;r) € £ and (S;s) € £. Since RVS =R—(RAS)+ S, by
applying (vii), (v) and (vi) we obtain (RV S;rVs) € £.

We have verified that £ € ConvG and assuredly £t = P. To complete
the proof let £ € ConvG with K* = P and let (S;s) € K. By Lemma 2.4
|S —s| € Kt and since Kt =P =L*, |S—s| € £+ and thus (S;s) € £. We
have K C £. Analogously, £ C K. O

3. Convergence envelope

In this section of the paper we construct the least convergence in which the
given positive sequences will converge to the neutral element. For groups the
construction has been described by F. Zanolin in [10].

Let A C (G*)N. We will use the following notation :
6A ={S € (G*)N: there exist R € A and u € Mon such that S = Ro u};
(Ay={S e (GT)N: there exist S;,Ss,...,5, € A and g1,99,...,9n € G

such that
S=(g1+S1—01)+(2+S2—g2) + -+ (90 + S0 — gn)};
[A]={S € (G")": there exists T € A such that S < T'};
A*={S € (GH)N: for every u € Mon there is v € Mon such that
Souowv € A}.
31.Remark. [A] = A means that A is a convex set, 64 = A means that A

is closed with respect to subsequences and (A) = A means that A is G-normal
semigroup.

3.2. LEMMA. Let AC B C (G+)N. Then the following assertions are valid:

(a) A C6A. (b) 6(6A4) = 6A. (c) 6A C 6B.
(d) A C(A). (&) ((A)) € (4). (£) (4) C (B).
(g) AC[4]. (h) [[A]] = [4]. (i) [4] € [B].
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(§) 6AC (6A). (k) (A*)* = A~ (1) A* C B*.
(m) 8[4] C [64). () 5(4) C (64). (0) (141) € [(4)].
(p) 6(A*) = A*. () If (A) = 6A = A then (A*) = A*.
(s) If [A] = A then [A*] = A*.
(t) const(s) € A if and only if const(s) € A*.
Proof. We verify only (e), (j), (k), (r) and (s). The proofs of the other
assertions are easy and they are left out.

(e): Let S € {(A)). There are S1, S3,...,5, € (A) and g1,92,...,9n € G
n
such that S = 3. (g; + S; — g;). Foreach i € {1,2,...,n} there are S;1, Si2, ...,

Jj=1 m(i)
Sim(iy € A and gi1,8i2,--+,%im(;) € G such that S; = 3 (g5 + Sij — 9i5)-
j=1
Therefore
S = Z Z ((gz + gi;) + Si; — (i +gij)) and thus S € (A). We obtain <(A)> C

i=1 j=
(A). (d) 1mphes the converse inclusion.

(j): If S € A then there are R € A and u € Mon such that S = Rowu.
Suppose S ¢ (6A)*. Then there exists v € Mon such that for w € Mon we have
Sovow ¢ 6§A. But in this case Rouowv ¢ A, a contradiction with R € A.

(k): First we prove that (A4*)* C A*. Let S € (A*)* and u € Mon. There
exists v; € Mon such that Sowuowv; € A*. Therefore for w € Mon there is
some vy € Mon such that Souov; owowvy, € A. Let us take w € Mon and
a correspondent vy € Mon and pose v = vy ow o vy. Then Souowv € A and
S € A*. Now, contrariwise, suppose that S € A* and S ¢ (A*)*. There exists
u; € Mon such that Sowu;ov ¢ A* for v € Mon. Hence also Sou; ¢ A*.
Then there is uy € Mon such that Sowuj;ouz ov ¢ A whenever v € Mon.
Since S € A*, for u; o ug there exists v € Mon with Souycuzov € 4, a
contradiction.

(r): Let S’ € (A*). There are S1,S5,...,5, € A* and g1,92,.-.,9n € G such
that S = Z(gm + S; — g;). We will show that for each u € Mon there exists

v € Mon such that Souowv € A. Because S; € A*, there is v; € Mon with
Siouowv; € A. Since S € A*, there is v € Mon Wlth Soouoviouy € A.
Consequently, there are vg,...,v, € Mon such that S3owuowv; cvaovg €
A,...,S,ouovy0---0v, € A. Denote vy ovgo---0v, by v. We have A=A

and so Souov =Y (g; +S;iouov—g;) € (A) = A. The converse inclusion is
implied by (d). =1
(s): If S € [A*], then there exists T' € A* such that S <T. For any u € Mon

there exists v € Mon with Touov € A. Now, Souov <Touov € A and
thus Souow € [A] = A. The converse inclusion is implied by (g)- O
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3.3. LEMMA. If 0 # A C (G*)N then [(§4)]" is a convex G-normal subsemi-
group of the semigroup (G+)N containing const(0) and having the properties
(o) and (B).

Proof. (h) and (s) of Lemma 3.2 imply the convexity and by the con-
secutive application of (o), (e), (m), (n), (b), and (r) we obtain that [(§4)]"
is a G—normal subsemigroup of the semigroup (G1)N. From (a), (j), (1) and (i)
one can derive that const(0) € [(§4)]". Finally, (p) implies (@) and (k) im-
plies (B). a
3.4. THEOREM. Let 0 # A C (GN)N. If [(6A)] does not contain const(s)
for any s # 0, then £ = {(S;s): |S —s| € [(64)]"} is the smallest element of
Conv G such that A C £1. In the opposite case there exists no such convergence

on G.

Proof. If [(6A)] does not contain const(s) withs # 0, then by Lemma
3.3 [(64)] * is a convex G-normal subsemigroup of the semigroup (G1)N with
(a)-(vy). By the consecutive application of the assertions of Lemma 2.2 and
(c), (b), (), (e), (1), (h), (1) and (k), [(6A)]* defines the smallest element of
Conv G such that each sequence of A converges to the neutral element of G.
Finally, when const(s) € [(§A4)] for some s # 0 and there is K € ConvG with
A C K, in the same way as before we obtain [(§4)]" C K*. Therefore (t) gives
const(s) € KT and thus s =0, a contradiction. O

4. Normality and G—normality

In this section we show that the conditions of the normality and of the
G-normality are not equivalent, not even if all other defining properties of a
convergence are fulfilled.

The well-known condition of the normality (applied in our case: if S € A C
(GHN and {g,} € G" then {g,} +S — {gn} € A) implies the condition of
G-normality (if S€ A C (GH)N and g € G then also g+ S5 — g € A). Next we
construct an example of an f-group G which possesses a convergence £ such
that the corresponding £% is not a normal subset of (G1)N.

4.1. EXAMPLE. Let G = Z x R% (the set of all ordered pairs where the first
member is an integer and the second one is a function from Z to R ). Put
(k; f(2)) ® (m; g(2)) = (k+m; f(z+m)+g(2)) whenever k,m € Z and f(z),
g(z) € RE. Then (G,®) is a non-abelian group with (0;const(0)) as a neutral
element and &(k; f(2)) = (—k; —f(z — k)) . Wa define an order < on G in the
following way: (k,f(z)) < (m;g(z)) if k<morif k=m and f(2) < g(2)
whenever z € Z. Then (G, ®, <) is an /-group.
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For a sequence { fn(z)}:):l of elements of R we denote by c(f,) a set of
all integers z for which {n € N: fo(z) # 0} is infinite; c(f,) will be called the
carrier of f.

Let A be a subset of GN such that (k; fs (z));ozl € A if and only if there
exists mg € N such that for each n € N the relation n > ng implies k, = 0 and
¢(fr) is finite and for each z € ¢(f,,) the real sequence ( fn (z)) converges to
zero in the sense of usual metric convergence on R.

o0
n=1

4.2. LEMMA. We have §A = (A) = [A] = A and A contains only one constant
sequence, namely, const (0; const(0)).

The proof of the lemma is straightforward and we omit it. O

By Theorem 3.4 the set A is a positive cone of a convergence on the ¢-group
G and so A is G-normal.

Now, it suffices to take for example a sequence {d,,}°2;, where d,, denotes
the number of zeros in the decimal representation of n and functions defined by

1 ifz=0,
f”(z)"{o, 2540,

It is easy to see that {(O; fn(z)) }2021 is a sequence from A. But

{(dn; const ()}, 2, @ { (0 /n(2))},2, © {(dmjcomst(0))};2, = {(0;falz -
dn))}zo:l. If we denote g,(z) = fn(z —d,), then

. %, if z =d,,
St (FVREET Y

o0

Therefore the carrier of the sequence g, is infinite and thus {(0;gn(2))}
does not belong to A.

n=1
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