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ABSTRACT. In this paper we introduce the class of principal p-algebras which
contains all quasi-modular p-algebras having a smallest dense element. We present
a simple triple construction of principal p-algebras which works with pairs of
elements only. We show that a principal p-algebra is locally affine complete (in
the sense of [P 1972]) iff it is a Boolean algebra, and consequently, that finite
Boolean algebras are the only finite affine complete principal p-algebras.

1. Introduction

The study of pseudocomplemented lattices or shortly p-algebras has a long
tradition in lattice theory (see, e.g., [G 1971] or a survey paper [Ka 1980]).
The best known examples of p-algebras are the Boolean and Stone algebras. In
[Ka-Me 83] the class of quasi-modular p-algebras was introduced and a triple
construction of all its members was presented. In this paper we introduce the
class of principal p-algebras which contains all quasi-modular p-algebras having
a smallest dense element, i.e., it also generalizes the Boolean algebras.

We first present a simple triple construction of any member of the class of
principal p-algebras (Theorems 3.2 and 3.5), which for this class means a sim-
plification of the general construction presented in [Ka-Me 1983]. Our construc-
tion works with pairs of elements only. In fact, it extends to a larger class the
triple construction of P. Kéhler [K6 1978] for distributive p-algebras having a
smallest dense element. We show that there exists a one-to-one correspondence
between the principal p-algebras and so-called principal triples (Theorem 3.8,
Proposition 3.9), i.e., that the principal triples uniquely represent the principal
p-algebras.

In the second part of the paper we show that if a principal p-algebra L is
(locally) affine complete, then its dense filter D(L) is a (locally) affine complete
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lattice generalizing a result from [Ha 1992] concerning distributive p-algebras
having a smallest dense element (Theorem 4.3). As consequences we get that
a principal p-algebra is locally affine complete (in the sense of [P 1972]) iff it
is a Boolean algebra, and that finite Boolean algebras are the only finite affine
complete principal p-algebras.

2. Preliminaries

A pseudocomplemented lattice (or p-algebra) is an algebra (L;V,A*,0,1)
where (L;V,A,0,1) is a bounded lattice and * is the unary operation of
pseudocomplementation, i.e., z < a* iff £ Aa = 0. We say that a p-algebra
(L;V,A*,0,1) is distributive (modular) if the corresponding lattice (L;V, A,0,1)
is distributive (modular).

In a p-algebra L, an element ¢ € L is called closed if a = a**. The set
B(L) ={a € L; a = a**} of all closed elements of L forms a Boolean algebra

(B(L); 7, A, 0, 1) where the join 7 is defined by the rule
ayb=(a"Ab")" = (a V).

An element d € L is said to be dense if d* = 0. The set D(L) = {d € L;
d* = 0} of all dense elements of L is a filter of L.

An important role in a p-algebra L is played by the Glivenko congruence ®
defined by z = y(®) iff z* = y* for all z,y € L. Obviously, B(L) = L/®.

We recall that a Stone algebra is a distributive p-algebra satisfying the Stone
identity

z*Vzt=1. (S)

In general, elements z of p-algebras satisfying (S) are called Stone elements and
p-algebras satisfying (S) are called S-algebras. One can show that in an S-algebra
L, B(L) is a subalgebra of L, hence (z Ay)* =z* vV y*.

Besides distributive and modular p-algebras, a larger variety of quasi-modular
p-algebras is interesting to investigate (see [Ka-Me 1983]). This subvariety of
p-algebras is defined by the identity

((zAy)V2*) Az =(zAy)V (2" Az).

It is known (see [Ka-Me 1983; 6.1]) that quasi-modular p-algebras satisfy the
identity

z=z" A(zVz"),
which can be obviously weakened to the equation z = z** A (z V d) in the case
the filter D(L) is principal and D(L) = [d). In the next definition, p-algebras
abstracting quasi-modular p-algebras with principal filter D(L) are introduced:
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2.1 DEFINITION. A p-algebra:(L;V,A,*,0,1) is called a principal p-algebra,
if it satisfies the following conditions:

(i) the filter D(L) is principal, i.e., there exists d € L such that

D) =ld); |
(ii) the element d is distributive, i.e., (zAy)Vd=(zVd)A(yVd)
for all z,y € L;

(i) z=z*A(zVvd) forany z € L.
If L moreover satisfies the identity (S), z* V ** = 1, then it will be called a
principal S-algebra.

2.2 Example. The following algebras are examples of principal p-algebras
(S-algebras):

1. Any Boolean algebra is a principal S-algebra (a* := a’).
2. Any finite distributive lattice is a principal p-algebra.

3. Heyting algebras (H;V,A,*,0,1) having a smallest element d such that
d 0 =0 are distributive principal p-algebras.

4. A p-algebra depicted in Figure 1 is a non-distributive modular principal
S-algebra.

FIGURE 1 FIGURE 2

5. A non-modular principal S-algebra is depicted in Figure 2. One can easily
verify that it is quasi-modular.

6. All quasi-modular p-algebras of which filter D(L) is principal are principal
p-algebras. We have already mentioned that these algebras satisfy (iii)
above. In [Mu-En 1986; Theorem 5] it is shown that the filter D(L) of a
quasi-modular p-algebra L is a neutral element in the lattice F'(L) of all
filters of L. Soif D(L) = [d), then for all z,y € L, ([z)V[y))Ald) = ([z)A
[@))V ([y)Ald)) holds in F(L). Consequently, (zAy)Vd = (zVd)A(yVd)
for all =,y € L, thus (ii) of Definition 2.1 is satisfied too.
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7. Take an arbitrary lattice L with 1 and add a new zero 0. Then K = LU{0}
is a principal S-algebra.

8. A p-algebra L in Figure 3 is a principal p-algebra which is not quasi-
modular, since [(a A f)Va*] Aa# (aA f)V (a* Aa). This algebra will be
used in Example 3.6 to illustrate the triple construction of the principal
p-algebras.

FiGURE 3.

Finally, we note that principal p-algebras belong to the class of so-called
filter-decomposable p-algebras introduced in [Ka-Me 1983].

Now let us turn to (local) affine completeness. First recall that an n-ary

function f on an algebra A is called compatible if it preserves the congruences
of A, i.e.,

T4 Ey1(9)7 (ziayi = A)v 1= 17"'7”

yields
fly, - zn) = fys, -, yn)(0)

for any congruence 6 of A. Clearly, every polynomial function of A is compati-
ble. An algebra A is called affine complete if the polynomial functions of A are
the only compatible functions ([W 1971]). Further, an algebra A is said to be
locally affine complete if any finite partial function in A™ — A (i.e., a function
whose domain is a finite subset of A™) which is compatible (where defined) can
be interpolated by a polynomial of A (see, e.g., [P 1972] or [Kaa-P 1987]; note
that in [Sz 1986] or [Kaa-Ma-S 1985] the notion “locally affine complete” has a
different meaning).
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3. Construction

The principal p-algebras, introduced in the previous section, satisfy the equa-
tion z = 2™ A (z vV d) for any element z. In general, p-algebras L having the
property that for every = € L there exists d € D(L) such that

z=z"*ANd

form the largest known class of p-algebras that can be constructed by a triple
construction —see [Ka-Me 1983].

The construction in [Ka-Me 1983] works with pairs of elements (B(L) x
D(L)/ad'®) wpeCon D(L) OT B(L) x F(D(L)), i.e., it uses congruence classes or
filters. In this section we present for the class of principal p-algebras a simple
variant of this construction using only pairs of elements of B(L) x D(L).

The triples associated with the principal p-algebras can abstractly be char-
acterized as follows:

3.1 DEFINITION. An (abstract) principal triple is (B, D, ), where
(i) B=(B;V,A,,0,1) is a Boolean algebra;
(i) D= (D;V,A,0,1) is a bounded lattice;
(iii) ¢ is a (0,1)-meet-homomorphism from B into D.
The construction presented in the next theorem will be called a principal con-
struction.

3.2 THEOREM. Let (B,D,p) be a principal triple. Then

L={(z,y) e BxD; y<p(z)}

is a principal p-algebra if one defines

(z1,91) V (22,92) = (z1 V 22,91 V ¥2),
(T1,91) A (22, 92) = (T2 A 2,91 Ay2),
(z,9)" = (z',0(z")),
1. =(1B,1p),
0r = (05,0p).

Moreover, B(L) = B and D(L) = D.

Proof. Let (z1,y1), (%2,y2) € L. Since ¢ is a (0, 1)-meet-homomorphism,
we have y1 A yz < @(z1) A p(x2) = @(z1 A 22), Op = ¢(0p) and 1p = ¢(15).
Further, for i = 1,2, y; < o(z;) < p(z1 V z3), since ¢ is order-preserving.
Hence y; Vys < o(z1 V z2) and L is a bounded sublattice of B x D. Now
assume that (z,y) A (z,w) = (05,0p), (2,w) € L. Then z A 2=0g,s0 2 <z’
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and w < ¢(z) < (p(:l: ), ie., (z,w) < (2',0(z")) . Obviously, (z,y)A (', 0(z")) <
(zAd!,o(x) Ap(z')) = OB,OD) Hence (2, (z')) is the pseudocomplement of
(:z;,y) and L is a p-algebra.

To show that the filter D(L) is principal, note first that

D(L) = {(z,y) € L; (z,y)*= (05,0p) } = {(z,y) € L; (z',0(z")) = (05,0p)} =
={(1p,y); ye D} = D.

Now clearly, dr, = (1p,0p) is the sinallest dense element of L. Further, for any
(1:7 y)? (ZJ w) E L

((z,y) A (z,w)) V (1,0p) = ((zA2) Vig, (yAw)VOp) = (1p,yAw) =
| = ((=,9) v (18,00)) A (@) V (15,00))
thus dj, is a distributive element. Finally, for any (z,y) € L,
(z,9)*™ A ((z,y) vV (15,0p)) = (z",0(z")) A(zV 1B,y VOp) =
= (z,0(z)) A (1Y) = (z,9)-

Hence L satisfies also the condition (iii) of Definition 2.1, thus L is a principal
p-algebra. It remains to show that B(L) & B. But

B(L) = {(=,) € L; (z,9) = (&,9)"} = {(z,9) € L; (z,9) = (2", p(z"))} =
= {(:zs,y) €BxD;y= cp(a:)} = {(I,(p(l‘)); T E B} ,
which is evidently isomorphic to B. The proof is complete. O

3.3 PROPOSITION ([O 1935]). Let L be any lattice and d € L. The following
conditions are equivalent:

(1) The element d is distributive;
(2) The mapping
p:z—zVd (z€lL)
is a homomorphism of the lattice L onto the filter [d);
(3) The binary relation 64 defined on L by the rule
z=y(0y) if zvd=yVvd
is a congruence of L.
3.4 DEFINITION. Let L be a principal p-algebra with a smallest dense element
dy . By a triple associated to L we mean the triple (B(L) D(L), (L)), where

(i) B(L) = (B(L),v,A *,0r,1;) is the Boolean algebra of all closed
elements of L;

(i) D(L) = (D(L), V,A,dr,11) is the filter of all dense elements of L;
(iii) (L) : B(L) — D(L) is a mapping defined by the rule ¢(z) =z Vdr.
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Proposition 3.3 guarantees that the mapping ¢(L) defined above is a meet-
homomorphism from B(L) into D(L), hence the triple associated to a principal
p-algebra is principal.

Now we shall show that every principal p-algebra can be constructed from
its associated triple by the principal construction.

3.5 THEOREM. Let L be a principal p-algebra. Let (B(L), D(L),¢(L)) be
its associated triple and let L' be the principal p-algebra constructed from
(B(L), D(L), (L)) by the principal construction. Then L and L' are isomor-

phic.
Proof. We shall show that the mapping f: L — L’ defined by
fla)=(a* aVvdyL)

is the desired isomorphism. Obviously, f(a) € L’ because a V dr < p(a*™*) =
a™ V dy,. Further, since dj, is a distributive element

flanb) = ((@aAb)** (anb)Vdr) = (a** Ab*™ (aVdL)A(bVdL)) =
= (a*,aVdp) A (b, bV dy) = fla) A f(b),

thus f is a meet-homomorphism. By the definition of the join v in B(L) we
have

flavd)= ((avbd)*,avbvdy) = (a** v b™,aVbVvdy) = f(a)V f(b).
Finally,
fl@*) = (@™, a" vdr) = (a”, p(a")) = f(a)",
f(OL) = (OL,dL) = OL/ and f(lL) = (lL, 1L) = ]—L'-

Hence f is a (0, 1)-lattice homomorphism from L into L’. To prove the injec-
tivity of f, suppose that f(a1) = f(az2). Then ai* = a3* and a1 Vdr = a3 Vdy,
thus ai* A (a1 Vdr) = a5*A(a2Vdyr). Hence by the (iii) of Definition 1, a; = as.
It remains to show that f is an onto map. Let (u,v) € L', ie., u € B(L),
v e D(L), v <¢(u). Put @ =uAv. Then again by the distributivity of d;, and
standard rules of computation we get

fla) = ((u/\v)**, (u Av) \/dL) = (u** AV (uVdp) A (v VdL)) =
= (uAlg,(wVdy) Av) = (u,0(u) Av) = (u,v),
and the proof is finished. O

3.6 EXAMPLE. Take the non-quasi-modular principal p-algebra L in Figure 3.
Obviously, the triple associated to L is (B(L), D(L), (L)), where

B(L) = {O’ a,a’, 1} )
D(L) = [d)
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and
‘P(L) = {(O’d)’ (a>b)’ (CL*,C), (171)}'

By the principal construction we get the principal p-algebra
L=1{(0,d), (a*,d), (a*,¢), (a,d), (a,e), (a,b), (1,d), (1,¢), (L,e), (1,b), (1,1)}
which is isomorphic to L by Theorem 3.5.

Finally, we shall show that the principal p-algebras are represented by the
principal triples uniquely.

3.7 DEFINITION. By an isomorphism of the principal triples (By, D1, 1) and
(B2, D, p2) we shall call a pair of maps (f,g) such that f is an isomorphism
of B; and Bj, g is an isomorphism of D; and D5 and the diagram

BlLDl

7| J2
Bz L DQ

is commutative.

3.8 THEOREM. Two principal p-algebras are isomorphic if and only if their
associated principal triples are isomorphic.

Proof. If Lj = Ly under a p-algebra-isomorphism h, then obviously the
restrictions h [ B(Ly) and h [ D(L) form the required pair of isomorphisms.
Conversely, let (B1, D1,¢1) and (B, D2, @2) be the triples associated to prin-
cipal p-algebras L; and Lq, and let these triples be isomorphic under a pair

(f,g). Let L} and L}, respectively, denote the principal p-algebras constructed
from these triples by the principal construction. Define a map h: L{ — L) by

the rule h((x,y)) = (f(m),g(y)) . Obviously, h is a bijection as well as a lattice
homomorphism because f and g are so. Finally,

h((z,9)") = h((z", 01(27))) = (F(z*), 9(e1(c"))) = (f(*), pa(f(z*))) =
= (f(@)*, e2(f(2)") = (f(2),9(¥))" = h((z,))".
The rest of the proof follows from Theorem 3.5. O

It is important to answer a question whether or not a principal p-algebra can
be constructed by the présented construction from two non-isomorphic triples as
well. We shall show that this is not the case. Thus a one-to-one correspondence
between principal p-algebras and principal triples can be stated.
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3.9 PROPOSITION. Let (B, D, ) be a principal triple and let L be a principal
p-algebra constructed from (B, D, ) by the principal construction. Then

(B(L), D(L), (L)) = (B, D, ) -

Proof. In Theorem 3.2 we have shown that the maps f: B(L) — B,
f((z,y)) =z and g: D(L) — D, 9((z,y)) = y are isomorphisms. So it remains
to show that the diagram

BL) 2 pr)

fl lg

B —f
is commutative. Obviously, any (z,y) € B(L) is of the form (z,¢(z)) for some
z € B. S0 g(0(Z)((2,¢(2)))) = 9((z V 15,6(2) V 0p)) = ({15, () =

o(z) = go(f((:r, Lp(:n)))) . The proof is complete. |

4. On (local) affine completeness

A basic tesult of G. Gritzer says that every Boolean algebra is affine
complete ([G 1962]). In ([P 1979]) it was shown that a variety is arithmetical
iff it is locally affine complete. This means that every Boolean algebra is also
locally affine complete.

The following propositions can be considered as a part of folklore:

4.1 PROPOSITION. A lattice L is locally affine complete iff |L| = 1.

Proof. Let L be locally affine complete and let a,b € L, a < b. The
function f = {(a,b), (b, a)} is a finite partial compatible function on L, thus by
hypothesis it can be interpolated on {a,b} by a polynomial of L which obviously
is an isotone function. But we have f(a) =b, f(b) = a, a contradiction. a

4.2 PROPOSITION. A finite lattice L is affine complete iff |L| = 1.

Proof. If [a,b] is a (two-element) Boolean interval in a finite lattice L
then the function f(z) = [(zVa)A b]l is compatible, but not isotone. O

In [Ha 1992] it was shown that if a distributive p-algebra L with a smallest
dense element is affine complete, then its dense filter D(L) is an affine complete
distributive lattice, i.e., no proper interval of D(L) is a Boolean algebra. The
method of the proof was based on a special canonical form of the polynomials
of a distributive p-algebra found by the author. Using a different approach, we
now generalize this result to the class of principal p-algebras:
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4.3 THEOREM. Let L be a principal p-algebra. If L is (locally) affine complete
then D(L) is a (locally) affine complete Iattice.

Proof. Let L be affine complete and f': D(L)* — D(L) be an n-ary
compatible function of the lattice D(L) (n > 1). Define a function f: L™ — L
by the rule

flzy,...,zn) = (@1 Vd,...,z,Vd).

Obviously, f [ D(L)® = f' and f is a compatible function of the alge-
bra L. Indeed, if 6 is a congruence of L and z; = v;(0), 5, y; € L, i =
L...,n,then z; Vd =y, vd (0| D(L)), so fl(z1Vvd,...,z,Vd) = f'(y V
d,...,ynVd) (6’ i D(L)) since f' is compatible on D(L). Hence, f(zy,...,z,) =
f(1,...,9n) (0) and f is compatible. Thus by the assumption, there ex-
ists a polynomial p(zi,...,z,) of L representing f on L. Using the for-
mulas (z Ay)* = z* v y*, (zVy)* = (¥ vy™)* = z2* Ay*, we can
rewrite the polynomial p(z1,...,2,) as a polynomial py(z1,...,zn, z¥,...,z¥,
1%, ..., z;") of the partial algebra (L;V,A,v/,*,0,1) where pi(zy,...,2s,)
is a polynomial of its reduct L; = (L;V,A,v,0,1) only. Here, of course, the
partial operation ¥/ is defined for closed elements only. Now, if aq,...,am
denote all constant symbols appearing in p;, then p; can be expressed as
a term t1(z1,...,%n, 1,..., Th, T35, ..., T2 aq, ..., am) of the partial alge-
bra (L;V,A,v,*,0,1, a1,...,am) where t1(zy,..., T3p1m) is a term of the
partial algebra L; = (L;V,A,v,0,1). Since for z;,...,z, € D(L) we have
fl(z1,...,2zn) = f(z1,...,2,) and ¥ =0, * =1, i = 1,...,n, the func-
tion f’ can be represented on D(L) by a term t;(z1,...,%,, 0,...,0, 1,...,1,
ai,...,am) of the algebra (L;V,A,v/,0,1, a1,...,a). Since in ty(z1,...,z,,
0,...,0, 1,...,1, ai,..., amy) the operation symbols 7 join constant sym-
bols only, they can be omitted by replacing each subterm of the form a; 7 Wiy
(ai, aj € {a1,...,an}U{0,1}) by a new constant symbol b denoting the element
a;VVa; € B(L). Thus f’ can be represented by a term ta(z1,...,zn, by,...,bs)
of an algebra (L;V,A,b1,...,b;), (b1,...,by € L) where to(z1,...,Tnik) is a
term of the lattice Ly = (L;V,A) only. Hence for any zi,...,z, € D(L) we
have f'(z1,...,%n) = ta(z1,...,2p, by,...,bk) = ta(Z1,..., 2, b1,...,bx) Vd
as f'(z1,...,2,) € D(L). Since d is a distributive element, the mapping
¢: L — D(L), p(z) = zVd is a lattice homomorphism by Proposition 3.3. Thus
for z1,...,2, € D(L) we get f'(z1,...,2,) = go(tg(ml, <855 D5 s ,bk)) =
to ((,0(:51), oo o(zn), e(br), ..., Lp(bk)) =ta(z1Vd, ..., 2, Vd, b1 Vd,...,bVd) =
p2(z1,...,%,) where ps is a polynomial of the lattice (D(L),V,A). Hence the
function f is a polynomial function of the lattice D(L), which was to be proved.

Note that if L is locally affine complete and f’ is a finite partial compatible
function of D(L), then f = f’ is a finite partial compatible function of the
algebra L, too. Hence by hypothesis, there is a polynomial p(z1,...,2,) of
L interpolating f on its finite domain. By the same procedure as above one
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can show that the restriction of p(zi,...,z,) to the domain of f = f' is a
polynomial of the lattice D(L). O

4.4 COROLLARY. A principal p-algebra is locally affine complete if and only
if it is a Boolean algebra.

Proof. From the construction presented in Section 3 it follows that L is a
sublattice of B(L) x D(L).If L is locally affine complete, then D(L) is a locally
affine complete lattice by 4.3, hence |D(L)| =1 by 4.1. Consequently, L is a
Boolean algebra. O

4.5 COROLLARY. Finite Boolean algebras are the only finite affine complete
principal p-algebras.
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