

CONSTRUCTION AND AFFINE COMPLETENESS OF PRINCIPAL P-ALGEBRAS

MIROSLAV HAVIAR

Dedicated to Professor J. Jakubík on the occasion of his 70th birthday

ABSTRACT. In this paper we introduce the class of principal p-algebras which contains all quasi-modular p-algebras having a smallest dense element. We present a simple triple construction of principal p-algebras which works with pairs of elements only. We show that a principal p-algebra is locally affine complete (in the sense of [P 1972]) iff it is a Boolean algebra, and consequently, that finite Boolean algebras are the only finite affine complete principal p-algebras.

1. Introduction

The study of pseudocomplemented lattices or shortly p-algebras has a long tradition in lattice theory (see, e.g., [G 1971] or a survey paper [Ka 1980]). The best known examples of p-algebras are the Boolean and Stone algebras. In [Ka-Me 83] the class of quasi-modular p-algebras was introduced and a triple construction of all its members was presented. In this paper we introduce the class of principal p-algebras which contains all quasi-modular p-algebras having a smallest dense element, i.e., it also generalizes the Boolean algebras.

We first present a simple triple construction of any member of the class of principal p-algebras (Theorems 3.2 and 3.5), which for this class means a simplification of the general construction presented in [Ka-Me 1983]. Our construction works with pairs of elements only. In fact, it extends to a larger class the triple construction of P. Köhler [Kö 1978] for distributive p-algebras having a smallest dense element. We show that there exists a one-to-one correspondence between the principal p-algebras and so-called principal triples (Theorem 3.8, Proposition 3.9), i.e., that the principal triples uniquely represent the principal p-algebras.

In the second part of the paper we show that if a principal p-algebra L is (locally) affine complete, then its dense filter D(L) is a (locally) affine complete

AMS Subject Classification (1991): 06D15, 06D30. Key words: compatible function, (locally) affine complete algebra, (principal) p-algebra.

MIROSLAV HAVIAR

lattice generalizing a result from [Ha 1992] concerning distributive p-algebras having a smallest dense element (Theorem 4.3). As consequences we get that a principal p-algebra is locally affine complete (in the sense of [P 1972]) iff it is a Boolean algebra, and that finite Boolean algebras are the only finite affine complete principal p-algebras.

2. Preliminaries

A pseudocomplemented lattice (or p-algebra) is an algebra $(L; \vee, \wedge, *, 0, 1)$ where $(L; \vee, \wedge, 0, 1)$ is a bounded lattice and * is the unary operation of pseudocomplementation, i.e., $x \leq a^*$ iff $x \wedge a = 0$. We say that a p-algebra $(L; \vee, \wedge, *, 0, 1)$ is distributive (modular) if the corresponding lattice $(L; \vee, \wedge, 0, 1)$ is distributive (modular).

In a p-algebra L, an element $a \in L$ is called *closed* if $a = a^{**}$. The set $B(L) = \{a \in L; a = a^{**}\}$ of all closed elements of L forms a Boolean algebra $(B(L); \nabla, \wedge, ^*, 0, 1)$ where the join ∇ is defined by the rule

$$a \nabla b = (a^* \wedge b^*)^* = (a \vee b)^{**}.$$

An element $d \in L$ is said to be *dense* if $d^* = 0$. The set $D(L) = \{d \in L; d^* = 0\}$ of all dense elements of L is a filter of L.

An important role in a p-algebra L is played by the Glivenko congruence Φ defined by $x \equiv y(\Phi)$ iff $x^* = y^*$ for all $x, y \in L$. Obviously, $B(L) \cong L/\Phi$.

We recall that a $Stone\ algebra$ is a distributive p-algebra satisfying the $Stone\ identity$

$$x^* \vee x^{**} = 1$$
. (S)

In general, elements x of p-algebras satisfying (S) are called *Stone elements* and p-algebras satisfying (S) are called *S-algebras*. One can show that in an S-algebra L, B(L) is a subalgebra of L, hence $(x \wedge y)^* = x^* \vee y^*$.

Besides distributive and modular p-algebras, a larger variety of quasi-modular p-algebras is interesting to investigate (see [Ka-Me 1983]). This subvariety of p-algebras is defined by the identity

$$((x \wedge y) \vee z^{**}) \wedge x = (x \wedge y) \vee (z^{**} \wedge x).$$

It is known (see [Ka-Me 1983; 6.1]) that quasi-modular p-algebras satisfy the identity

$$x = x^{**} \wedge (x \vee x^*),$$

which can be obviously weakened to the equation $x = x^{**} \wedge (x \vee d)$ in the case the filter D(L) is principal and D(L) = [d). In the next definition, p-algebras abstracting quasi-modular p-algebras with principal filter D(L) are introduced:

- **2.1 DEFINITION.** A p-algebra $(L; \vee, \wedge, *, 0, 1)$ is called a *principal p-algebra*, if it satisfies the following conditions:
 - (i) the filter D(L) is principal, i.e., there exists $d \in L$ such that D(L) = [d);
 - (ii) the element d is distributive, i.e., $(x \wedge y) \vee d = (x \vee d) \wedge (y \vee d)$ for all $x, y \in L$;
 - (iii) $x = x^{**} \land (x \lor d)$ for any $x \in L$.

If L moreover satisfies the identity (S), $x^* \vee x^{**} = 1$, then it will be called a principal S-algebra.

- **2.2 Example.** The following algebras are examples of principal p-algebras (S-algebras):
 - 1. Any Boolean algebra is a principal S-algebra $(a^* := a')$.
 - 2. Any finite distributive lattice is a principal p-algebra.
 - 3. Heyting algebras $(H; \vee, \wedge, *, 0, 1)$ having a smallest element d such that d*0=0 are distributive principal p-algebras.
 - 4. A p-algebra depicted in Figure 1 is a non-distributive modular principal S-algebra.

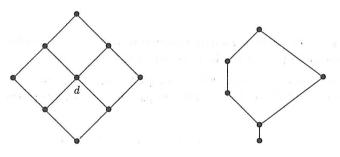


FIGURE 1

FIGURE 2

- 5. A non-modular principal S-algebra is depicted in Figure 2. One can easily verify that it is quasi-modular.
- 6. All quasi-modular p-algebras of which filter D(L) is principal are principal p-algebras. We have already mentioned that these algebras satisfy (iii) above. In [Mu-En 1986; Theorem 5] it is shown that the filter D(L) of a quasi-modular p-algebra L is a neutral element in the lattice F(L) of all filters of L. So if D(L) = [d), then for all $x, y \in L$, $([x) \lor [y)) \land [d) = ([x) \land [d)) \lor ([y) \land [d))$ holds in F(L). Consequently, $(x \land y) \lor d = (x \lor d) \land (y \lor d)$ for all $x, y \in L$, thus (ii) of Definition 2.1 is satisfied too.

MIROSLAV HAVIAR

- 7. Take an arbitrary lattice L with 1 and add a new zero 0. Then $K = L \cup \{0\}$ is a principal S-algebra.
- 8. A p-algebra L in Figure 3 is a principal p-algebra which is not quasimodular, since $[(a \wedge f) \vee a^*] \wedge a \neq (a \wedge f) \vee (a^* \wedge a)$. This algebra will be used in Example 3.6 to illustrate the triple construction of the principal p-algebras.

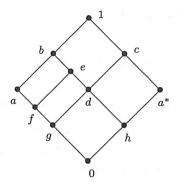


FIGURE 3.

Finally, we note that principal p-algebras belong to the class of so-called filter-decomposable p-algebras introduced in [Ka-Me 1983].

Now let us turn to (local) affine completeness. First recall that an n-ary function f on an algebra A is called compatible if it preserves the congruences of A, i.e.,

$$x_i \equiv y_i(\theta), (x_i, y_i \in A), i = 1, \dots, n$$

yields

$$f(x_1,\ldots,x_n)\equiv f(y_1,\ldots,y_n)(\theta)$$

for any congruence θ of A. Clearly, every polynomial function of A is compatible. An algebra A is called *affine complete* if the polynomial functions of A are the only compatible functions ([W 1971]). Further, an algebra A is said to be locally affine complete if any finite partial function in $A^n \to A$ (i.e., a function whose domain is a finite subset of A^n) which is compatible (where defined) can be interpolated by a polynomial of A (see, e.g., [P 1972] or [Kaa-P 1987]; note that in [Sz 1986] or [Kaa-Ma-S 1985] the notion "locally affine complete" has a different meaning).

3. Construction

The principal p-algebras, introduced in the previous section, satisfy the equation $x = x^{**} \wedge (x \vee d)$ for any element x. In general, p-algebras L having the property that for every $x \in L$ there exists $d \in D(L)$ such that

$$x = x^{**} \wedge d$$

form the largest known class of p-algebras that can be constructed by a triple construction—see [Ka-Me 1983].

The construction in [Ka-Me 1983] works with pairs of elements $(B(L) \times D(L)/a'\overline{\varphi})_{a'\overline{\varphi} \in \text{Con } D(L)}$ or $B(L) \times F(D(L))$, i.e., it uses congruence classes or filters. In this section we present for the class of principal p-algebras a simple variant of this construction using only pairs of elements of $B(L) \times D(L)$.

The triples associated with the principal p-algebras can abstractly be characterized as follows:

- **3.1 DEFINITION.** An (abstract) principal triple is (B, D, φ) , where
 - (i) $B = (B; \vee, \wedge, ', 0, 1)$ is a Boolean algebra;
 - (ii) $D = (D; \vee, \wedge, 0, 1)$ is a bounded lattice;
 - (iii) φ is a (0,1)-meet-homomorphism from B into D.

The construction presented in the next theorem will be called a *principal construction*.

3.2 THEOREM. Let (B, D, φ) be a principal triple. Then

$$L = \{(x, y) \in B \times D; \ y \le \varphi(x)\}$$

is a principal p-algebra if one defines

$$(x_1, y_1) \lor (x_2, y_2) = (x_1 \lor x_2, y_1 \lor y_2),$$

$$(x_1, y_1) \land (x_2, y_2) = (x_1 \land x_2, y_1 \land y_2),$$

$$(x, y)^* = (x', \varphi(x')),$$

$$1_L = (1_B, 1_D),$$

$$0_L = (0_B, 0_D).$$

Moreover, $B(L) \cong B$ and $D(L) \cong D$.

Proof. Let (x_1,y_1) , $(x_2,y_2) \in L$. Since φ is a (0,1)-meet-homomorphism, we have $y_1 \wedge y_2 \leq \varphi(x_1) \wedge \varphi(x_2) = \varphi(x_1 \wedge x_2)$, $0_D = \varphi(0_B)$ and $1_D = \varphi(1_B)$. Further, for $i=1,2,\ y_i \leq \varphi(x_i) \leq \varphi(x_1 \vee x_2)$, since φ is order-preserving. Hence $y_1 \vee y_2 \leq \varphi(x_1 \vee x_2)$ and L is a bounded sublattice of $B \times D$. Now assume that $(x,y) \wedge (z,w) = (0_B,0_D),\ (z,w) \in L$. Then $x \wedge z = 0_B$, so $z \leq x'$

and $w \leq \varphi(z) \leq \varphi(x')$, i.e., $(z, w) \leq (x', \varphi(x'))$. Obviously, $(x, y) \wedge (x', \varphi(x')) \leq (x \wedge x', \varphi(x) \wedge \varphi(x')) = (0_B, 0_D)$. Hence $(x', \varphi(x'))$ is the pseudocomplement of (x, y) and L is a p-algebra.

To show that the filter D(L) is principal, note first that

$$D(L) = \{(x,y) \in L; (x,y)^* = (0_B, 0_D)\} = \{(x,y) \in L; (x', \varphi(x')) = (0_B, 0_D)\} = \{(1_B, y); y \in D\} \cong D.$$

Now clearly, $d_L = (1_B, 0_D)$ is the smallest dense element of L. Further, for any $(x, y), (z, w) \in L$

$$((x,y) \wedge (z,w)) \vee (1_B,0_D) = ((x \wedge z) \vee 1_B, (y \wedge w) \vee 0_D) = (1_B,y \wedge w) =$$

$$= ((x,y) \vee (1_B,0_D)) \wedge ((z,w) \vee (1_B,0_D)),$$

thus d_L is a distributive element. Finally, for any $(x, y) \in L$,

$$(x,y)^{**} \wedge ((x,y) \vee (1_B,0_D)) = (x'',\varphi(x'')) \wedge (x \vee 1_B, y \vee 0_D) =$$
$$= (x,\varphi(x)) \wedge (1_B,y) = (x,y).$$

Hence L satisfies also the condition (iii) of Definition 2.1, thus L is a principal p-algebra. It remains to show that $B(L) \cong B$. But

$$B(L) = \{(x,y) \in L; (x,y) = (x,y)^{**}\} = \{(x,y) \in L; (x,y) = (x'',\varphi(x''))\} = \{(x,y) \in B \times D; y = \varphi(x)\} = \{(x,\varphi(x)); x \in B\},$$

which is evidently isomorphic to B. The proof is complete.

- **3.3 PROPOSITION** ([O 1935]). Let L be any lattice and $d \in L$. The following conditions are equivalent:
 - (1) The element d is distributive;
 - (2) The mapping

$$\varphi: x \to x \lor d \quad (x \in L)$$

is a homomorphism of the lattice L onto the filter [d);

(3) The binary relation θ_d defined on L by the rule

$$x \equiv y(\theta_d)$$
 iff $x \lor d = y \lor d$

is a congruence of L.

- **3.4 DEFINITION.** Let L be a principal p-algebra with a smallest dense element d_L . By a triple associated to L we mean the triple $(B(L), D(L), \varphi(L))$, where
 - (i) $B(L) = (B(L), \nabla, \wedge, *, 0_L, 1_L)$ is the Boolean algebra of all closed elements of L;
 - (ii) $D(L) = (D(L), \vee, \wedge, d_L, 1_L)$ is the filter of all dense elements of L;
 - (iii) $\varphi(L): B(L) \to D(L)$ is a mapping defined by the rule $\varphi(x) = x \vee d_L$.

Proposition 3.3 guarantees that the mapping $\varphi(L)$ defined above is a meethomomorphism from B(L) into D(L), hence the triple associated to a principal p-algebra is principal.

Now we shall show that every principal p-algebra can be constructed from its associated triple by the principal construction.

3.5 THEOREM. Let L be a principal p-algebra. Let $(B(L), D(L), \varphi(L))$ be its associated triple and let L' be the principal p-algebra constructed from $(B(L), D(L), \varphi(L))$ by the principal construction. Then L and L' are isomorphic.

Proof. We shall show that the mapping $f: L \to L'$ defined by

$$f(a) = (a^{**}, a \vee d_L)$$

is the desired isomorphism. Obviously, $f(a) \in L'$ because $a \vee d_L \leq \varphi(a^{**}) = a^{**} \vee d_L$. Further, since d_L is a distributive element

$$f(a \wedge b) = ((a \wedge b)^{**}, (a \wedge b) \vee d_L) = (a^{**} \wedge b^{**}, (a \vee d_L) \wedge (b \vee d_L)) = (a^{**}, a \vee d_L) \wedge (b^{**}, b \vee d_L) = f(a) \wedge f(b),$$

thus f is a meet-homomorphism. By the definition of the join ∇ in B(L) we have

$$f(a \vee b) = \big((a \vee b)^{**}, a \vee b \vee d_L\big) = \big(a^{**} \bigtriangledown b^{**}, a \vee b \vee d_L\big) = f(a) \vee f(b).$$

Finally,

$$f(a^*) = (a^{***}, a^* \lor d_L) = (a^*, \varphi(a^*)) = f(a)^*,$$

$$f(0_L) = (0_L, d_L) = 0_{L'} \quad \text{and} \quad f(1_L) = (1_L, 1_L) = 1_{L'}.$$

Hence f is a (0,1)-lattice homomorphism from L into L'. To prove the injectivity of f, suppose that $f(a_1)=f(a_2)$. Then $a_1^{**}=a_2^{**}$ and $a_1\vee d_L=a_2\vee d_L$, thus $a_1^{**}\wedge (a_1\vee d_L)=a_2^{**}\wedge (a_2\vee d_L)$. Hence by the (iii) of Definition 1, $a_1=a_2$. It remains to show that f is an onto map. Let $(u,v)\in L'$, i.e., $u\in B(L)$, $v\in D(L)$, $v\leq \varphi(u)$. Put $a=u\wedge v$. Then again by the distributivity of d_L and standard rules of computation we get

$$f(a) = ((u \wedge v)^{**}, (u \wedge v) \vee d_L) = (u^{**} \wedge v^{**}, (u \vee d_L) \wedge (v \vee d_L)) =$$

= $(u \wedge 1_L, (u \vee d_L) \wedge v) = (u, \varphi(u) \wedge v) = (u, v),$

and the proof is finished.

3.6 EXAMPLE. Take the non-quasi-modular principal p-algebra L in Figure 3. Obviously, the triple associated to L is $(B(L), D(L), \varphi(L))$, where

$$B(L) = \{0, a, a^*, 1\},$$

 $D(L) = [d)$

and

$$\varphi(L) = \{(0, d), (a, b), (a^*, c), (1, 1)\}.$$

By the principal construction we get the principal p-algebra

$$L = \{(0,d), (a^*,d), (a^*,c), (a,d), (a,e), (a,b), (1,d), (1,c), (1,e), (1,b), (1,1)\}$$
 which is isomorphic to L by Theorem 3.5.

Finally, we shall show that the principal p-algebras are represented by the principal triples uniquely.

3.7 DEFINITION. By an *isomorphism* of the principal triples (B_1, D_1, φ_1) and (B_2, D_2, φ_2) we shall call a pair of maps (f, g) such that f is an isomorphism of B_1 and B_2 , g is an isomorphism of D_1 and D_2 and the diagram

$$egin{array}{ccc} B_1 & \stackrel{arphi_1}{\longrightarrow} & D_1 \ & & & & \downarrow g \ & & & \downarrow g \ & & & & \downarrow g \end{array}$$

is commutative.

3.8 THEOREM. Two principal p-algebras are isomorphic if and only if their associated principal triples are isomorphic.

Proof. If $L_1\cong L_2$ under a p-algebra-isomorphism h, then obviously the restrictions $h\upharpoonright B(L_1)$ and $h\upharpoonright D(L_1)$ form the required pair of isomorphisms. Conversely, let (B_1,D_1,φ_1) and (B_2,D_2,φ_2) be the triples associated to principal p-algebras L_1 and L_2 , and let these triples be isomorphic under a pair (f,g). Let L'_1 and L'_2 , respectively, denote the principal p-algebras constructed from these triples by the principal construction. Define a map $h\colon L'_1\to L'_2$ by the rule $h\bigl((x,y)\bigr)=\bigl(f(x),g(y)\bigr)$. Obviously, h is a bijection as well as a lattice homomorphism because f and g are so. Finally,

$$h((x,y)^*) = h((x^*,\varphi_1(x^*))) = (f(x^*),g(\varphi_1(x^*))) = (f(x^*),\varphi_2(f(x^*))) =$$
$$= (f(x)^*,\varphi_2(f(x)^*)) = (f(x),g(y))^* = h((x,y))^*.$$

The rest of the proof follows from Theorem 3.5.

It is important to answer a question whether or not a principal p-algebra can be constructed by the presented construction from two non-isomorphic triples as well. We shall show that this is not the case. Thus a one-to-one correspondence between principal p-algebras and principal triples can be stated.

3.9 PROPOSITION. Let (B, D, φ) be a principal triple and let L be a principal p-algebra constructed from (B, D, φ) by the principal construction. Then

$$(B(L), D(L), \varphi(L)) \cong (B, D, \varphi).$$

Proof. In Theorem 3.2 we have shown that the maps $f: B(L) \to B$, f((x,y)) = x and $g: D(L) \to D$, g((x,y)) = y are isomorphisms. So it remains to show that the diagram

$$B(L) \xrightarrow{\varphi(L)} D(L)$$

$$f \downarrow \qquad \qquad \downarrow g$$

$$B \xrightarrow{\varphi} D$$

is commutative. Obviously, any $(x,y) \in B(L)$ is of the form $(x,\varphi(x))$ for some $x \in B$. So $g\Big(\varphi(L)\big((x,\varphi(x))\big)\Big) = g\Big((x \vee 1_B,\varphi(x) \vee 0_D)\big) = g\Big((1_B,\varphi(x))\big) = \varphi(x) = \varphi\Big(f\Big((x,\varphi(x))\big)\Big)$. The proof is complete.

4. On (local) affine completeness

A basic result of G. Grätzer says that every Boolean algebra is affine complete ([G 1962]). In ([P 1979]) it was shown that a variety is arithmetical iff it is locally affine complete. This means that every Boolean algebra is also locally affine complete.

The following propositions can be considered as a part of folklore:

4.1 Proposition. A lattice L is locally affine complete iff |L| = 1.

Proof. Let L be locally affine complete and let $a, b \in L$, a < b. The function $f = \{(a, b), (b, a)\}$ is a finite partial compatible function on L, thus by hypothesis it can be interpolated on $\{a, b\}$ by a polynomial of L which obviously is an isotone function. But we have f(a) = b, f(b) = a, a contradiction.

4.2 Proposition. A finite lattice L is affine complete iff |L| = 1.

Proof. If [a,b] is a (two-element) Boolean interval in a finite lattice L then the function $f(x) = [(x \lor a) \land b]'$ is compatible, but not isotone.

In [Ha 1992] it was shown that if a distributive p-algebra L with a smallest dense element is affine complete, then its dense filter D(L) is an affine complete distributive lattice, i.e., no proper interval of D(L) is a Boolean algebra. The method of the proof was based on a special canonical form of the polynomials of a distributive p-algebra found by the author. Using a different approach, we now generalize this result to the class of principal p-algebras:

4.3 THEOREM. Let L be a principal p-algebra. If L is (locally) affine complete then D(L) is a (locally) affine complete lattice.

Proof. Let L be affine complete and $f'\colon D(L)^n\to D(L)$ be an n-ary compatible function of the lattice D(L) ($n\geq 1$). Define a function $f\colon L^n\to L$ by the rule

$$f(x_1,\ldots,x_n)=f'(x_1\vee d,\ldots,x_n\vee d).$$

Obviously, $f \upharpoonright D(L)^n = f'$ and f is a compatible function of the algebra L. Indeed, if θ is a congruence of L and $x_i \equiv y_i(\theta), x_i, y_i \in L, i =$ $1, \ldots, n$, then $x_i \vee d \equiv y_i \vee d(\theta \upharpoonright D(L))$, so $f'(x_1 \vee d, \ldots, x_n \vee d) \equiv f'(y_1 \vee d, \ldots, x_n \vee d)$ $d, \ldots, y_n \vee d$) $(\theta \upharpoonright D(L))$ since f' is compatible on D(L). Hence, $f(x_1, \ldots, x_n) \equiv$ $f(y_1,\ldots,y_n)(\theta)$ and f is compatible. Thus by the assumption, there exists a polynomial $p(x_1, \ldots, x_n)$ of L representing f on L. Using the formulas $(x \wedge y)^* = x^* \nabla y^*$, $(x \vee y)^* = (x^{**} \nabla y^{**})^* = x^* \wedge y^*$, we can rewrite the polynomial $p(x_1, \ldots, x_n)$ as a polynomial $p_1(x_1, \ldots, x_n, x_1^*, \ldots, x_n^*)$ $x_1^{**},\ldots,x_n^{**})$ of the partial algebra $(L;\vee,\wedge,\bigtriangledown,^*,0,1)$ where $p_1(x_1,\ldots,x_{3n})$ is a polynomial of its reduct $L_1 = (L; \vee, \wedge, \nabla, 0, 1)$ only. Here, of course, the partial operation ∇ is defined for closed elements only. Now, if a_1, \ldots, a_m denote all constant symbols appearing in p_1 , then p_1 can be expressed as a term $t_1(x_1,\ldots,x_n,x_1^*,\ldots,x_n^*,x_1^{**},\ldots,x_n^{**},a_1,\ldots,a_m)$ of the partial algebra $(L;\vee,\wedge,\bigtriangledown,^*,0,1,a_1,\ldots,a_m)$ where $t_1(x_1,\ldots,x_{3n+m})$ is a term of the partial algebra $L_1 = (L; \vee, \wedge, \nabla, 0, 1)$. Since for $x_1, \ldots, x_n \in D(L)$ we have $f'(x_1,\ldots,x_n) = f(x_1,\ldots,x_n)$ and $x_i^* = 0$, $x_i^{**} = 1$, $i = 1,\ldots,n$, the function f' can be represented on D(L) by a term $t_1(x_1,\ldots,x_n,0,\ldots,0,1,\ldots,1,$ (a_1,\ldots,a_m) of the algebra $(L;\vee,\wedge,\nabla,0,1,a_1,\ldots,a_m)$. Since in $t_1(x_1,\ldots,x_n,x_n,\ldots,a_m)$ $0,\ldots,0,\ 1,\ldots,1,\ a_1,\ldots,a_m$) the operation symbols ∇ join constant symbols only, they can be omitted by replacing each subterm of the form $a_i \nabla a_i$, $(a_i, a_j \in \{a_1, \dots, a_m\} \cup \{0, 1\})$ by a new constant symbol b denoting the element $a_i \nabla a_j \in B(L)$. Thus f' can be represented by a term $t_2(x_1, \ldots, x_n, b_1, \ldots, b_k)$ of an algebra $(L; \vee, \wedge, b_1, \ldots, b_k)$, $(b_1, \ldots, b_k \in L)$ where $t_2(x_1, \ldots, x_{n+k})$ is a term of the lattice $L_2 = (L; \vee, \wedge)$ only. Hence for any $x_1, \ldots, x_n \in D(L)$ we have $f'(x_1,...,x_n) = t_2(x_1,...,x_n,b_1,...,b_k) = t_2(x_1,...,x_n,b_1,...,b_k) \vee d$ as $f'(x_1, \ldots, x_n) \in D(L)$. Since d is a distributive element, the mapping $\varphi \colon L \to D(L), \ \varphi(x) = x \lor d$ is a lattice homomorphism by Proposition 3.3. Thus for $x_1, \ldots, x_n \in D(L)$ we get $f'(x_1, \ldots, x_n) = \varphi(t_2(x_1, \ldots, x_n, b_1, \ldots, b_k)) =$ $t_2(\varphi(x_1),\ldots,\varphi(x_n),\,\varphi(b_1),\ldots,\varphi(b_k))=t_2(x_1\vee d,\ldots,x_n\vee d,\,b_1\vee d,\ldots,b_k\vee d)=t_2(\varphi(x_1),\ldots,\varphi(x_n),\,\varphi(b_1),\ldots,\varphi(b_k))=t_2(\varphi(x_1),\ldots,\varphi(x_k))=t_2(\varphi(x_1),\ldots,\varphi(x_k)$ $p_2(x_1,\ldots,x_n)$ where p_2 is a polynomial of the lattice $(D(L),\vee,\wedge)$. Hence the function f' is a polynomial function of the lattice D(L), which was to be proved.

Note that if L is locally affine complete and f' is a finite partial compatible function of D(L), then $f \equiv f'$ is a finite partial compatible function of the algebra L, too. Hence by hypothesis, there is a polynomial $p(x_1, \ldots, x_n)$ of L interpolating f on its finite domain. By the same procedure as above one

CONSTRUCTION AND AFFINE COMPLETENESS OF PRINCIPAL P-ALGEBRAS

can show that the restriction of $p(x_1,...,x_n)$ to the domain of $f \equiv f'$ is a polynomial of the lattice D(L).

4.4 COROLLARY. A principal p-algebra is locally affine complete if and only if it is a Boolean algebra.

Proof. From the construction presented in Section 3 it follows that L is a sublattice of $B(L)\times D(L)$. If L is locally affine complete, then D(L) is a locally affine complete lattice by 4.3, hence $\big|D(L)\big|=1$ by 4.1. Consequently, L is a Boolean algebra.

4.5 COROLLARY. Finite Boolean algebras are the only finite affine complete principal p-algebras.

REFERENCES

- [B 1982] BEAZER, R.: Affine complete Stone algebras, Acta. Math. Acad. Sci. Hungar. 39 (1982), 169–174.
- [G 1962] GRÄTZER, G.: On Boolean functions (notes on Lattice theory II), Revue de Math. Pures et Appliquées 7 (1962), 693-697.
- [G 1971] GRÄTZER, G.: Lattice theory. First concepts and distributive lattices, W. H. Freeman and Co., San Francisco, Calif., 1971.
- [Ha 1992] HAVIAR, M.: On affine completeness of distributive p-algebras, Glasgow Math. J. **34** (1992), 365–368.
- [Kaa-Ma-S 1985] KAARLI, K.—MÁRKI, L.—SCHMIDT, E. T.: Affine complete semilattices, Mh. Math. 99 (1985), 297–309.
 - [Kaa-P 1987] KAARLI, K.—PIXLEY, A. F.: Affine complete varieties, Algebra Universalis **24** (1987), 74–90.
 - [Ka 1980] KATRIŇÁK, T.: p-algebras, Colloq. Math. Soc. János Bolyai (1980), 549–573.
 - [Ka-Me 1983] KATRIŇÁK, T.—MEDERLY, P.: Construction of p-algebras, Algebra Universalis 17 (1983), 288–316.
 - [Kö 1978] KÖHLER, P.: The triple method and free distributive pseudo-complemented lattices, Algebra Universalis 8 (1978), 139–150.
 - [Mu-En 1986] MURTY, P. V. R.—ENGELBERT, Sr. T.: On "constructions of p-algebras", Algebra Universalis 22 (1986), 215–228.
 - [O 1935] ORE, O.: On the foundation of abstract algebra, I, Ann. of Math. 36 (1935), 406-437.
 - [P 1972] PIXLEY, A. F.: Completeness in arithmetical algebras, Algebra Universalis 2 (1972), 179–196.
 - [P 1979] PIXLEY, A. F.: Characterizations of arithmetical varieties, Algebra Universalis 9 (1979), 87–98.
 - [Sz 1986] SZENDREI, A.: Clones in Universal Algebra, Les Presses de L'Université de Montréal, Montreal, 1986.

MIROSLAV HAVIAR

[W 1971] WERNER, H.: Produkte von Kongruenzklassengeometrien universeller Algebren, Math. Z. 121 (1971), 111–140.

Received October 14, 1994

Department of Mathematics Matej Bel University Zvolenská cesta 6 SK-974 01 Banská Bystrica SLOVAKIA

E-mail: haviar@bb.sanet.sk