

SOME REMARKS ON THE PSEUDO-LINEAR ALGEBRA

Andrea Marková

ABSTRACT. Recent results on pseudo-arithmetic operations and g-calculus are applied to the domain of linear algebra. As a basic notion, g-rank of a matrix is introduced. Two generators g and h are shown to be rank equivalent if and only if they differ only in a positive multiplicative constant. Some applications to the solutions of systems of pseudo-linear equations are presented.

1. Introduction

Recently, E. Pap [5] introduced and developed a so-called g-calculus generalizing the common calculus of real valued functions. The basis of g-calculus are pseudo-arithmetical operations based on a generator g. An axiomatic approach to pseudo-arithmetics can be found in Mesiar and Rybárik [4]. The theory of g-calculus was applied to some problems from differential, partially differential and difference equations, respectively, see [6]. The main idea of the above applications is in the exploiting the knowledge of the solution of some linear problem (e.g., linear differential equations) and applying it to a corresponding pseudo-linear problem.

Note that no closed theory of g-linear problems was developed till now. As a first attempt in this field, this paper is devoted to the investigation of pseudo-arithmetical operations based on a generator g. We will show that two generators g and h preserve the matrix rank if and only if they differ only in a positive multiplicative constant. Consequently, the use of normed generators is justified.

2. Pseudo-arithmetical operations

Following Mesiar and Rybárik [4], we introduce the concept of pseudo-arithmetical operations first on $[0, +\infty]$ interval and then on $[-\infty, +\infty]$ interval.

AMS Subject Classification (1991): 15A99.

Key words: rank, generator, pseudo-addition, pseudo-multiplication, pseudo-linear equation.

DEFINITION 2.1. Two binary operations \oplus and \odot defined on $[0, +\infty]$ are called a pseudo-addition and pseudo-multiplication, respectively, if they fulfill the following axioms:

- (A1) $x \oplus 0 = 0 \oplus x = x$, $\forall x \in [0, +\infty]$.
- (A2) $(x \oplus y) \oplus z = x \oplus (y \oplus z), \quad \forall x, y, z \in [0, +\infty].$
- (A3) If $x \leq x'$ and $y \leq y'$ then $x \oplus y \leq x' \oplus y'$ for every $x, y, x', y' \in [0, +\infty]$.
- (A4) If $x_n \to x$ and $y_n \to y$ then $x_n \oplus y_n \to x \oplus y$.
- (A5) If x>0 and $y\in [0,\infty)$ then there exists $n\in\mathbb{N}$ such that $\underbrace{x\oplus x\oplus\cdots\oplus x}_{} \geq y$.
- (A6) If $x < +\infty$ and $y < +\infty$ then $x \oplus y < +\infty$.
- $(\mathrm{M1}) \quad a\odot(x\oplus y)=(a\odot x)\oplus(a\odot y)\,, \qquad \forall a,x,y\in[0,+\infty]\,.$
- (M2) If $a \leq b$ then $a \odot x \leq b \odot x$, for every $x \in [0, +\infty]$.
- (M3) $a \odot x = 0$ if and only if a = 0 or x = 0.
- (M4) There exists a left unit, i.e., an element $e \in [0, +\infty]$ so that $e \odot x = x$ for every $x \in [0, +\infty]$.
- (M5) If $a_n \to a \in (0, +\infty)$ and $x_n \to x$ then $a_n \odot x_n \to a \odot x$ and $(+\infty) \odot x = \lim_{a \to +\infty} (a \odot x)$.
- (M6) $x \odot y = y \odot x$ for every $x, y \in [0, +\infty]$.

THEOREM 2.1 [4]. Two binary operations \oplus and \odot on $[0, +\infty]$ are pseudo-addition and pseudo-multiplication, respectively, if and only if there is a generator \bar{g} , \bar{g} : $[0, +\infty] \to [0, +\infty]$, \bar{g} is an increasing bijection, so that for all $x, y \in [0, +\infty]$ it is

$$x \oplus y = \bar{g}^{-1} (\bar{g}(x) + \bar{g}(y))$$
 and $x \odot y = \bar{g}^{-1} (\bar{g}(x) \cdot \bar{g}(y))$ for $\{x, y\} \neq \{0, +\infty\}$.

Note that the unit element e of pseudo-multiplication \odot is given by $e = \bar{g}^{-1}(1)$.

An odd extension g of a given generator \bar{g} from $[0,+\infty]$ to $[-\infty,+\infty]$ is called a generator on $[-\infty,+\infty]$ [4] and it allows to extend \oplus and \odot to the whole extended real line. Moreover, pseudo-subtraction \ominus and pseudo-division \oslash can be introduced.

Let g be a generator on $[-\infty, +\infty]$. For $x, y \in [-\infty, +\infty]$ we put:

$$\begin{split} x \oplus y &= g^{-1} \big(g(x) + g(y) \big) \,, & \{x,y\} \neq \{-\infty,+\infty\} \,; \\ x \odot y &= g^{-1} \big(g(x) \cdot g(y) \big) \,, & \{x,y\} \neq \{0,+\infty\}, \ \{x,y\} \neq \{0,-\infty\} \,; \\ x \ominus y &= g^{-1} \big(g(x) - g(y) \big) \,, & \text{if } x = y \text{ then } x \notin \{-\infty,+\infty\} \,; \\ x \oslash y &= g^{-1} \big(g(x) : g(y) \big) \,, & y \neq 0 \,, \ \{x,y\} \not\subseteq \{-\infty,+\infty\} \,. \end{split}$$

SOME REMARKS ON THE PSEUDO-LINEAR ALGEBRA

All the above-introduced operations are called pseudo-arithmetical operations generated by generator g.

If two or more generators are taken into account, a lower index is used to distinguish the corresponding pseudo-arithmetical operations, say \bigoplus_{n} and \bigoplus_{n} .

Note that the identity generator g(x) = x leads to the common arithmetical operations.

Example 2.1.

(i) Let
$$g(x) = \begin{cases} x^r, & \text{if } x \ge 0, \\ -(-x)^r, & \text{if } x < 0, \end{cases}$$
 for some positive constant r .

Then g is a generator on $[-\infty, +\infty]$. Take e.g., r=3. For corresponding pseudo-arithmetical operations we get

$$x \oplus y = (x^{3} + y^{3})^{1/3};$$

$$x \ominus y = (x^{3} - y^{3})^{1/3};$$

$$x \odot y = (x^{3} \cdot y^{3})^{1/3} = x \cdot y;$$

$$x \oslash y = \left(\frac{x^{3}}{y^{3}}\right)^{1/3} = \frac{x}{y},$$

i.e., the pseudo-multiplication and pseudo-division coincide with the common multiplication and division in this case (note that the last assertion holds true only for the above-introduced generators [3]).

(ii) Let g(x) = cx for some positive constant c. Then g is a generator on $[-\infty, +\infty]$. Take, e.g., c=3. For the corresponding pseudo-arithmetical operations we have

$$\begin{split} x \oplus y &= x + y \,; \\ x \ominus y &= x - y \,; \\ x \odot y &= 3xy \,; \\ x \oslash y &= \frac{x}{(3y)} \,. \end{split}$$

Now, \oplus and \ominus coincide with the common addition and subtraction (and this is true only for g(x) = cx).

(iii) Let
$$g(x) = \begin{cases} (x+1)^{1/2} - 1, & \text{if } x \ge 0, \\ -((1-x)^{1/2} - 1), & \text{if } x < 0. \end{cases}$$

Then g is a generator on $[-\infty, +\infty]$ and for $x \ge y < 0$ it is

$$x \oplus y = \left[(x+1)^{1/2} + (y+1)^{1/2} - 1 \right]^2 - 1;$$

$$x \ominus y = \left[(x+1)^{1/2} - (y+1)^{1/2} - 1 \right]^2 - 1;$$

$$x \odot y = \left[(x+1)^{1/2} (y+1)^{1/2} - (x+1)^{1/2} - (y+1)^{1/2} + 2 \right]^2 - 1;$$

$$x \oslash y = \left[\frac{(x+1)^{1/2}}{(y+1)^{1/2}} + 1 \right]^2 - 1.$$

The unit element e = 3.

3. Systems of pseudo-linear equations

In several applications [5] of g-calculus based on a generator g, the linear problems were replaced by corresponding pseudo-linear problems simply by means of replacing the common arithmetical operations by corresponding pseudo-arithmetical operations. We propose to generalize the basic linear problem—the solution of a system of linear equations—to the corresponding pseudo-linear problem.

DEFINITION 3.1. Let g be a given generator on $[-\infty, +\infty]$ generating \oplus and \odot . Let $a_1, \ldots, a_n, n \in \mathbb{N}$, and b be some given real constant and let x_1, \ldots, x_n be unknown real variables. Then the equation

$$a_1 \odot x_1 \oplus \cdots \oplus a_n \odot x_n = b$$

is called a pseudo-linear equation or equivalently g-linear equation.

LEMMA 3.1. Let $a_1 \odot x_1 \oplus \cdots \oplus a_n \odot x_n = b$ be a g-linear equation. Then the linear equation $\sum_{i=1}^n g(a_i)y_i = g(b)$ is equivalent to this g-linear equation, where $y_i = g(x_i)$, i.e., the solutions y_i of the above equation are in a one-to-one correspondence to the solutions x_i of the original g-linear equation.

Proof. Applying \odot and \oplus to the given g-linear equation, one gets $g^{-1}(g(a_1) \cdot g(x_1) + \cdots + g(a_n) \cdot g(x_n)) = b$, i.e., $\sum_{i=1}^n g(a_i)y_i = g(b)$, where we put $y_i = g(x_i)$.

On the other hand, $x_i = g^{-1}(y_i)$.

Let a system of g-linear equations be given,

$$a_{11} \odot x_1 \oplus \cdots \oplus a_{1n} \odot x_n = b_1$$
,
$$\cdots$$

$$a_{m1} \odot x_1 \oplus \cdots \oplus a_{mn} \odot x_n = b_m$$
,

briefly $\mathbf{A} \odot \mathbf{X} = \mathbf{B}$, where $\mathbf{A} = (a_{ij})_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}}$, $\mathbf{X} = (x_1, \dots, x_n)^{\mathsf{T}}$, $\mathbf{B} = (b_1, \dots, b_m)^{\mathsf{T}}$. This system is equivalent with the system of linear equations $\mathbf{g}(\mathbf{A}) \cdot \mathbf{Y} = \mathbf{g}(\mathbf{B})$, where $\mathbf{g}(\mathbf{A}) = (\mathbf{g}(a_{ij}))_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}}$, $\mathbf{g}(\mathbf{B}) = (\mathbf{g}(b_1), \dots, \mathbf{g}(b_m))^{\mathsf{T}}$.

By the Frobenius theorem, both systems are solvable if and only if the rank $H(g(\mathbf{A}))$ of matrix $g(\mathbf{A})$ and the rank $H(g(\mathbf{A}^*))$ of the extended matrix $g(\mathbf{A}^*) = (g(\mathbf{A}), g(\mathbf{B}))$ is the same, $H(g(\mathbf{A})) = H(g(\mathbf{A}^*))$.

Then each solution Y of the induced linear system corresponds to the solution $X = g^{-1}(Y) = (g^{-1}(y_1), \dots, g^{-1}(y_n))^{\top}$ of the original pseudo-linear system and vice versa. Hence the key role by the solution of a system $A \odot X = B$ of g-linear equations is played by the rank of matrix g(A) (and $g(A^*)$).

DEFINITION 3.2. Let **A** be a given matrix and let g be a generator on $[-\infty, +\infty]$. The rank $H(g(\mathbf{A}))$ of the matrix $g(\mathbf{A})$ will be called g-rank of \mathbf{A} , g- $H(\mathbf{A}) = H(g(\mathbf{A}))$.

EXAMPLE 3.1. Let
$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 3 \end{bmatrix}$$
 and let $\mathbf{g}(x) = x^3$. Then $H(\mathbf{A}) = 2$, but $\mathbf{g} - H(\mathbf{A}) = 3$ because of $H(\mathbf{g}(\mathbf{A})) = 3$, where $\mathbf{g}(\mathbf{A}) = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 8 \\ 1 & 8 & 27 \end{bmatrix}$

The above example shows that the g-rank depends on g and hence the solvability of a system $A \odot X = B$ of g-linear equations varies changing the generator g.

EXAMPLE 3.2. Let g(x) = 3x. Then for each $\mathbf{A} = (a_{ij})$ it is $g(\mathbf{A}) = (3a_{ij})$ and thus $g-H(\mathbf{A}) = H(\mathbf{A})$. Further, the induced system to a given $\mathbf{A} \odot \mathbf{X} = \mathbf{B}$ is just $3\mathbf{A} \cdot \mathbf{Y} = 3\mathbf{B}$, i.e., $\mathbf{A} \cdot \mathbf{Y} = \mathbf{B}$. If \mathbf{Y} is its solution, then $\mathbf{X} = \frac{1}{3}\mathbf{Y}$ is the solution of $\mathbf{A} \odot \mathbf{X} = \mathbf{B}$ (and vice versa $\mathbf{Y} = 3\mathbf{X}$). Comparing the common linear system $\mathbf{A} \cdot \mathbf{Y} = \mathbf{B}$ and the g-linear system $\mathbf{A} \odot \mathbf{X} = \mathbf{B}$, we can see their equivalency.

Note that the identity generator of a common linear system $\mathbf{A} \cdot \mathbf{Y} = \mathbf{B}$ differs from \mathbf{g} only in a positive multiplicative constant.

By Example 3.2, there are some generators, say g and h, leading to the equivalent systems $\mathbf{A} \odot \mathbf{X} = \mathbf{B}$ and $\mathbf{A} \odot \mathbf{Y} = \mathbf{B}$. It is easy to see that a necessary condition for the equivalency of g-linear and h-linear systems is the rank-equivalence of their generators, i.e., $g - H(\mathbf{A}) = h - H(\mathbf{A})$ for each matrix \mathbf{A} .

4. Rank-equivalent generators

In this section we study the generators g and h preserving the rank.

Let g be a generator on $[-\infty, +\infty]$ and let $h = c \cdot g$ for some positive constant c. Then for each matrix **A** we have $g-H(\mathbf{A}) = h-H(\mathbf{A})$.

In the following theorem we show the necessity of $h = c \cdot g$ to preserve the ranks.

THEOREM 4.1. Let g and h be two generators on $[-\infty, +\infty]$ and let for each matrix **A** it is $g-H(\mathbf{A}) = h-H(\mathbf{A})$. Then there is a positive constant c so that $h = c \cdot g$.

Proof. Let
$$a,b \in \mathbb{R} - \{0\}$$
, $a \neq b$ and put $\mathbf{A} = \begin{bmatrix} a & b & a \\ a & b & b \\ a \oplus a & b \oplus b & a \oplus b \end{bmatrix}$.
Then $\mathbf{g}(\mathbf{A}) = \begin{bmatrix} \mathbf{g}(a) & \mathbf{g}(b) & \mathbf{g}(a) \\ \mathbf{g}(a) & \mathbf{g}(b) & \mathbf{g}(b) \\ 2\mathbf{g}(a) & 2\mathbf{g}(b) & \mathbf{g}(a) + \mathbf{g}(b) \end{bmatrix}$. It is easy to see that the rank

 $H(g(\mathbf{A})) = 2$, and hence $g-H(\mathbf{A}) = 2$. But then also $h-H(\mathbf{A}) = H(h(\mathbf{A})) = 2$.

We have
$$h(\mathbf{A}) = \begin{bmatrix} h(a) & h(b) & h(a) \\ h(a) & h(b) & h(b) \\ h(a \oplus a) & h(b \oplus b) & h(a \oplus b) \\ g & g \end{bmatrix}$$
 and hence

$$S_3 = c_1 S_1 + c_2 S_2 \tag{1}$$

or

$$S_1 = c_3 S_2 \,, \tag{2}$$

where S_i are columns of the matrix h(A) and c_i are some real constants. If (1) is true, then $h(a) = c_1 h(a) + c_2 h(b)$ and $h(b) = c_1 h(a) + c_2 h(b)$ and thus h(a) = h(b). But this means that a = b, a contradiction.

It follows that (2) should be true and hence $h(a) = c_3 h(b)$ and $h(a \odot a) = c_3 h(b \odot b)$. Then $c_3 = \frac{h(a)}{h(b)} = \frac{h(a \odot a)}{h(b \odot b)}$ and consequently

$$\frac{h(a)}{h(b)} = \frac{h(g^{-1}(2g(a)))}{h(g^{-1}(2g(b)))}.$$
 (3)

Put x = h(a), y = h(b) and $f = g \circ h^{-1}$. Then $f^{-1} = h \circ g^{-1}$ and (3) turns to

$$\frac{x}{y} = \frac{f^{-1}(2f(x))}{f^{-1}(2f(y))},\tag{4}$$

because of $g(a) = g(h^{-1}(h(a))) = f(x)$, and similarly g(b) = f(y). Simple rewriting of (4) leads to

$$\frac{x}{f^{-1}(2f(x))} = \frac{y}{f^{-1}(2f(y))},$$
 (5)

SOME REMARKS ON THE PSEUDO-LINEAR ALGEBRA

for all $x, y \in \mathbb{R} - \{0\}, x \neq y$.

The last equality is true for all couples of $x \neq y$ and thus, fixing y = 1, one gets

$$\frac{x}{f^{-1}(2f(x))} = \frac{1}{f^{-1}(2f(1))} = \frac{1}{K},$$
(6)

where $K = f^{-1}(2f(1))$ is some positive real constant greater than 1. It follows $K \cdot x = f^{-1}(2f(x))$ and thus

$$f(K \cdot x) = 2f(x). \tag{7}$$

Recall that $f = g \circ h^{-1}$ is continuos strictly increasing odd bijection on $[-\infty, +\infty]$. By Aczel [1], a general solution of functional equation (7) is

$$f(x) = \left\{ egin{array}{ll} d \cdot x^p, & ext{if } x \geqq 0\,, \\ -d \cdot (-x)^p, & ext{if } x < 0\,, \end{array}
ight.$$

where d is some positive real constant (in fact, d = f(1)), and $p = \log_K 2$, i.e., p is a positive real constant. We will show that p = 1.

Put
$$\mathbf{B} = \begin{bmatrix} 0 & h^{-1}(1) & h^{-1}(1) \\ h^{-1}(1) & 0 & h^{-1}(1) \\ h^{-1}(1) & h^{-1}(1) & h^{-1}(2) \end{bmatrix}$$
, then $h(\mathbf{B}) = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 2 \end{bmatrix}$ and hence

H(h(B)) = h - H(B) = 2. Then also H(g(B)) = g - H(B) = 2. We have

$$egin{aligned} g(b) &= egin{bmatrix} 0 & g h^{-1}(1) & g h^{-1}(1) \ g h^{-1}(1) & 0 & g h^{-1}(1) \ g h^{-1}(1) & g h^{-1}(1) \end{bmatrix} = egin{bmatrix} 0 & f(1) & f(1) \ f(1) & 0 & f(1) \ f(1) & f(1) & f(2) \end{bmatrix} = \ &= egin{bmatrix} 0 & d & d \ d & 0 & d \ d & d & d & d \end{pmatrix}. \end{aligned}$$

It follows $d+d=d\cdot 2^p$, i.e., p=1. But then $f(x)=d\cdot x=g\circ h^{-1}(x)$ which leads to $g^{-1}(d\cdot x)=h^{-1}(x)$ and consequently $h(x)=\frac{1}{d}\cdot g(x)=c\cdot g(x)$, where $c=\frac{1}{d}$ is some positive real constant.

COROLLARY 4.1. Two generators g and h are rank-equivalent, i.e., g-H(A) = h-H(A) for each matrix A, if and only if $h = c \cdot g$ for some positive constant c.

Remark 4.1. The rank of matrices with respect to special binary operations \oplus and \odot (covering e.g., max = \vee and min = \wedge) is discussed in [7], see also [2], where two different ranks, namely the column rank $c(\mathbf{A})$ and the semiring rank $r(\mathbf{A})$, are introduced. In our case, both types of ranks coincide, $r(\mathbf{A}) = c(\mathbf{A}) = g - H(\mathbf{A})$.

THEOREM 4.2. Let $h = c \cdot g$. Then and only then the systems $A \odot X = B$ and $A \odot Y = B$ are equivalent, i.e., the knowledge of X implies the knowledge of Y and vice versa, and g(X) = h(Y).

Proof. The system $\mathbf{A} \odot \mathbf{X} = \mathbf{B}$ is equivalent to the linear system $\mathbf{g}(\mathbf{A}) \cdot Z = \mathbf{g}(\mathbf{B})$, where $Z = \mathbf{g}(\mathbf{X})$. The system $\mathbf{A} \odot \mathbf{Y} = \mathbf{B}$ is equivalent to the linear system $\mathbf{h}(\mathbf{A}) \cdot Q = c \cdot \mathbf{g}(\mathbf{A}) \cdot Q = \mathbf{h}(\mathbf{B}) = c \cdot \mathbf{g}(\mathbf{B})$, i.e., $\mathbf{g}(\mathbf{A}) \cdot Q = \mathbf{g}(\mathbf{B})$, where $Q = \mathbf{h}(\mathbf{Y})$. It is easy to see the equivalency of both linear systems and if they are solvable, then $Z = \mathbf{g}(\mathbf{X}) = \mathbf{h}(\mathbf{Y}) = Q$.

Remark 4.2. If $\mathbf{h} = c \cdot \mathbf{g}$, c > 0, and $\mathbf{g}(\mathbf{X}) = \mathbf{h}(\mathbf{Y})$, then $\mathbf{Y} = \mathbf{h}^{-1}(\mathbf{g}(\mathbf{X})) = \mathbf{g}^{-1}(\frac{\mathbf{g}(\mathbf{X})}{c}) = \mathbf{g}^{-1}(\frac{\mathbf{g}(\mathbf{X})}{\mathbf{g}(\mathbf{g}^{-1}(c))}) = \mathbf{X} \oslash \mathbf{g}^{-1}(c)$.

Further, the unity e_h of pseudo-multiplication \odot is given by $e_h = h^{-1}(1) = g^{-1}(\frac{1}{c})$. If we put g(1) = 1, i.e., g is normed generator, then $e_h = 1 \oslash g^{-1}(c)$ and consequently $\mathbf{Y} = \mathbf{X} \odot e_h = e_h \odot \mathbf{X}$. For the further investigation we propose to use the normed generators g on $[-\infty, +\infty]$ only, as long as the general case can be easily obtained as remarked above.

REFERENCES

- [1] ACZEL, J.: Vorlesungen uber Funktionalgleichung und Ihre Anwendungen, VEB Deutche Verlag der Wissenschaften, Berlin, 1961.
- [2] BEASLEY, L. B.—PULLMAN, N. J.: Fuzzy rank-preserving operators, Linear Algebra Appl. 73 (1986), 197-211.
- [3] KOLESÁROVÁ, A.: Integration of real functions with respect to a ⊕-measure, Math. Slovaca (to appear).
- [4] MESIAR, R.—RYBÁRIK, J.: Pseudo-arithmetical operations, Tatra Mountains Math. Publ. 2 (1993), 185-192.
- [5] PAP, E.: g-calculus, Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. (to appear).
- [6] PAP, E.: Decomposable measures and differential equations (to appear).
- [7] SONG, S. Z.: Linear operations that preserve column rank of fuzzy matrices, Fuzzy Sets and Systems 62 (1994), 311-317.

Received March 29, 1994

Slovak Technical University
Department of Mathematics
Radlinského 11
SK-813 68 Bratislava
SLOVAKIA
E-mail: markova@cvt.stuba.sk