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SOME REMARKS ON THE
PSEUDO-LINEAR ALGEBRA

ANDREA MARKOVA

ABSTRACT. Recent results on pseudo-arithmetic operations and g-calculus are
applied to the domain of linear algebra. As a basic notion, g-rank of a matrix is
introduced. Two generators g and h are shown to be rank equivalent if and only
if they differ only in a positive multiplicative constant. Some applications to the
solutions of systems of pseudo-linear equations are presented.

1. Introduction

Recently, E. Pap [5] introduced and developed a so-called g-calculus gener-
alizing the common calculus of real valued functions. The basis of g-calculus are
pseudo-arithmetical operations based on a generator g. An axiomatic approach
to pseudo-arithmetics can be found in Mesiar and Ryb4rik [4]. The theory
of g-calculus was applied to some problems from differential, partially differen-
tial and difference equations, respectively, see [6]. The main idea of the above
applications is in the exploiting the knowledge of the solution of some linear
problem (e.g., linear differential equations) and applying it to a corresponding
pseudo-linear problem.

Note that no closed theory of g-linear problems was developed till now. As a
first attempt in this field, this paper is devoted to the investigation of pseudo-
arithmetical operations based on a generator g. We will show that two generators
g and h preserve the matrix rank if and only if they differ only in a positive
multiplicative constant. Consequently, the use of normed generators is justified.

2. Pseudo-arithmetical operations

Following Mesiar and Rybdarik [4], we introduce the concept of pseudo-
arithmetical operations first on [0, +oc0] interval and then on [—o0, +00] interval.
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DEFINITION 2.1. Two binary operations @ and © defined on [0,+oc0] are
called a pseudo-addition and pseudo-multiplication, respectively, if they fulfill
the following axioms:
(Al) z0=0z ==z, Vz € [0, +0o0].
(A2) (z@y)®z=z®(yD2), Vz,y,2€[0,+00].
(A3) f <z’ and y<y then z@yZz' @Y
for every z,y,z’,y’ € [0,400].
(A4) If z, >z and y, —y then z,Qy,—zDy.
(A5) If £ > 0 and y € [0,00) then there exists » € N such that
THTd - Dz 2.

n-times
(A6) If z < +o0 and y < +oo then z@y < +oo.
Ml) a@(z®y)=(a02)®(a0y), Va,z,y € [0,+0o0].
2) fa<b then aG®zZbO, for every z € [0, 400].

3) a®z=0 ifandonlyif a=0or z=0.

M4) There exists a left unit, i.e., an element e € [0, +00] so that e©z ==z
for every z € [0, +00].

(M5) If a, — a € (0,400) and z, — = then a,Oz, - a®z and

(+o0) @z = al'l»l:{l—loo(a Q).

(M6) z@y=y©®z for every z,y € [0, +o00].

THEOREM 2.1 [4]. Two binary operations @& and ® on [0,-+oc] are pseudo-
addition and pseudo-multiplication, respectively, if and only if there is a gen-
erator g, §: [0,+00] — [0,+00], § is an increasing bijection, so that for all
z,y € [0,400] it is

z@y=g '(g(z) +g(y)) and
zy=g "(g(z) 3(y)) for {=z,y} # {0,+o0}.

Note that the unit element e of pseudo-multiplication ® is given by e =
g'(@).

An odd extension g of a given generator g from [0,+oc0] to [—oo,+o0] is
called a generator on [—oco,+o0o] [4] and it allows to extend @ and ® to the
whole extended real line. Moreover, pseudo-subtraction © and pseudo-division
@ can be introduced.

Let g be a generator on [—oo,+00]. For z,y € [—00, +00] we put:

zoy=g"(g9(z) +9(y), {z,y} # {—o00, +00};
zoy=g"(g9(z) 9(v)), {z,y} # {0, +o0}, {z,y} # {0, —0c0};
coy=g""(9(z) - 9(v), if =y then @ ¢ {—0c0,+00};
zoy=g""(9(z):9(v)), y#0, {z,y} € {—o0,+o0}.
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All the above-introduced operations are called pseudo-arithmetical operations

generated by generator g.

If two or more generators are taken into account, a lower index is used to
distinguish the corresponding pseudo-arithmetical operations, say @ and @.
g h

Note that the identity generator g(z) = z leads to the common arithmetical

operations.

ExaMPLE 2.1.

0 Let g(0) = { 7

7‘

—(==2)",

ifz20,

) for some positive constant r.
ifx <0,

Then g is a generator on [—~oo, 400]. Take e.g., 7 = 3. For corresponding
pseudo-arithmetical operations we get

x@y*(a:
m@y—(z3 3)1/3
(

TOQy= z3 . )

3 )1/3

=T-Y;

i.e., the pseudo-multiplication and pseudo-division coincide with the com-
mon multiplication and division in this case (note that the last assertion
holds true only for the above-introduced generators [3]).

(ii) Let

g(z) = cz for some positive constant c¢. Then g is a generator on

—00, +00|. Take, e.g., ¢ = 3. For the corresponding pseudo-arithmetical
g

operations we have

tQy=z+y;
TOY=1T—1y;
Ty =3zy;
@ X
X = i
YT By

Now, @ and © coincide with the common addition and subtraction (and this is

true only for g(z) = cz).

G@Lam@:{

('T -+ 1)1/2 - 17
-((1 - "E)l/2 - 1) )

ifz =20,
ifz<0.
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Then g is a generator on [—o0,+oo] and for z =y < 0 it is
@y =@+ + @+ )Y -1]" - 1;
zoy=[+1)"2 - (y+ )2 -1]" —1;
zoy= [+ (y+1)"2= (z+ 1) (y+ 1)V +2]* - 1;
[

11/2 9
sy 1] —1.

z@:q: +11/2

The unit element e = 3.

3. Systems of pseudo-linear equations

In several applications [5] of g-calculus based on a generator g, the lin-
ear problems were replaced by corresponding pseudo-linear problems simply
by means of replacing the common arithmetical operations by corresponding
pseudo-arithmetical operations. We propose to generalize the basic linear prob-
lem — the solution of a system of linear equations — to the corresponding pseudo-
linear problem. ‘

DEFINITION 3.1. Let g be a given generator on [—oo, +00] generating @ and
®.Let ay,...,a,, n € N, and b be some given real constant and let z1,...,z,
be unknown real variables. Then the equation

a1 ® - Pa, @z, =b
is called a pseudo-linear equation or equivalently g-linear equation.
LEMMA 3.1. Let a1 ®z1 ® - D a, © z, = b be a g-linear equation. Then
the linear equation i g(a;)y; = g(b) is equivalent to this g-linear equation,

1=
where y; = g(z;), i.e., the solutions y; of the above equation are in a one-to-one
correspondence to the solutions z; of the original g-linear equation.

Proof. Applying ©® and & to the given g-linear equation, one gets
g_l(g(al) ~g(z1) + -+ glan) - g(a:n)) = b, ie., > g(a;))y; = g(b), where
=1

we put y; = g(:).
On the other hand, z; = g~ (v;:). O

Let a system of g-linear equations be given,

11 Q1@ D ain Oy = by,

am1®x1@"'@amn®xn:bm7
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briefly A©OX = B, where A = (a;;)1gizm, X = (21,...,2,)7, B = (by,.. b)) T

1<jSn

This system is equivalent with the system of linear equations g(A)-Y =g(B),
T

where g(A) = (9(a5))) 55 9(B) = (g(ba), .., 9(bm))
157&n

By the Frobenius theorem, both systems are solvable if and only if the
rank H(g(A)) of matrix g(A) and the rank H(g(A*)) of the extended ma-
trix g(A*) = (g(A),g(B)) is the same, H(g(A)) = H(g(A")).

Then each solution Y of the induced linear system corresponds to the solution
X =g'Y)= (g7 w),--- ,g_l(yn))T of the original pseudo-linear system
and vice versa. Hence the key role by the solution of a system A ® X = B of
g-linear equations is played by the rank of matrix g(A) (and g(A*)).

DEFINITION 3.2. Let A be a given matrix and let g be a generator
on [—oo,+oc]. The rank H(g(A)) of the matrix g(A) will be called g-rank
of A, g-H(A) = H(g(A)).

0 1 1
EXAMPLE 3.1. Let A = [1 1 2} and let g(z) = z3. Then H(A) =2, but
1 23 0 1 1
g—H(A) = 3 because of H(g(A)) =3, where g(A) = [1 1 8 }
1 8 27
The above example shows that the g-rank depends on g and hence the solv-
ability of a system A ® X = B of g-linear equations varies changing the gener-
ator g.
EXAMPLE 3.2. Let g(z) = 3z. Then for each A = (a;;) it is g(A) = (3ay)
and thus g-H(A) = H(A). Further, the induced system to a given A® X = B
is just 3A-Y =3B, ie, A-Y = B.If Y is its solution, then X = 1Y is
the solution of A® X = B (and vice versa Y = 3X). Comparing the common
linear system A -Y = B and the g-linear system A ® X = B, we can see their
equivalency. )

Note that the identity generator of a common linear system A-Y = B differs
from g only in a positive multiplicative constant.
By Example 3.2, there are some generators, say g and h, leading to the
equivalent systems A® X = B and A (}? Y = B. It is easy to see that a
g

necessary condition for the equivalency of g-linear and h-linear systems is the
rank-equivalence of their generators, i.e., g~-H(A) = h~H(A) for each matrix
A.

4. Rank-equivalent generators
In this section we study the generators g and h preserving the rank.
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Let g be a generator on [—o0,+o00] and let h = ¢ - g for some positive
constant c¢. Then for each matrix A we have g-H(A) = h—-H(A).

In the following theorem we show the necessity of h = c- g to preserve the
ranks.

THEOREM 4.1. Let g and h be two generators on [—oo, 00| and let for each
matrix A it is g-H(A) = h—H(A). Then there is a positive constant ¢ so that

h=c-g.
a b a
Proof. Let a,b € R— {0}, a # b and put A = a b b }
g(a) g(b) g9(a)
Then g(A) = l g(a) g(b) g(b)
2g(a) 2g(b) g(a)+g(b)
H(g(A)) =2, and hence g-H(A) = 2. But then also h—-H(A) = H(h(A)) = 2.
h(a) h(b) h(a)

We have h(A) = h(a) h(b) h(b) and hence
h(a ? a) h(b ? b) hla ? b)

a®a bbb ad®b
g g g

. It is easy to see that the rank

53 = 0151 + Czsz (1)
or
51 = 0352 y (2)
where S; are columns of the matrix h(A) and c¢; are some real constants. If
(1) is true, then h(a) = cih(a) + cah(b) and h(b) = c1h(a) + c2h(b) and thus
h(a) = h(b). But this means that a = b, a contradiction.

It follows that (2) should be true and hence h(a) = csh(b) and h(a®a) =
9

h(a®a)
csh(b (3 b). Then c3 = % = Wg)b) and consequently

h(a) _ h(g~"(2g(a)))
h(b)  h(g='(29(0)))

Put z = h(a), y = h(b) and f =goh™1. Then f~! =hog™' and (3) turns
to
¢ _ f1(2f(@))
v f2rWw)’

because of g(a) = g(h™'(h(a))) = f(z), and similarly g(b) = f(y). Simple
rewriting of (4) leads to

(3)

(4)

z o )
12f()  F2fWw)’ ®)
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for all z,y e R— {0}, z # y.
The last equality is true for all couples of z # y and thus, fixing y = 1, one gets

I ST )
F2f(@)  ff) K

where K = f~1(2f(1)) is some positive real constant greater than 1. It follows
K-z =f"1(2f(z)) and thus

f(K-z)=2f(z). (7)

Recall that f = g o h™! is continuos strictly increasing odd bijection on
[—00,+00]. By Aczel [1], a general solution of functional equation (7) is

d- P, ifz 20,

f(m):{—d-(—m)p, ifz <0,

where d is some positive real constant (in fact, d = f(1)), and p = logx 2, i.e.,
p 1s a positive real constant. We will show that p = 1.

0 RI1) A 01 1
Put B = [h_l(l) 0 h_l(l)} ,then h(B)= |1 0 1} and hence
R-Y 1) R-1(1) A1) 112

H(h(B)) = h—-H(B) = 2. Then also H(g(B)) = g-H(B) = 2. We have

0 gh™'(1) gh™'(1) 0 f(1) r@)
(b) [gh_l(l) 0 gh‘l(l)}—[f(l) 0 f(l)J=
gh™(1) gh™'(1) gh7'(2) ) r1) (2
0 d d
z{d : d]
d d d2°

leads to g71(d-z) = h™ l(z) and consequently h(z ( ) = c-g(z), where

c= % is some positive real constant. O

COROLLARY 4.1. Two generators g and h are rank-equivalent, i.e., g—-H(A) =
h-H(A) for each matrix A, if and only if h = c-g for some positive constant c.

It follows d—l— d=d-2P,ie, p=1.But then f(z) =d-z =goh !(z) which
) =g

Remark 4.1. The rank of matrices with respect to special binary operations
® and © (covering e.g., max =V and min = A) is discussed in [7], see also [2],
where two different ranks, namely the column rank c¢(A) and the semiring rank
7(A), are introduced. In our case, both types of ranks coincide, r(A) = c(A) =
g-H(A).
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THEOREM 4.2. Let h = c¢-g. Then and only then the systems A® X = B
and A® Y = B are equivalent, i.e., the knowledge of X implies the k;owledge
of Y aZd vice versa, and g(X) = h(Y).

Proof. The system A ® X = B is equivalent to the linear system
g(A)-Z = g(B), where Z = gg(X). The system A (}? Y = B is equivalent to the

linear system h(A)-Q =c-g(A)-Q = h(B) =c-g(B), ie., g(A)-Q = g(B),
where Q = h(Y). It is easy to see the equivalency of both linear systems and if
they are solvable, then Z = g(X) =h(Y)=Q. |

Remark 42 If h=c-g, c>0,and g(X) = h(Y), then Y = h™'(g(X)) d
g ! (g(i‘_)) =g (_g(gg—(_)l(()_c))) =X ?9_1(0)-

Further, the unity e of pseudo-multiplication © is given by ep, =h71(1) =
g 1(%). If we put g(1) =1, i.e,, g is normed genehrator, then e, =12 g7 (c)
and consequently Y = X S)eh = eh(!?X . For the further investigation Wegpropose

to use the normed generators g on [—oo,+oo] only, as long as the general casc
can be easily obtained as remarked above.
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