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ON FUZZY FUNCTIONS BETWEEN FUZZY SETS

LAszL6 FiLEp

ABSTRACT. First a critical survey of existing fuzzy function notions is given.
Then a new concept of fuzzy function is introduced, the basic properties of it are
established and its equivalence to Zadeh’s extension principle is shown.

I. Introduction

It is well known that if X is a set and I = [0, 1] the real unit interval, then
the map pu: X — I is called a fuzzy set on X or a fuzzy subset of X . Denote
their family by I* | which is a complete lattice under the “pointwise” extension
of the natural ordering of I. The elements of X for which u(z) > 0 give the
support of p: supp(p) =5 C X.

A fuzzy relation on X is simply defined as a fuzzy set on X x X. In this
paper we will use the concept of fuzzy relation between fuzzy sets introduced by
Rosenfeld in [5] and rarely studied in literature.

Let p,v € IX. Then any r € I**X with

r(z,y) < (u x v)(z,y) = min(u(z),v(y)), Vz,ye€X,

is called a fuzzy relation between p and v. Let their family be denoted by
R(u,v), specially, if 4= v, by R(u). By the inverse of an r € R(u, ) we mean
the following fuzzy relation 7—! between v and u:

r Hz,y) =r(y,z), VryeX.

The (sup-min) product of 7 € R(u,v) and q € R(v,7), where p,v,n € IX, is
denoted by r o ¢ and defined by

(roq)(z,y) = sup min(r(z, 2),9(z,9)), Vz,yeX.
zeX

In [2] it was proved that this product is well-defined (i.e., r o q € R(u,7))
as well as associative and isotone. It is also easy to show that for any r g €
R(p,v): (rogq) ™t =g tort,
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We define and denote the domain and range of a fuzzy relation r € R(u,v)
as follows:

domr =6 € I*: 6§(z) = sup r(z,vy), Ve X
yeX

rant = o € I*: o(y) = sup r(z,y), Vye X.
zeX

Clearly: 6 < p, 0 <v.
To study the connections between fuzzy and crisp concepts, the notion of
a-cut of a fuzzy set or relation is very useful:

po={z€X, plz)>a}, 0<a<l,
raz{(:c,y)EXxX, r(a:,y)Za}, 0<a<l.

By the diagonal relation d, in R(u) we mean the following:

wz), ifz=y,
du(z,y)z{o oty Ve, y € X.

II. Study of existing fuzzy function concepts

There are several definitions of fuzzy function in the literature (see, e.g., [1],
[3]), but none of them meet all the following natural requirements: they should
be special fuzzy relations; their product should be again a fuzzy function, their
a-cuts should be crisp functions.

Here we list and study these definitions proving some properties of them and
showing some connections between them. Then we give a new fuzzy function
notion satisfying the above requirements.

DEFINITION 1. An 7 € IX*Y is called a fuzzy function from X to Y [3].

DEFINITION 2. An r € IX*Y is a fuzzy function, if X =Y and r is reflexive
and symmetric [7].

DEFINITION 3. An r € I**Y is a fuzzy function from X to Y, if for all
z € X there exists y € Y such that r(z,y) > 0 [1].

DEFINITION 4. An r € IX*Y is called a fuzzy function from X to Y, if for
all £ € X there exists a unique y € Y such that r(z,y) =1 [4].

DEFINITION 5. An r € IX*Y is said to be a fuzzy function from X to Y, if
for all z € X there exists exactly one y € Y such that r(z,y) = 1, and if each
a € [0,1] appears at most once as a membership value of r [6].
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DEFINITION 6. An r € R(u,v), where p € IX and v € IY is called a fuzzy
function from x to v [3].

DEFINITION 7. A fuzzy function from p € I to v € IV denoted by fiup—v
is a usual function f: X — Y such that p =vo f,ie., u(z) = Z/(f(a:)) for all
z e X [3].

DEFINITION 8. The same as the previous one, but with g < v o f 3]

DEFINITION 9. (Zadeh’s extension principle, [8]) Any crisp function f: X —
Y (z + y) can be extended to a fuzzy function IX + IV (u— v), where u is
given and v is defined in the following way

sup u(z), ify €ran f,
l/(y) = { z€f~1(y)

0, ifyeY \ranf,
v is called the direct image of v under f, while u the inverse image of v
under f.

PROPOSITION 1. The map f in Definition 7 exists iff for all x € X there
exists y € Y such that p(z) = v(y).

Proof. Suppose that for some z € X there does not exist y € Y with
u(z) =v(y). Let f(z) =z €Y, and let v(z) = a # B = u(z). Then

B=uaz)= o f)(z)=v(f(z)) =v(z) = @,
which is a contradiction.
If p(z) = v(y) for some y € Y, then taking f(z) = y we can construct f.
O

PROPOSITION 2. The map f in Definition 8 exists iff

sup p(z) < sup v(y).
TeX yey

Proof. Suppose that sup u(z) > sup v(y). Then there exists zg € X with
T€EX YyeEY

p(zo) > v(y) for all y € Y. Since f(zo) € Y, so specially u(zq) > V(f(:co)) also
holds, which contradicts the condition made for f.
The converse statement is trivial. O

PROPOSITION 3. Definition 6 is an extension of Definition 1.
Proof. Immediate. O

PROPOSITION 4. If r € I**Y is a fuzzy function by Definition 4, then r
generates a map f from X to Y.

Proof. The following construction for f readily proofs the statement:
1 X=Y z—uy; y=f(z) < r(z,y)=1.
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III. A new notion for fuzzy function

DEFINITION 10. An 7 € R(u,v) is said to be a fuzzy function (from p to v)
if ror~t>d, and ror~! <d,.

LEMMA 1. rod, =d,or=r, rod,=d,or=r, foranyre R(p,v).

Proof.
(dyor)(z,y) = fél)}g min(du(m, z),r(z,y)) = min(du(m, m),r(m,y)) =
= min(p(z), r(z,y)) =r(z,y), soreally d,or=r.

The other statement can be proved similarly. O
THEOREM 1. If r,q € R(u,v) are fuzzy functions from p to v, sois roq.

Proof. Using Lemma 1, Definition 10 and the property of product inverse
we can write:

(Toq)o(roq)_l=roqoq_1or_1Zroduor_l:ror“lzdu;

(1"061)_10(7“Oq):q_lor_loroqgq_lodl,Oq:q_loqde7

which means that r o ¢ is also a fuzzy function. O

This theorem together with the previous results proves that the fuzzy func-
tions from p to p form a lattice ordered monoid under the product operation.

The proof of the following lemma is obvious:

LEMMA 2. Let r € R(u,v) be a fuzzy function. Then r~' is a fuzzy function

iff ror~'=d, and rtor=d,. O
LEMMA 3. Let r € R(pu,v) be a fuzzy function, then 6 = .

Proof.

6@) = sup T(may) = sup min(r(m,y),r(m,y)) = sup min(r(m,y),’r‘_l(y,m)) =
yeX yeX yeX

= (ror Y)(z,z) > du(z,z) = p(z),
which together with 6§ < p proves the lemma. O
THEOREM 2. An r € R(u,v) is a fuzzy function iff r is of the following form

(z1) { min(p(z),v(y)), for Ve €S and Ily€e S,
vz, y) =

0, otherwise,

(1)
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for all z,y € X.

Proof. First suppose r having the form (1). If z € X \ S, then r(z,z) =
r(z,z) = 0 for all z € X, therefore

(ror™)(@,y) =(r""or)(z,y) =0, VyeX.

Since in this case d,(z,y) = 0 is also true, so ror~! = r~lopr = d, trivially

holds.
If z € S, then for any z # = dy(z,y) = 0, thus clearly (ro 7Yz, 2) >
du(z,z). If 2=z, then

(ror™')(z,z) = sup min(r($, y), " y, m)) =
yeX

= Sug r(z,y) = 6(z) = p(z) = du(z,z).

With this we have proved that r o r=' > d,. Now we show the validity of

r~tor < d,. Clearly it is enough to consider only elements from S.If z € S

and z # z, then
(7‘ o T—l)(m’ z) = sup min(r_l(% y)? T(ya 2:)) =
yeXx

= sup min(r(y, z),r(y, z)) =0=d,(z,z),
yeX

since at least one of r(y,z) and r(y, z) is zero because of (1).
If 2=z, then
(r~" or)(z,z) = sup min(r~!(z,y),r(y, z)) = sup r(y,z) <
zeX yeX

< sup min (u(y), v(z)) < min(fél)rg w(y), v(z)) < v(z) = d,(z,z),

that is, our statement is valid in all cases.

Now, conversely, let r be a fuzzy function. If z € X \ S, then r(z,y) =0 for
all y € X.If z € S, then we show that there exists at least one Yo € S such
that

r(z,y0) = min(u(m), I/(yo)) >0.
Suppose that for all y € S

7(z,y) < min(u(z), v(y)).
Then using the first part of this proof we get

p(z) = (ror~t)(z,z) = sup r(z,y) < sup min(u(x),y(y)) <
yeX yeX

< min(u(z), slel)g v(y)) < uly),
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which is a contradiction.
Finally we show, also by indirect way, that there is no other y1 € S (y1 # o)
with r(z,y1) > 0. Namely:

0= du(y()ayl) > (T_l OT)(yanl) = Su}g min(r—l(ymz):r(zvyl)) =
z€

= & min (r(z, y0),7(2,¥1)) > min(r(z,y0),7(2,91)) >0,
zE

which is a contradiction and completes the proof of the theorem. O

LEMMA 4. Any fuzzy function r € R(p,v) induces a mapping (crisp function)
f from X to X.

Proof. From Theorem 2 one can easily deduce that the following corre-
spondence

y=¢(z) <= r(z,y) =min(u(2),v(y)), Vz,y€S,

defines a map from S to S. It can be extended to X as follows

. zw>¢(z), if zes,
frX—=X <$1—>z, if meX\S.) @)

LEMMA 5. If r € R(u,v) is a fuzzy function, then for any a € [0,1]
(B,y) BT =T € lin; YEUay V&yyekX.
Proof. If @ =0, the statement is trivial. If « > 0, then z € S, further by
Theorem 2 for a unique yg € S we have

vl yo) = min(,u(s:), V(yo)) >0.
Moreover from
a<r(z,y) = min(y(m), Z/(y()))
follows that a < u(z) and a < v(yo), that is = € po and y € v, . O

LEMMA 6. If r € R(u,v) is a fuzzy function, then

VeeS,Vae(0,1]:z€pu, =y €S: (z,%) €ETa, Yo € Va-

Proof. This lemma is a consequence of Lemma 3 and Theorem 2. Namely:
a < p(z) = 6(z) = sup r(z,y) =1(2,%0) = (2, 10) € T
AS

a < r(z,y) < S r(z,y0) = 0(yo) < v(Yo) = Yo € Va -
xTE
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THEOREM 3. An 7 € R(u,v) is a fuzzy function iff each a-cut ro (0 < o < 1)
is a crisp function from p, to v,.

Proof. Let r be a fuzzy function and consider an arbitrary element (z, )
from r,. Then by Lemma 5 and 6 7, really establishes a map from g, to vg.

Conversely, let each a-cut ro (0 < a < 1) be a map from p, to v,. If
z € X'\ S, then (z,y) € 7o cannot be true whatever a and y are. So we may
suppose that z € §. Let o = p(z) > 0. For this a z € u, and since 7, is a
map from po to v, then there exists a unique yo € v, for which (z,yg) € rq.
Thus we have

r(z,y0) Za=u(z) and  v(y) > o= u(z).

Moreover

a = p(z) < r(z,y0) < min(p(z),v(yo)) = p(z) = a,

which implies
r(2,y0) = min(u(z), v(yo)) .

If z € X\ S, then r(z,y) =0 for all y € X. Consequently r is of the form
(1). So by Theorem 2 it is a fuzzy function. a

THEOREM 4. If r € R(p,v) is a fuzzy function, then ranr = p is of the form:

sup  p(z), if fi(y) #0,
o(y) =4 =€/7°W) Vye X,
0, otherwise,

where f denotes the map induced by r and having the form (2).
Proof. For y € X with f~!(y) # 0 we can apply Theorem 2 and 3:

o) =supr(z,y) = sup r(e,y)= sup min(u(a),v(y)) = sup pu(a).
zeX z€f~1(y) z€f~1(y) ze€f~1(y)

If f~'(y) =0, then by Theorem 2 r(z,y) = 0 for all z € X, therefore

o(y) = sup r(z,y) =0.
zeX ’

This completes the proof of our theorem. O

Theorem 4 shows that our notion of fuzzy function leads to Zadeh’s extension
principle (Definition 9). A fuzzy function (from u to v) includes a crisp one,
under which the direct image of u in sense of Zadeh’s principle is v.

The proof of the following lemma (being a converse of Theorem 4) is left to
the reader:
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LEMMA 7. If we are given a map f: X — X, a fuzzy set p on X and the
direct image v of p under f, then the following fuzzy relation

i k) ) .f = 7
r(z,y) = rnm(u(a:) V(y)) = f(:z:) Yo,y e X,
0, otherwise,
defines a fuzzy function from p to v. O

The discovery of this connection between our fuzzy function notion and
Zadeh’s extension principle was only possible, because we used the concept of
fuzzy relation between fuzzy sets. It also turned out that our fuzzy function
notion is a natural generalization of the crisp one.
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