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SPATIALLY NONHOMOGENEOUS
PATTERN GENERATED BY
HOMOCLINIC/EQUILIBRIUM BIFURCATIONS

X1A0-Bi1ao LiN

ABSTRACT. Assume that an ODE system has a homoclinic solution asymptotic
to a hyperbolic equilibrium E. Breaking of the homoclinic solution creates stable
period solutions [8]. After adding diffusion, £ becomes nonhyperbolic, and sta-
ble spatially nonhomogeneous (SN) periodic solutions can be generated. When
Neumann boundary conditions are imposed, simple or double SN periodic solu-
tions can be generated depending on the twistedness of the homoclinic solution.
Systems with spatially periodic boundary conditions are also studied.

Consider a diffusively perturbed system
U =DUy + F(Uk), 0<z<l1, Ug(0,t)=U,(1,t)=0, (1)

where D = diag{di,ds}. When d; and d are large, all the solutions of (1)
approach spatially homogeneous (SH) solutions as ¢ — oo, [2] and [4]. We show
when decreasing d; and dj, spatially nonhomogeneous (SN) stable periodic
solutions can be generated from a SH homoclinic solution.

For the unperturbed ODE system, assume that F: R?> x R — R? is C.
When the parameter k = kg, the unperturbed ODE has a homoclinic solution
g(t) asymptotic to a hyperbolic equilibrium E. The Jacobian matrix at E

satisfies ad —bc < 0 and a +d > 0. Let M(k) be the gap between W*(E)
and W?*(FE), measured on a cross section of g(t). Assume that the Melnikov
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function %,gkl # 0. Breaking of the homoclinic orbit creates a periodic orbit
on one side of kg, [8]. Assume that for k € (ko — ¢, ko), a long period solution
p(t, k) bifurcates from g(t). All these hypotheses are satisfied by an example of
Freedman and Wolkowicz [9] which motivates this study. See [7].

The diffusively perturbed system is studied in intermediate spaces D 4(0), 0 <
6 < 1, where X = [L?(0, 1)]2, D, = {[H?(0,1)]? with boundary conditions} .
The existence of a solution U € C*([0,7]: Da(8)) N C([0,7]: Da(6 + 1)) that
depends C” on (dy,ds,k) and the initial condition Uy € D4(6 + 1) for any
r > 0 is known [3]. We also can show the existence of a center stable (unstable)
manifold and an invariant foliation of it by strongly stable (unstable) fibers. If
the equilibrium is hyperbolic with a simple unstable eigenvalue, then the lin-
earization around ¢(t) has exponential dichotomies in (—oo0, —w]and [w,c0),
[6]. Melnikov—Silnikov type function G(di,ds,%,T) can be constructed which
measures the jump U(T) — U(0) of a piecewise continuous period T solution.
The zero of G corresponds to a true periodic solution of period T'. The function
G is a continuation of M . Therefore dM/dk # 0 implies dG/0k # 0. Thus for
each T > t*(di,d2), there exists a unique k = k*(dy,ds,T) such that there is
a unique period T solution near ¢(t). The above theorem was proved for ODE
and delay equations [5]. The proof for parabolic equations is almost identical.
Since the SH periodic solution persists under diffusive perturbations, we have
proved the following theorem.

THEOREM 1. If E is hyperbolic in D 4(6+ 1) with one simple unstable eigen-
value, then for each T > t*(dy,ds), the SH period T solution is the only period
T solution near q(t).

The loss of hyperbolicity of E occurs in the first Fourier mode
{(ucosmz,vcosz) | (u,v) € R?},

when (a+m2d;)(d+7%ds) = be, di > 0, da > 0. In the (dy, ds)-plane, the above
defines a curve I'. The bifurcation to stable SN periodic solutions occurs when
(di,dz) is near I'. Let A be the eigenvalue with the real part closest to zero.
We make a change of variable in a neighborhood of I': (dy,d2) — (¢, m). Let
m = A. Let £ be the arc length on I' when m =0, and £ = C be an orthogonal
family of curves to A = C. This change of variable is valid in a neighborhood of

T', since we can show that VA = (%, g—é\z) # 0 when A =0.
To understand the bifurcation when m = 0, we need two more notions:

i) The weak stability of £ on W¢(E).
ii) Twistedness of the homoclinic orbit ¢(t).
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When m = 0, the linearization at E has one simple positive eigenvalue,
one simple zero eigenvalue and the rest of the eigenvalues are stable. Write
Dy(0+1) = X XY x Z, where X, Y, Z are the unstable, stable and center
eigenspaces respectively. In a special coordinates, we assume that the flow on
We(E) is

/

z=0, y=0, 2'=mz—cz>+ hot,c>0.

The assumption ¢ > 0 means that E is weakly stable on W¢(E). When m > 0,
a pair of SN equilibria Ey, Es bifurcates from FE. Notice that the solutions of
(1) are invariant under a reflection of the domain: RU(t,z) = U(t,1 — z). This
causes the flow on W¢(E) is odd in z.

There is a solution ¢(t) to the linear variational equation around g(t) such
that ¢(t) — ¢ as ¢ — —oo, [7]. Here ¢, is a unit eigenvector corresponding to
the zero eigenvalue. One can show that ¢(t) — c*¢. as t — oco. ¢* is a function
of £. We say that the homoclinic solution is nontwisted, twisted, or degenerate
if ¢* >0, <0,or =0. In fact, ¢(t) is tangent to W“(FE), and is transverse to
q'(t). We are in fact talking about the twistedness of a strip of W°*(E) around
the orbit of ¢(¢).

We say that U(t, z) is a simple periodic solution if it stays near the homoclinic
orbit and hits a cross section X once. We say that U(¢,z) is a double periodic
solution if it hits ¥ twice and U(t+T,z) = U(¢,1—z), where 2T is the period.
_ To find a simple or double period solution, we construct inner and outer map-

pings similar to the method of Silnikov’s. The inner mapping is defined in
a neighborhood of F and spends time to. It is written as a boundary value
problem that generates Silnikov’s method to nonhyperbolic equilibria [1]. The
outer mapping is near the outer loop of ¢(¢) and spends time t;. T =t + % .
Using the hyperbolicity in the (z,y) direction, by a Lyapunov-Schmidt reduc-
tion, we are led to two bifurcation equations and two variables k& and z. The
first equation G1(¢,m,k,T,z) = 0 is the continuation of the gap condition in
D4(6+1), and its solution is k = k*(¢,m, T, z). The second equation

z= G3(¢,m,T,z), forasimple period T solution,

z=—G4(¢,m,T,z), for a double period 2T solution,

asserts that the z variable has to match after cycling around a periodic so-
lution. The z variable cannot be reduced by the Lyapunov-Schmidt method
since £ is not hyperbolic in the z direction. Observe that the outer mapping
is almost linear with z(¢1)/2(0) = c¢*(£). If we choose z = ¢, m < €2, the
inner mapping satisfies z(p)/2(0) < 1. Thus |Gz| < |z|. The greatest ratio of
stretching in z occurs when z =~ 0, and is denoted by H(¢,m,T). We can see
that z = G2(¢,m, T, z) (or —G4(¢,m, T, z)) has a solution if H(¢,m,T) > 1 (or
H,m,T) < —1).
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THEOREM 2. Assume that c¢*({p) # 0. We can show

2)
%H(f,m,T)#O,

H(l,m,T) ~e™Tc*(4).

There exist two families of curves H(¢,m,T) = +1 in the (¢, m)-plane near
m = 0. For each (£y,mo) €T, mg = 0, there is an open set O C R? containing

(fov mO) )

the size of which depends on £y. O is divided by each curve into two

parts— |H(¢,m,T)| <1 or > 1.

i)
ii)

iii)

v)

If ¢*(£y) > 0, # 1, then there exist exactly two stable simple period T
SN solutions if H({,m,T) > 1; no such solution if H({,m,T) <1.

If ¢* (o) < 0, # —1, then there exists a unique stable double period 2T
SN solution if H(¢,m,T) < —1; no such solution if —1 < H(¢,m,T).
If ¢*(£y) =1, then

H(¢,m,T) > 1+ 6 = there exist exactly two stable simple period T
SN solutions;

H(¢,m,T) < 1— 6 = no such solution;

1+6 > HU,m,T) > 1 = there exist at least two simple period
T SN solutions. (The uniqueness and stability of such solutions are
unknown.)

If ¢*(4y) = —1, then :

H(¢,m,T) < —1 — 6 = there exists exactly one stable double period
2T SN solution;

H(¢,m,T) > —1+ é = no such solution;

—1—-6 < H(¢,m,T) < —1 = there exists at least one double period
2T SN solution. (The uniqueness and stability of such solutions are
unknown.)

The SH period T solution loses stability when the SN solutions are
known to be stable.

The above results also show the bifurcation to a pair of SN homoclinic solu-
tions asymptotic to Fy and Fs if ¢*(£y) > 0 or a pair of heteroclinic solutions
between E; and Ej if ¢*(4y) < 0 when crossing I'. They are special cases with

T = oco.

Except for the stability result, the proof of Theorem 2 can be found

in [7]. To show the uniqueness or nonexistence of solutions, consider z > 0
only. (The bifurcation function is odd.) Observe that the solution ®(¢,z) to
the equation 2’ = mz — cz® + h.o.t satisfies
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The return map in the z direction is almost like z(T") = ®(to, 20) - ¢*(£). Thus
220 . This shows that if hm zz(t) > 1, then %’j) = 1 admits a unique

Bzo zZo 20—0
solution 0 < zy < €; otherwise there is no such solution. In the real situation
the reduction has some error. Therefore the argument does not work well when
c*(£y) =0 or £1. See [7].

We now indicate how the stability of SN solutions can be proved Consider
z(T) < 0.

20

Assume that z(7')/z9 = 1. We have %O) —2(T) < 0. Thus 0 < %2 <
2(T)

20
to show that the return map is stable in the other directions transverse to the

periodic orbit using the roughness of exponential dichotomies.

zg > 0 only. Again the return map in the z direction satisfies g

= 1. This shows that the return map is stable in the 2 direction. It is easy

The next theorem shows that for a given large T, one can move (dy,d,)
across I' along a narrow strip near c¢*(¢y) = 0 without creating any simple
period T or double period 27 SN solutions [7].

THEOREM 3. Assume that c¢*({) = 0 and %c*(£o) # 0. There exist constants
€ >0 and t > 0 such that functions £*(m),|m| < & and 6(T) = ce=™T, T > ¥
for some ¢ > 0 can be defined. If |¢ — £*(m)| < §(T), |m| < e and T >, then
there is no simple period T or double period 2T SN solution to (2.1), inside a

(6(T)) neighborhood of the orbit of q(t).

We now consider equation (1) for z € R with spatially periodic boundary
conditions V' (¢,z+2) = V(t,z). Let U(t,z), 0 < z < 1, be a solution satisfying
the Neumann boundary conditions at z = 0, 1. Define

U(t,z), 0<z<l1,
Ult,—z), -l<z<l.

Vott,) = {

Then extend V; to z € R periodically with period 2. Define Ve(t,z) = Vo(t,z+
£)-

THEOREM 4. All the simple period T and double period 2T solutions of
the diffusively perturbed system with spatially periodic boundary conditions
of period 2 have the form Vi(t,z), where Ve is defined from U, which is a
corresponding solution satisfying the Neumann boundary conditionsat z =0, 1.

Proof. The eigen vectors corresponding to the zero eigenvalue span a two
dimensional space that is invariant under the reflection (r,6) — (r, —0) and
rotations (r,0) — (r,0 + £) in polar coordinates. Let V(t,z) be a solution
satisfying periodic boundary conditions. Then after reflection, or rotation of the
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domain by &, RV (t,z) = V(t,—z) and RV (t,z) = V (t,z+&) are still solutions
with the periodic boundary conditions. If V' is a simple period T' SN solution,
then it is associated to a solution z = (r,6) of the two dimensional bifurcation
equation z = Go(¢,m,T,z) which respects the O(2) symmetry. The solution
R_4V is then associated to z = (r,0). We can see that R(R_4V) = R_4V
since z = (r,0) is invariant with respect to the reflection. The restriction of
R_4V to [0,1] is a solution to the PDE with the Neumann boundary conditions
at £ =0, 1. This proves the theorem. O
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