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ABSTRACT. An identity is normal if it is not of the form « = p, where p is a
term different from the variable z. By a nilpotent shift of a variety }V we mean
a variety determined by all normal identities of V. We study the nilpotent shift
of the variety of all semilattices and that of the variety of implication algebras.

An identity is normal if it is not of the form z = p, where p is a term
different from the variable z. One can associate with any variety V its nilpotent
shift N'(V) defined by all normal identities which are valid in V. A variety V is
normally presented if V = N (V).

Since neither the variety £ of all lattices nor the variety D of all distributive
lattices are normally presented, we can find normally presented varieties contain-
ing £ or D; for such an attempt, see, e.g., [2], [3], [4] or [5]. Analogously, also
the variety of all semilattices and the variety of all implication algebras are not
normally presented. The aim of this paper is to give some natural generalizations
of these varieties forming their nilpotent shift.

1. g-semilattices

A groupoid (A4, ) is called a g-semalattice if it satisfies the following identities:
(associativity) a-(b-c)=(a-b)-c,
(commutativity) a-b="b-a,
(weak idempotence) a-(b-b) =a-b.

Evidently, the variety of all g-semilattices is normally presented and it con-
tains the variety of all semilattices. We are going to show the connection between
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a g-semilattice and a quasiorder on its support in the manner similar to that for
semilattices and ordered sets.

By a quasiorder on a set A we mean a reflexive and transitive binary relation
on A.If Q is a quasiorder on a set A and a,b € A we define

SUq(a,b) ={z € 4; (a,2) €Q, (b,2) €Q and
if (a,c)€Q, (bc) e @ forsomece A then (z,¢)€Q}.
Evidently, if Q is an order on A, then card SUg(a,b) <1 and
SUg(a,b) = {sup(a,b)} if sup(a,d) exists.

THEOREM 1. Let (A,-) be a g-semilattice and @ be a binary relation on A
introduced as follows

(a,b) €Q ifandonlyif a-b=0b-b.
Then Q is a quasiorder on A and a-b € SUg(a,b) for every a,b of A.
Remark. Thisquasiorder Q will be called induced by the g-semilattice (4, ).

Proof. Reflexivity of Q is trivial. Prove transitivity of Q: let (a,b) € Q
and (b,c) € Q. Then

a-b=b-b and b-c=c-c,
and, by the g-semilattice identities, we obtain
a-c=a-(c-c)=a-(b-c)=(a-b)-c=(b-b)-c=b-c=c-c,

whence {a,¢) € Q.
Further, let z,y € A. Then

z-(z-y)=(z-z)-y=z-y,
y-(z-y)y=z-(y-y)=2z-y,

thus (z,z-y) € Q and (y,z-y) € Q. Suppose (z,c) € Q and (y,c) € Q for
some ¢ € A. Then
z-c=c-c and y-c=c-c

which yield
(@ y)c=(e9) (=@ F=(--(c-d=c-e,
thus also (z -y,c) € Q. We have proved
-y € SUg(z,y).
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Remark. We can also introduce the relation @Q* on the support of a g¢-
semilattice (A4,-) as follows
(a,b) e Q" ifandonlyif a-b=a-a.

It is easy to see that also Q* is a quasiorder on A. Moreover, Q* is the inverse
relation to the induced quasiorder @, i.e., Q* = Q1.

Let Q be a quasiorder on a set A. Then the relation Eqg = QN Q™! is an
equivalence on A and the factor relation Q/Eg defined on the factor set A/Eg
by the rule

(laleg, BlEy) € Q/Eqg if and only if (a,b) € Q,
is an order; if (A/Eq,Q/Eqg) is a join-semilattice (with respect to the order
Q/Eq), then for every [a|g,, [b]r, € A/Eq there exists sup([a]g,, [b]s, ) - Let
 be a choice function k: expA — A such that x([a]g,) € [a]g, for each
a € A. Introduce the operation V on A as follows
aV b= «(sup([a] g, [b]E,)) -

It is easy to show that (A, V) is a g-semilattice for every such a choice function
(for details see [2]).

THEOREM 2. Let Q be a quasiorder on a set A such that SUg(a,b) # 0 for
each a,b € A. Then A can be equipped with a binary operation - such that
(A,-) is a g-semilattice with

(i) a-be SUg(a,b) for each a,b € A;

(ii) the quasiorder induced by (A,-) coincides with Q.

Proof. Let x be a choice function x: exp A — A with K(SUQ(a,b)) €

SUg(a,b). Introduce the binary operation on A as follows
a-b=r(SUg(a,b)).
It is a routine way to testify associativity, commutativity and weak idempotence
of .. The condition (i) is trivial. For (ii), let (a,b) € Q. Then SUg(a,b) =
SUgq(b,b) and hence a-b= k(SUg(a,b)) =b-b. Conversely, if a-b=b-b then
x(SUg(a,b)) = x(SUq(b, b)),

which implies (a,b) € Q. Therefore, @ coincides with the quasiorder induced
by (4,-). a

A finite quasiordered set A can be visualized by a diagram: elements of A
are represented by points in a plane which are connected by arrows. The symbol

a b

—>0

means {a,b) € @ and Q is the reflexive and transitive hull of the relation
visualized by arrows.
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z

a b T
FIGURE 1.

EXAMPLE 1. Let A be a quasiordered set visualized by the diagram in Fig. 1.
Evidently, SUg(a,b) = {c,y,z}, SUqg(b,b) = SUg(z,z) = SUq(b,z) = {b,z},
SUg(a,c) = SUq(b,c) = SUg(z,¢c) = SUg(y,c) = SUg(z,¢) = SUgp(a,y) =
SUQ(G,Z) = SUQ(b,y) = SUQ(b, Z) = SUQ(z,y) = SUQ(iE,y) = SUQ(.’E,Z) =
{Cay’ Z}, SUQ(aa Cl.) = {a}

By Theorem 2, A can became a g-semilattice; we can choose, e.g., m(SUQ(a, b))
=c, x(SUq(b,b)) =b,ie, a-b=c, b-b="b etc., the operation table is the
following;:

o o0 o0 o0 |c

nNwe 8O TR

OO0 0 0 0 88
O 00 00 0|0
0O 0 0 oo (R
OO0 000 0
O 0 0 O 0 O|N

For another choice function, the operation - would be different but the induced
quasiorder is the same.

Remark. There exist two non-isomorphic two-element g-semilattices, namely,
those of S7, S» in Fig. 2:

b

A

Sl 5’2

FIGURE 2.
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THEOREM 3. The variety S of all q-semilattices is locally small; the free g-
semilattice Fs(z1,...,2,) with n free generators has exactly 2" —1+n elements.

Proof. Let z1,...,z, be different free generators of the free g-semilattice
Fs(Biy0qBn) . Then oy o5 By - 8y DUt 850 B =35 - (@5 -5 s
~ Hence Fs(z1,...,z,) contains a free semilattice generated by z1,..., T, and
with every z; also the element z; - z; satisfying

(ziyz;-z;) €Q and (z; -z, z;) €Q

as can be easily shown (Q is the induced quasiorder). Hence it contains n ele-
ments zi - T1,...,Z, - T, and all of the elements of the free semilattice which
has exactly 2™ — 1 elements. O

EXAMPLE 2. The free g-semilattices with one, two and three generators are
depicted in Fig. 3.

T T-T Y-y Y
FS(mvy)
: T Y-z
z Tz
Fs(x)
I Y-z
Fg(m,y,z)

FIGURrE 3.

An element b of a g-semilattice (A4,:) is called an idempotent if b-b =
b. Denote by S the set of all idempotents of (4,-), the so-called skeleton.
It is almost obvious that (S4,-) is a semilattice and it is the greatest sub-g-
semilattice of (A,-) which is a semilattice. Henceforth, the restriction Q|Sa of
the induced quasiorder @ onto S, is an order.
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For a g-semilattice (A,-), a subset C C A is called a cell of (A,-) provided
cardC > 1, a-a="b-b for each a,b € C and C is maximal with respect to this
property.

It is easy to see that every g-semilattice (A,-) consists of its skeleton Sy
and a system {C,; v € I'} of cells and, moreover, card(C, N S4) =1 for each
v €T, i.e., every cell has exactly one idempotent.

In Example 1, elements {a,b,c} form the skeleton S4 and (A,-) has two
cells, namely, C; = {b,z} with the idempotent b, and C> = {c,y,z} with
the idempotent c¢. In Example 2, the skeleton of Fs(z,y,z) coincides with the
free semilattice with three free generators z,y,z and it contains three cells:
Ci ={z,z-z}, Ca={y,y-y}, C3 ={z,2-z}.

For some reasons of the next section, let us recall the concept of g-algebra
(see [2], [3] or [4]): An algebra (A;V,A,,0,1) of the type (2,2,1,0,0) is called
a q-algebra if it satisfies the following identities:

(associativity) aV(bVe)=(aVvb)Ve an(bAc)=(aAb)Ac
(commutativity) avVb=bVa aNb=DbAa

(weak absorption) aV(aAb)=aVa aN{aVb)=aVa
(weak idempotence) aV (bVb)=aVb aN(bAb)=aAb
(equalization) aVa=ala

(0 —1 axioms) anN0=0 aVli=1
(complementation) ahd =0 avVa =1
(distributivity) aV(bAc)=(aVb)A(aVec)

FIGURE 4.

It is almost obvious that if (4;V,A,,0,1) is a g-algebra, then (4,V) and
(A,A) are g-semilattices. Hence, -there exists an induced quasiorder @ on A
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such that a Vb € SUg(a,b) and a Ab € SUg-1(a,b). Moreover, (0,a) € @ and
(a,1) € Q for each a € A. Hence, every g-algebra can be depicted by a diagram
(introduced for quasiordered sets). Elements 0 and 1 are clearly idempotents of
every g-algebra. Also the concepts of skeleton S4 and cell C' are the same as
for g-semilattices. For some details see [2], [3] or [4]. An example of a g-algebra
which is not a Boolean algebra is shown in Fig. 4.

Tts skeleton is S4 = {0, a,b,1}, it has three cells. Moreover, '’ = b, b' =a
and y' =wm, 2 =a, v =4, '=t'=0=w', & =0 =1.

Hence, every Boolean algebra is a g-algebra but not vice versa. Moreover, the
variety of all g-algebras is normally presented.

2. Semi-implication algebras

The concept of implication algebras was introduced by J. C. Abbott [1].
Since every implication algebra is a semilattice with respect to the term oper-
ation, it motivates our effort to generalize this concept in order to obtain an
algebra which is a g-semilattice with respect to the analogous term operation.

A groupoid (4,-) is called a semi-implication algebra if it satisfies the fol-
lowing identities

1° zl[(zy)z] =2z and [(zy)z]z ==z,
2° (zy)y = (yz)e,
3° z(yz) = y(z2)
(where the binary operation - will be expressed by juxtaposition only).

Note that the identities 2° and 3° coincide with those for implication algebra
and the axiom (zy)z = z for implication algebra is replaced by 1°. Hence, every
implication algebra is a semi-implication algebra but not vice versa. Moreover,
the variety of all semi-implication algebras is normally presented and it is equal
to the nilpotent shift of the variety of all implication algebras.

We are going to list basic properties of semi-implication algebra:
THEOREM 4. Every semi-implication algebra (A,-) contains a nullary term
operation 1 and satisfies the following identities:

4° ga=1, Hla)=1la, al=1;
5° (1la)b = a(1b) = (1a)(1b) = 1(ab) = ab;
6° a(ab) =ab, a(ba)=1,
a[(ab)b] =1, (ab)(ba) = ba,
[(ab)b]b = ab, [(ab)bla = ba.
If ab =1 and ba =1 for some a,b€ A, then la = 1b.
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Proof. For every z,y of A we can derive by 1°, 2°, 3°:
vz = [(zy)z]z = [z(zy)] (2y) = z[[2(zy)]y] = [[((zy)2)(zy)]y] =
= z((zy)y] = (zy)(zy),
i.e., (A,-) satisfies the identity
(e) zz = (zy)(zy).
By (e) and 2° we conclude
zz = (zy)(zy) = [(zv)y] [(zy)y] = [(y2)2] [(y2)2] = (y=)(yz) = vy,
thus zz is a term nullary operation; denote it by 1.
Now, a(1b) = a((bb)b) = ab by 1° and the foregoing identity. Analogously,
(la)b = ((aa))b=ab and, similarly, (1a)(1b) = ab.

Moreover, by 1° and 3° we infer 1(ab) = a((bb)b) = ab proving the remain-
ing identity of 5°. The second identity of 4°, namely, 1(la) = la, is a trivial
consequence of 5°.

Further,

a(ab) = [(ab)a](ab) = 1[[(ab)a](ab)] = 1(ab) = ab

proving the first identity of 6°. Hence, also al = a(aa) = aa = 1 proving 4°.
For remaining identities of 6°, we can count:

a(ba) = b(aa) =61 =1,
a[(ab)b] = (ab)(ab) =1,
(ab)(ba) = b[(ab)a] = ba,
[(ab)b]b = [b(ab)](ab) = [a(bb)] (ab) = (al)(ab) = 1(ab) = ab,
[(ab)b]a = [(ba)a]a = ba by the previous identity .
Finally, if ab=1 and ba =1 for some a,b € A, then
la = (ba)a = (ab)b = 1b.
|

THEOREM 5. Let (A,-) be a semi-implication algebra. The binary relation Q
on A introduced as follows

(a,b) € Q ifand only if (ab)b=1b

is a quasiorder. Moreover, (A,V) is a g-semilattice for the term operation V
defined by
aV b= (ab)b
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and Q coincides with the quasiorder induced by (A, V).

For each a € A it holds (a,1) € Q. If (1,a) € Q for some a € A, then
la=1.

Proof. At first, we prove that @ is a quasiorder on A. Since

(aa)a = 1a,
we infer reflexivity of Q. Suppose (a,b) € Q and (b,c) € Q. Then

(ab)b=1b and (bc)c= lc,

thus

(ac)e = [a(lc)]c = [a[(be)d]]c = [al(cb)b]]c = [(cb)(ab)]c = [(cb)1]c = 1c,

(since ab = a(1b) = a[(ab)b] = 1) giving (a,c) € Q, thus Q is a quasiorder
on A.

By 4°, we have (al)l = 11 proving (a,1) € Q for each a € A. Further, if
(1,a) € Q for some a € A, then (la)a = la but

(la)a =aa =1

applying 5° and 4°, i.e., la =1.
With respect to Theorem 1, it satisfies to prove that

(ab)b € SUg(a,b).
If ab=1 then (ab)b = 1b, i.e., (a,b) € Q. This implies, by
a[(ab)b] = (ab)(ab) =1,

the relation (a, (ab)b) € Q for each a,b € A and also (b, (ab)b) = (b, (ba)a) € Q.
If, moreover, (a,c) € Q and (b,c) € Q for some c € A, then

(ac)e =1c and
le=(bc)e=(cb)b=2x2b for = =cb
thus
([(ab)t](1c))e = ([(ab)b](wb))c = (z([(ab)b]b))c =
= (z[(b(ab))(ab)])c = (z[[a(bb)](ad)])c =
= (el(a1)(@b)))e = ((=(1(ab)))e = (a(zb))e = (a(l0))c =

[(
= {ac)c= le,

(l(ab)ele)e =

whence ((ab)b,c) € Q proving (ab)b € SUg(a,b). By Theorem 2, (4,V) is a
g-semilattice for a V b= (ab)b. O
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COROLLARY. The free semi-implication algebra with one free generator has 3
elements. The free semi-implication algebra with two free generators has 8 ele-
ments. Their diagrams as g-semilattices are depicted in Fig. 5 and the operation
table is the following:

1 = lz y Ly zy  yz  (zy)y

1 1 1=z 1z ly 1y zy yz (zy)y

z 11 1 1 Ty Ty zy 1 1 ]
1z 1 1 1 Ty Ty zy 1 1
Y 11 yzx yx 1 1 1 yr 1
ly 1 y=z Yz 1 1 1 yr 1

{zy |1 1= lz (zy)y (zy)y 1 yz  (zy)y

yx 1 (zy)y (zy)y Ly ly zy 1 (zy)y
(zy)y |1 y= yz Ty Ty zy yz 1

FIGURE 5.

The proof follows directly by Theorem 4 and 5. O

Remark. For an implication algebra (A4, ), the g-semilattice (A4, V) with the
operation a V b = (ab)b will be called the induced g-semilattice.
THEOREM 6. Let (4,-) be a semi-implication algebra and (A, V) its induced
g-semilattice.
(1) a€ A is an idempotent of (A,V) if and only if a = 1a in (4,-);
(2) elements a,b € A are of the same cell of (A,V) if and only if 1a = 1b
in (Av‘);
(3) if Sa is the skeleton of (A,V), then (Sa,-) is the greatest implication
algebra contained in (A, ).
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Proof. (1) follows immediately from the fact that a V a = (aa)a = la.
(2): Elements a,b € A are of the same cell if and only if {a,b) € Q and (b,a) €
@, which is equivalent to (ab)b = 1b and (ba)a = la; by 2°, we have 1b =
(ab)b = (ba)a = la.

(3): Let z,y € Sa, ie., they are idempotents of (A4,V). Then, by (1), z = 1z
and y = ly. By using of 5°, we have

(zy)z = 1[(zy)z] = 1z ==,

i.e., the elements of S4 satisfy the remaining axiom of implication algebra.
Moreover, if z,y € A satisfy (zy)z = ¢ then z = (zy)z = 1[(zy)z] = 1z
and, by (1), z € S4. O

Since (S4,V) is a join-semilattice, the restriction of @ onto S4 is an order.
Therefore, it is meaningful to speak about suprema or infima of elements of the
skeleton Sg4.

THEOREM 7. Let (A,-) be a semi-implication algebra.
(1) If a,b€ Sy and p is any lower bound of a,b, then

inf(a, b) = [a(bp)]p;
(2) If pe A then the set
Bp B {a, g.4; <Paa> € Q}

is the g-algebra (Bp; V, A, ',c,1), where aVb = (ab)b, anb = [a(bp)]p,
a' =a-p, and c is the idempotent of the cell containing p.

The proof is an immediate consequence of Theorems 5 and 6 in [1] and the
foregoing Theorem 6.

COROLLARY. FEvery semi-implication algebra (A,-) is a g-semilattice in which
for any p € A the set By is a g-algebra.

Remark. Although the most of proven properties of semi-implication alge-
bras are analogous to those of implication algebras, there are also important
differences. For example, the variety of all implication algebras is congruence
3-permutable, i.e.,

QoPol=Po0fod

for every two congruences 6,® on (4,-). On the other hand, the variety of all
semi-implication algebras is not congruence n-permutable for any integer n. The
following example shows that the free semi-implication algebra Fy(z,y) is not
congruence 4-permutable.
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FIGURE 6.

EXAMPLE 4. Let 0,® be congruences on Fy(z,y) determined by their classes
in Fig. 6.
Then (z,y) €0oPobo¢ but (z,y) ¢ Pobodol.
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