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ON LOWER-SEMICONTINUITY
OF VARIATIONAL INTEGRALS

VLADIMIR SVERAK

ABSTRACT. We consider questions regarding the relation between Morrey’s
quasiconvexity condition and lower semicontinuity of variational integrals. We
also show how quasiconvexity naturally comes up in problems concerning stabil-
ity of sets of solutions of certain nonlinear systems under weak convergence.

I. Lower-semicontinuity and quasiconvexity

We consider variational integrals
I(u) = /f(Du(ac)) dz
Q

defined for (sufficiently regular) functions u: Q@ — R™. Here € is a bounded

open subset of R™, Du(z) denotes the gradient matrix of u at = and f is a

continuous real valued function on the space of all real m x n matrices .#Z™*"™.

One of the important questions in the Calculus of Variations is the following:

for which functions f is the integral I weakly lower-semicontinuous in the fol-

lowing sense: (u) < liminf I(u;) for every sequence of functions u;: Q — R™
J—)OO

satisfying |Du; (z)| < ¢ (for some ¢ > 0) and converging (locally) uniformly in
Q to u: Q@ — R™.

This question has been studied in [Mol] (see also [Mo2]) where the following
notion was introduced. We say that f is quasiconvez if for any matrix A €
A™*™ and any smooth function ¢: @ — R™ compactly supported in Q the
inequality [ f(A + Dy)dz > [ f(A)dz holds.

Q Q

The class of quasicovex functions is independent of Q2. (See [Mol], [Mo2].)
In [Mol] (see also [Mo2]) the following result has been proved:
THEOREM. (Morrey). I is weakly lower-semicontinuous in the above sense
if and only if f is quasiconvex.
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We remark that under natural growth assumptions quasiconvexity is also a
necessary and sufficient condition for the weak sequential lower-semicontinuity
of I on WP spaces. See [AF1] for optimal results in this direction.

The quasiconvexity condition plays also an important role in results regarding
partial regularity of minimizers of the integral I, see [Ev], [AF2].

It is not difficult to verify that for n =1 or m = 1 quasiconvexity reduces to
convexity. On the other hand, for n > 2 and m > 2 there always exist nonconvex
quasiconvex functions. (A typical example in the case m =n is f(X) = det X).
In fact, it turns out that it may be very difficult to decide whether or not a
given function is quasiconvex. For specific examples see [AD], [DM], [Sv1]. In
this connection, the following simpler notions have been introduced, see [Bal],
[Mo1], [Mo2]:

f is rank-one convez if for each matrix A € .#™*™ and each rank-one matrix
B € .#™*™ the function ¢ — f(A +tB) is convex. (For C?>—functions rank-one
convexity is exactly the same as the so-called Legendre-Hadamard condition, see
[Bal].)

[ is polyconvez if f(X) = convex function of minors of the matrix X . (For ex-
ample, f: .#?*? — R is polyconvex if there exists a convex function G: .#2%2x
R — R such that f(X) = G(X,det X) for each X € .#%*2.)

It is well-known that rank-one convexity (RC) is a necessary condition for
quasiconvexity (QC) and that polyconvexity (PC) is a sufficient condition for
quasiconvexity. In other words, PC=QC=-RC. We remark that in principle
it should be relatively easy to decide whether or not a given function is rank-
one convex or polyconvex (although actual computations can be lengthy and
tedious). It is therefore of great interest to know whether or not there are further
relations between the three notions of convexity introduced above.

It turns out that there are quasiconvex functions which are not polyconvex,
see [Te], [Se], [Ba2], [AD], [Sv2].

For a long time it was a major open problem whether or not RC=QC. It
turns out that for n > 2, m > 3 this fails, see [Sv4] where an example is given
which shows that for n > 2, m > 3 there exists a fourth-order polynomial which
is rank-one convex but not quasiconvex. The case n > 2, m = 2 remains open.
We remark that even in the case n = m = 2 the implication RC=-QC would
have far-reaching consequences.

II. Quasiconvexity and Compensated Compactness

Let IC C .#™*™ be a closed set. We define the following “semi-convex” hulls
of K. The quasiconvez hull, IC1¢, is defined by:

X ¢ K% if and only if f(X) >supf for some quasiconvex function f .
K
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The rank-one convex hull ™ and the polyconvex hull ICP¢ are defined in a
similar way by replacing the class of quasiconvex functions in the last definition
by the class of rank-one convex functions and polyconvex fuctions respectively.

It turns out that the problem of computing K9 for a given set /C arises in
many different situations. As an example, let us consider the following problem
from the theory of Compensated Compactness. (For an exposition of the theory
of Compensated Compactness see [Ta].)

Let I C .#™*™ be a closed set and let us consider the following first-order
system of PDE for functions u: ) — R™.

Du(z) e K. (S)

We say that the system (S) is strongly stable if for each sequence of uni-
formly Lipschitzian functions u;: @ — R™ (that is |Du](m)[ < ¢ for some
¢ > 0) which converges uniformly to a function u: @ — R™ and satisfies
lim [dist(Duj(z),K)dz = 0, the function u solves the system (S), ie.,
j—oog

Du(z) € K for a.e. z € Q.

One of the main problems in the theory of Compensated Compactness is the
problem of classifying the strongly stable systems. It turns out that this is very
closely related to the problem of classifying the quasiconvex functions. We have
the following;:

PROPOSITION. In the notation introduced above, assume that KC is compact.
Then the system (8S) is strongly stable if and only if K% = IC.

This result is quite simple (and it is an easy exercise to prove it), but it
seems to be helpful in understanding the nature of the problem of classifying
the strongly stable systems.

An obvious consequence of the Proposition and the fact that QC=-RC is the
following: a necessary condition for (S) to be strongly stable is that K satisfies
K™ = K. We remark that although it is believed that this condition is not
sufficient for the strong stability of (S), no counterexample is known which would
confirm this.

Another area where the problem of computing K9 comes up is the theory
of microsructures recently developed in [BJ1]. See also [BJ2] and [Sv6].

The problem of computing K9 for a given set KC is in general very difficult
and in many cases seems to be out of reach of the present methods.

EXAMPLE. Let m =n =2 andlet A =0, B =1, C = diag(cy,c2) with
ci>1and 0<cy <1.Let K={A B,C} C .#%*2. It can be proved that in
this case K9 = IC, see [Sv3] and [Sv5]. I do not know any simple proof of this
statement. (It is not difficult to see that in this example we have KP¢ # IC).

In general it can be proved that for any set K C .#Z™*™ consisting of three
matrixes no two of which are rank-one connected we have K¢ =K.
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