

ON ASYMPTOTIC BEHAVIOUR OF SOLUTIONS OF FUNCTIONAL DIFFERENTIAL EQUATIONS

ROMAN KOPLATADZE

ABSTRACT. Sufficient (necessary and sufficient) conditions are given for a functional differential equation to have properties A and B.

Consider the equation

$$u^{(n)}(t) + F(u)(t) = 0, (1)$$

where $F: C^{n-1}(\mathbb{R}_+; \mathbb{R}) \to L_{\text{loc}}(\mathbb{R}_+; \mathbb{R})$ is a continuous operator. Everywhere below we shall assume that a nondecreasing function $\sigma: \mathbb{R}_+ \to \mathbb{R}_+$ exists such that $\lim_{t \to +\infty} \sigma(t) = +\infty$ and for any $t \in \mathbb{R}_+$

$$F(x)(t) = F(y)(t)$$
 if $x, y \in C^{n-1}(\mathbb{R}_+; \mathbb{R})$

and

$$x(s) = y(s)$$
 for $s \ge \sigma(t)$.

For any $t_0 \in \mathbb{R}_+$ let M_{t_0} denote the set of $u \in C^{n-1}(\mathbb{R}_+; \mathbb{R})$ satisfying $u(t) \neq 0$ for $t \geq t^*$, where $t^* = \min\{t_0, \sigma(t_0)\}$. The following assumption will always be fulfilled: either

$$F(u)(t) u(t) \ge 0$$
 for $t \ge t_0$, for any $t_0 \in \mathbb{R}_+$ and $u \in M_{t_0}$, (2)

or

$$F(u)(t) u(t) \le 0$$
 for $t \ge t_0$, for any $t_0 \in \mathbb{R}_+$ and $u \in M_{t_0}$. (3)

AMS Subject Classification (1991): 34K15. Key words: functional differential equations, properties A and B, oscillation of solutions.

ROMAN KOPLATADZE

DEFINITION 1. Let $t_0 \in \mathbb{R}_+$. A function $u: [t_0, +\infty[\to \mathbb{R}$ is said to be the proper solution of the equation (1) if it is locally absolutely continuous up to the order n-1 inclusively, there exists a function $\overline{u} \in C^{n-1}(\mathbb{R}_+; \mathbb{R})$ such that $\overline{u}(t) \equiv u(t)$ for $t \geq t_0$, almost everywhere on $[t_0, +\infty[$

$$\overline{u}^{(n)}(t) + F(\overline{u})(t) = 0$$

and

$$\sup \bigl\{ |u(s)| \colon s \in [t,+\infty[\,\bigr\} > 0 \quad \text{for any} \quad t \in [t_0,+\infty[\,.$$

DEFINITION 2. We say that the equation (1) has the property A provided any of its proper solutions is oscillatory if n is even and either is oscillatory or satisfies

$$|u^{(i)}(t)| \downarrow 0$$
 as $t \uparrow +\infty$ $(i = 0, \dots, n-1)$ (4)

if n is odd.

DEFINITION 3. We say that the equation (1) has the property B provided any of its proper solutions either is oscillatory or satisfies (4) or

$$|u^{(i)}(t)| \uparrow 0$$
 as $t \uparrow +\infty$ $(i = 0, \dots, n-1)$ (5)

if n is even and either is oscillatory or satisfies (5) if n is odd.

Conditions for an ordinary differential equation to have the properties A and B are studied well enough (see [1, 2] and references therein). The analogous problems for the equations with deviating arguments are investigated in [3, 4].

THEOREM 1. Let (2) ((3)) hold and let for any $t_0 \in \mathbb{R}_+$

$$\left| F(u)(t) \right| \ge \sum_{i=1}^{m} \int_{\sigma_i(t)}^{\overline{\sigma}_i(t)} \left| u(s) \right| d_s r_i(t,s) \quad \text{for } t \ge t_0, \quad u \in M_{t_0}, \quad (6)$$

where the measurable functions $r_i(t,s)$ $(i=1,\ldots,m)$ are nondecreasing in s, $\sigma_i, \overline{\sigma}_i \in C(\mathbb{R}_+; \mathbb{R}_+)$, $\sigma_i(t) \leq \overline{\sigma}_i(t)$ $(i=1,\ldots,m)$ for $t \geq 0$ and

$$\lim_{t \to +\infty} \frac{\sigma_i(t)}{t} > 0 \quad (i = 1, \dots, m).$$
(7)

Suppose, moreover, that there exists $\varepsilon > 0$ such that for any $l \in \{1, \ldots, n-1\}$ and $\lambda \in [l-1, l[$ where l+n is odd (even) the inequality

$$\varliminf_{t\to +\infty} t^{l-\lambda} \int\limits_t^{+\infty} \xi^{n-l-1} \sum_{i=1}^m \int\limits_{\sigma_i(\xi)}^{\overline{\sigma}_i(\xi)} s^{\lambda} d_s r_i(\xi,s) \, d\xi \geq \prod_{i=0, i\neq l}^{n-1} |\lambda-i| + \varepsilon$$

holds. Then the equation (1) has the property A (B).

ON ASYMPTOTIC BEHAVIOUR OF FUNCTIONAL DIFFERENTIAL EQUATIONS

THEOREM 2. Let (2), (6), (7) ((3), (6), (7)) hold. Suppose, moreover, that there exists $\varepsilon > 0$ such that for any $\lambda \in \bigcup_{k=0}^{(n-2)/2} [2k, 2k+1[$ ($\lambda \in \bigcup_{k=1}^{(n-2)/2} [2k-1, 2k[$) if n is even and for any $\lambda \in \bigcup_{k=1}^{(n-1)/2} [2k-1, 2k[$ ($\lambda \in \bigcup_{k=0}^{(n-3)/2} [2k, 2k+1[$) if n is odd the inequality

$$\underline{\lim_{t\to +\infty}}\,t\,\int\limits_t^{+\infty}\xi^{n-\lambda-2}\sum_{i=1}^m\int\limits_{\sigma_i(\xi)}^{\overline{\sigma}_i(\xi)}s^{\lambda}d_sr_i(\xi,s)\,d\xi\geq \prod_{i=0}^{n-1}|\lambda-i|+\varepsilon$$

holds. Then the equation (1) has the property A(B).

COROLLARY 1. Let (2), (7) ((3), (7)) hold and let for any $t_0 \in \mathbb{R}_+$

$$|F(u)(t)| \ge \sum_{i=1}^{m} p_i(t) |u(\sigma_i(t))|$$
 for $t \ge t_0$, $u \in M_{t_0}$,

where $p_i \in L_{loc}(\mathbb{R}_+; \mathbb{R}_+)$, $\sigma_i \in C(\mathbb{R}_+; \mathbb{R}_+)$, $\sigma_i(t) \leq t$ (i = 1, ..., m). Suppose, moreover, that there exists $\varepsilon > 0$ such that for any $\lambda \in [n-2, n-1[$ (for any $\lambda \in [n-3, n-2[$ of n is even) the inequality

$$\lim_{t \to +\infty} t \int_{+}^{+\infty} \xi^{n-\lambda-2} \sum_{i=1}^{m} p_i(\xi) \sigma_i \sigma_i^{\lambda}(\xi) d\xi \ge \prod_{i=0, -1}^{n-1} |\lambda - i| + \varepsilon$$

holds. Then the equation (1) has the property A(B).

COROLLARY 2. Let (2) ((3)) hold and let for any $t_0 \in \mathbb{R}_+$,

$$|F(u)(t)| \ge \frac{c}{t^{n+1}} \int_{\alpha t}^{\overline{\alpha}t} |u(s)| ds \quad \text{for } t \ge t_0, \quad u \in M_{t_0},$$

where $0 < \alpha < \overline{\alpha}$, and

$$c > \max\left\{-(\lambda+1)\lambda(\lambda-1)\cdots(\lambda-n+1)\left(\overline{\alpha}^{\lambda+1}-\alpha^{\lambda+1}\right): \lambda \in [0,n-1]\right\}$$

$$\left(c > \max\left\{(\lambda+1)\lambda(\lambda-1)\cdots(\lambda-n+1)\left(\overline{\alpha}^{\lambda+1}-\alpha^{\lambda+1}\right): \lambda \in [0,n-1]\right\}\right)$$
(8)

Then the equation (1) has the property A(B).

ROMAN KOPLATADZE

COROLLARY 3. Let $\alpha > 0$ and $c \in]0, +\infty[$ $(c \in]-\infty, 0[$). Then the condition

$$c > \max \left\{ -\alpha^{-\lambda} \lambda (\lambda - 1) \cdots (\lambda - n + 1) \colon \lambda \in [0, n - 1] \right\}$$
$$\left(c < -\max \left\{ \alpha^{-\lambda} \lambda (\lambda - 1) \cdots (\lambda - n + 1) \colon \lambda \in [0, n - 1] \right\} \right)$$

is necessary and sufficient for the equation

$$u^{(n)}(t) + \frac{c}{t^n} u(\alpha t) = 0$$

to have the property A(B).

COROLLARY 4. Let $0 < \alpha < \overline{\alpha}$ and $c \in]0, +\infty[$ $(c \in]-\infty, 0[$). Then the condition (8)

$$\left(c < -\max\{(\lambda+1)\lambda(\lambda-1)\dots(\lambda-n+1)\left(\overline{\alpha}^{\lambda+1} - \alpha^{\lambda+1}\right)^{-1} \colon \lambda \in [0,n-1]\right)\right)$$

is necessary and sufficient for the equation

$$u^{(n)}(t) + \frac{c}{t^{n+1}} \int_{\alpha t}^{\overline{\alpha}t} u(s) \, ds = 0$$

to have the property A(B).

REFERENCES

- [1] KIGURADZE, I. T.—ČANTURIJA, T. A.: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations, Moskow, 1990. (Russian)
- [2] KONDRATEV, V. A.: On oscillation of solutions of the equation $y^{(n)} + P(x)y = 0$, Trudy Moskov. Mat. Obshch. 10 (1961), 419-436. (Russian)
- [3] KOPLATADZE, R. G.—ČANTURIJA, T. A.: On Oscillatory Properties of Differential Equations with Deviating Argument, Tbilisi, 1977. (Russian)
- [4] KOPLATADZE, R. G.: On differential equations with deviating argument having properties A and B, Differentsialnye Uravneniya V25 N11 (1989), 1897–1909. (Russian)

Received October 7, 1993

I. N. Vekua Institute of Applied Mathematics University str. 2 380043 Tbilisi REPUBLIC OF GEORGIA E-mail: kig@imath.kheta.georgia.su