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OSCILLATION THEORY OF SELF-ADJOINT
EQUATIONS AND SOME ITS APPLICATIONS

ONDREJ DoSLY

ABSTRACT. Oscillation properties of self-adjoint, even order, differential equa-
tions are investigated using the variational method. The results are used to study
spectral properties of singular differential operators.

1. Introduction

In this contribution we deal with oscillation properties of the self-adjoint, two
term equation

(=1 (r()y™) ™ +p(t)y = 0, (1)

where t € I = (a,b), —00o < a <b< oo, 77! p€ L), r(t) > 0. The
literature covering the oscillation theory of self-adjoint equations is voluminous
(recall at least the monographs [3, 12, 13, 18, 19]), so rather here the author’s
view on some aspects of the problem is presented.

First recall necessary definitions. Two points ¢, ty € I are said to be conju-
gate relative to (1) if there exists a nontrivial solution of this equation for which
yD(t) =0 = ygi) (t2), i = 0,...,n — 1. Equation (1) is said to be conjugate
on an interval Iy C I if there exists a pair of points of Iy which are conjugate
relative to (1), in the opposite case (1) is said to be disconjugate on I, . Equation
(1) is said to be oscillatory at b if for any ¢ € I (1) is conjugate on (c,b), in the
opposite case it is said to be nonoscillatory at b.

These definitions are motivated by the calculus of variations. The following
variational lemma elucidates this motivation and it is also the basic tool in the
proof of the below given oscillation criteria.
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LEMMA 1. ([12]) Equation (1) is conjugate on an interval Iy = (¢, d) C I if
and only if there exists a nontrivial function y € W?m"(Iy) with suppy C Io
such that

d
I(y;c,d) = / (”) —|—p(t)y2(t)} dt <0.

Now recall relation between general self-adjoint equation

n

S (-1* e y®) " =0 2)

k=0
and linear Hamiltonian systems (further LHS). Let y be a solution of (2) and set
u = (y7 v ,y(n—l)) y Un = pny(n)a Un—k = _U;L—k—{-l +pn—ky(n_k)7 k= la ceey
n — 1. Then (u,v) is a solution of the LHS
u = Au+B(t)v, vV =Ct)u—ATv, (3)

where

B(t) = diag{0,...,0,p; ' (t)},
C(t) = diag{po(t),...,Pn-1(t)}, (4)
1, forj=i+1, i=1,...,n—1,
’ 0, elsewhere.

In this case we say that the solution (u,v) is generated by y. Simultaneously
with (3) consider its matrix analogy

U =AU+B(#)V, V =C()U-ATv, (5)

where U,V are n X n matrices. A solution (U,V) of (5) is said to be isotropic
if UT(¢t)V(t) — VT (¢)U(t) = 0. An isotropic solution (Up,V}) of (5) is said to
be principal at b if Uy is nonsingular near b and

: 4
tl_igl_ (/ U, '(s)B(s) UF~1(s) ds> =0.
Let (U, V) be a solution of (2.3) which is linearly independent of (Up, V3) (i-e.,
(Up, V), (U,V) form the base of the solution space of (5)), then (U,V) is
said to be nonprincipal at b. The system yi,...,y, of solutions of (2) is said
to form the principal (nonprincipal) system at b if the solution (U,V) of the
corresponding LHS (5) whose columns are generated by yi,...,y, is principal
(nonprincipal) at b. The principal (nonprincipal) system of solutions at b exists
whenever (2) is nonoscillatory at b.

40



OSCILLATION THEORY OF SELF-ADJOINT EQUATIONS

2. Oscillation criteria

In view of Lemma 1, for oscillation of (1) at b, the function p has to be “suf-
ficiently negative” near b. What does it mean precisely is given in the following
three oscillation criteria. In these criteria equation (1) is essentially regarded as
a perturbation of the one-term equation

n)\ (n
(r(epy™)™ =0, (6)
and negativity of p is “measured”by means of solutions of (6).

THEOREM 1. ([9]) Let yi,...,y, be the principal system of solutions at b of
(6), c=(c1,...,cn)T €R™ and h=ciyi+- - +coyn. If

b

/ p(t) h2(t) dt = —oo, (1)

then equation (1) is oscillatory at b.

Condition (7) is far from being necessary for oscillation of (1) as shows the
simple example of the second order equation —y” — ut=2y = 0, p > %. The
following two theorems deal with the case when the integral in (7) is convergent
(like in the above example) or is divergent but at least one of solutions in the

linear combination which define A is not from principal system.

THEOREM 2. ([5]) Let y1,...,Yn, ¢ and h be the same as in Theorem 1. If

fbp(s) h%(s)ds

lim sup - ¢ < -1, (8)

b cT<fU—l(s)B(s)UT—l(s)ds>_lc

where U = (Uy;) = (y](i_l)) is the Wronski matrix of yy,...,y, and B is given
by (4), then (1) is oscillatory at b.

THEOREM 3. ([5]) Let §1,...,§n be a nonprincipal system of solutions at b
of (6), ¢ = (c1,...,cn)T €R™, h=c1f1 + - + cnify, . If

t

[ p(s) R*(s)ds
b ~ -1
cT<th—1(s)B(s)UT—1(s)ds) c

lim sup <-1, (9)

t—b

41



ONDREJ DOSLY

where U = (ﬁij) = (gj](.i_l)) is the Wronski matrix of §1,...,J, and B is given
by (4), then (1) is oscillatory at b.

Note that these oscillation criteria—in contrast to the majority of recent
ones, see [11, 15] —do not require any sign restriction on the function p.

Proof of Theorems. Let tg € I be arbitrary. According to Lemma 1
it suffices to find a nontrivial function y € W2"(tg,b), suppy C (to,b), for
which I(y;te,b) < 0. Chose tp < t1 < t3 < t3 < b sufficiently close to b and
define

0, t € [a,to],
f(@), t € [to,t1],
y(t) =< h(t), t € [t1,ta],
g(t), t € [to,ts],
0, t € [ts,b),

where f,g are the solutions of (6) satisfying the boundary conditions

FOt) =0, fO®@)=hr00), ¢D)=0rD(), gD(t3) =0,

=100 s
After some calculation we get
I(y7 to, t3) =
t1 to t3
- / r(t) (F™())° dt + / r(t) (R (1)) dt + / r(t) (g™ () dt +
to ty to
t1 to ta
+ [ @i+ [pe o+ JEQECES
i i tz (10)
t1 1 t3 -1
= cT( u—lsuT—lds) c—i—cT( U’lBUT_lds) c+
/ /
t1 ta t3
+ [ p@)fA)dt+ [ p(t) RP(t)dt + [ p(t) g°(t) dt.
[ARPORT [ |

First suppose that p(¢t) < 0 near b. Since y1,...,Yn is principal system at b,

¢
we have 111% cT(fu~iBUT1ds) e = 0. Now in the setting of Theorem 1, in
t—
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view of (7), t2 can be chosen such that

i1 -1 to
I(y;to,b) < cT (/ U—lsuT—lds> c+ /p(t) R2(t)dt +e <0,
0 31
t3 -1
whereby t3 > t5 is such that CT(fU_lBUT_lds) c<e.
t2

In case of Theorem 2, we write (10) in the form

t1

-1
I(y;to,b) < cT</U_1BUT_1ds> € x

to

t3 1
jp (t) h2(t)d cT(Ju-'BUT s ) ¢
to

X |1+ — + ™ =5
cT(t{U—lBUT—lds) c cT<th"U—1BUT'1ds> c

If (8) holds, ¢; approaches b and t3 > t5 > t; are sufficiently close to b, the
expression in the square brackets in the last inequality is negative.

t1 t3
To prove Theorem 3, in computation of [ r(¢) (f(")(t))2 dt, [r(t) (g(")(t))2 dt
to ta

we replace the matrix U by U and (10) by

t3

-1
I(y;t0,b) < CT(/G_IBGT_lds> €%
ta
fp ) R2(t) dt cT(fu—lBuT—lds) c
X —+ o +1
- - - 3. -~ -1
cT<fu—1BUT—1ds) c cT(fu—1|3UT—1ds) c
ta to

If ty goes to b, (9) implies I(y;to,b) < 0.

If p oscillates near b and hence the last two integrals in (10) cannot be
neglected, we proceed as follows. If the functions f/h, g/h are monotonic on
(to,t1), (t2,t3), respectively, by the second mean value theorem of integral cal-
culus there exist &; € (to,t1), &2 € (t2,t3) such that

t1 t1 ta t3 &2
/prdt = /phz(f/h)%zt = /phzdt, /pgzdt = /phzdt.
to to &1 ta 2
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to t3 &2
Consequently, in Theorem 1 [ ph?dt + [ pg®dt = [ ph?dt and (7) again implies
t1 to t1

I(y;t0,b) < 0. In the proofs of Theorems 2, 3 we proceed similarly.

Monotonicity of (f/h),(g/h) is proved via the transformation y = hu which
transforms (2) into an equation with the property that v’ = (y/h)’ has at most
2n — 2 zeros (counting multiplicity) on I. Since (f/h)’,(g/h)" have zero points
of multiplicity n — 1 at to, t; and to,ts, respectively, we have (f/h) # 0,
t € (to,t1), (g/h) # 0, t € (t2,t3). This implies required monotonicity and
completes the proof. O

3. Modifications and examples

i) Let us pass from the two-term equation (1) to the general self-adjoint
equation
M(y)+p(t)y =0, (11)

where M(y) = > (—1)*(px (t)y(k))(k) . We shall show how to extend Theorem 2

to this more gengral situation, Theorems 1 and 3 extend in a similar way.

THEOREM 4. ([5]) Suppose that equation M (y) = 0 is nonoscillatory at b
and y1,...,Yyn Is its principal system of solutions at b. If p(t) <0 near b and

fp(s) h?(s)ds
lim inf — ——g =, (12)
T ( [U-1(s)B(s)UT1(s) ds) c

where ¢, h, U are the same as in Theorem 2 and B = diag {0, ...,0,p,, '}, then
equation (11) is oscillatory at b. Moreover, if there exists d € I such that every
solution of M(y) = 0 has at most 2n — 1 zeros on (d,b) and liminf in (12)
is replaced by limsup, the statement remains valid without any sign restriction
on the function p.

ii) In all previous criteria the test function h was a solution of (6) or of
M (y) = 0. It is natural to ask whether some other test functions may be used.
The answer is affirmative as it is shown in [8]. If p(¢) < 0 near b, a relatively
large class of functions h may be used. If no sign restriction on p is assumed,
we need the same assumption in equation M (y) = 0 as in the second part of
Theorem 4 (this requirement equation (6) automatically satisfies). Moreover,
the test function must in a certain way compare with solutions of equation
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M(y) = 0. This modification enables us to prove several oscillation criteria
originally proved only for nonpositive functions p, particularly those given in
[11, 15], without sign restriction on p.

iii) The method used in the proofs of oscillation criteria from the previous
section may be used to study sufficient conditions for the existence of at least
two conjugate points in a given interval. This problem was, among others, inves-
tigated in [2, 4, 6, 7, 16, 17, 20]. Typical result is given in the following theorem.

THEOREM 5. ([4]) Suppose that yi,...,Ym, 1 < m < n, are solutions of (6)
which are contained both at principal systems of solutions at a and b. If there
exist ¢1,...,¢n € R such that

b
/p(t) R%(t)dt <0,

where h = ci1y1 + -+ + ¢mYm , then there exists at least one pair of points of
I = (a,b) which are conjugate relative to (1).
ExAMPLES.

1. Counsider the equation
(-1)™y®™ 4+ p(t)y =0 (13)

as a perturbation of the Euler equation y(™) — p,t=2"y = 0, where pu, =
P (221} is the so-called Kneser constant and P(A\) = A(A—1)--- (A —2n+1).

2
2n—1

Applying Theorem 4 with h(t) =t

and b = oo, we have

COROLLARY 1. ([10]) Suppose that

. 2n—1 _q\n Hn _
11?lsoliplgt/s (p(s)—i—( 1) $2n>ds< K,,
t
where ( a2
1"
Kn = —Pn A I
2 apa el )A:M

then (13) is oscillatory at oco.

2. Let a ¢ {0,1,...,2n — 1} and consider the equation
n (e, (n) (n) _
(=)™ (™)™ +p(t) = 0. (14)
Modification of Theorem 2 from the part ii) of this section gives
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COROLLARY 2. ([8,11]) Let a+0 < 2n—1.If

o0

limsupt?" 17 ° /p(s)sgdt L —Bnap —

t—o0

s 3
(23) (n)?
n—1l—-a—o’
t
Bno.o being a nonnegative real constant depending on n,a,o, then (14) is
oscillatory at co.

Note that under the additional assumption p(t) < 0 for large ¢ this statement
was proved in [11], where also the precise value of B, ., may be found. The
method introduced in [8] enables to drop this assumption.

3. As an example of application of Theorem 5, consider the equation (13)
on I =R = (—00,00). Since y; = 1,...,y, = t"~ ! form principal system of
y(?") =0 both at —oo and oco (i.e., n =m), we have

COROLLARY 3. If there exist cy,...,c, € R such that
oo
/ p(t)(er +eat + -+ ent"™ )2 dt < 0
—00

then there exists at least one pair of points in R which are conjugate relative
to (13).

Observe that Theorem 5 does not apply to (13) considered on I = (0, 00)
since principal systems of y(?") =0 at 0 and co have no common solution.
However, using the idea of Example 1, we have

COROLLARY 4. Suppose

o

/tz"—l (p(t) = (—1)”ﬂ) dt <0

t2”’
0

then there exists at least one pair of points in I which are conjugate relative
to (13).

4. Application

In this section we mention one application of oscillation theory of self-adjoint
equations in spectral theory of singular differential operators. Let w € Ligc(a, b)
be a positive weight function and consider the operator

o(y) = %(r(ﬁ)y<”>)(”), teI=la,b)
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b
in the weighted Hilbert space L2 (I) = {y| [ wy?dt < co}. We suppose that a

a
is the regular point (i.e., @ > —oo and r~!,w are integrable near a) and b is
the singular point.

We say that operator ¢ has property BD if every self-adjoint extension of the
minimal differential operator generated by ¢ has spectrum discrete and bounded
below. For investigation of this property the following statement plays crucial
role.

LEMMA. ([12]) Operator £ has property BD if and only if the equation £(y) =
Ay is nonoscillatory at b for every A € R.

For the sake of comparison, recall the classical result of Tkachenko
and Lewis.

THEOREM 6. ([12, 14]) Let b = 0o and w = 1. Operator { has property BD
if and only if

o0

lim ¢27-1 / r=1(s} ds =0. (15)

t—oo
t

Application of Theorem 2 gives the following necessary condition for property
BD of the general one-term operator £.

THEOREM 7. Let y1,...,y, be the principal system of solutions at b of

the equation (w‘l(t)y(”))(n) = 0, U be their Wronski matrix and B =
diag {0,...,0,w}. If £ has property BD then

b
Sr7i(s) (eaya(s) +--- + cnyn(s))2 ds

lim t — —— =0 (16)
cT(fu—l(s)B(s)UT—l(s)ds) c

for every ¢ = (c1,...,c,)T € R™.

Setting b=o0, w=1, y1=1,..., yp =t" L, c=¢; = (1,0,...,0)7, it is
not difficult to verify that (15) is a special case of (16). In [1, 5] it was proved
that for certain class of weight functions (16) is also sufficient for property BD,
however, for general weight functions w this problem remains open.
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