

ASYMPTOTIC BEHAVIOR FOR SEMILINEAR DAMPED WAVE EQUATIONS ON \mathbb{R}^N

EDUARD FEIREISL

ABSTRACT. Large time asymptotic behavior of solutions to the problem

$$u_{tt} + du_t - \Delta u + f(x, u) = 0, \ u = u(x, t), \quad x \in \mathbb{R}^N, \ t > 0, \ d > 0,$$

is considered with respect to various structural properties of the nonlinearity f.

We shall discuss the long time behavior of solutions of the problem

$$u_{tt} + du_t - \Delta u + f(x, u) = 0, \ u = u(x, t), \quad x \in \mathbb{R}^N, \ t > 0, \ d > 0,$$
 (E)

$$(u, u_t)(\cdot, 0) \in X = H^1(\mathbb{R}^N) \times L^2(\mathbb{R}^N). \tag{I}$$

Two rather different situations are considered:

(A) If the nonlinearity f is coercive for large x, the dynamics is asymptotically compact like for the corresponding problem on a bounded spatial domain. More specifically, we report the following result:

PROPOSITION 1. [2, Theorem 1]. Let N = 3. Under the hypotheses

$$f \in C^2(\mathbb{R}^4), \ f(\cdot, 0) \in H^1(\mathbb{R}^3), \ |f_z(x, 0)| \le C$$
 for all $x \in \mathbb{R}^3$, (1)

$$|f_{zz}(x,z)| \le C(1+|z|) \quad \text{for all } x,z, \tag{2}$$

$$\liminf_{|z| \to \infty} \frac{f(x, z)}{z} \ge 0 \quad \text{uniformly in } x \in \mathbb{R}^3, \tag{3}$$

$$(f(x,z) - f(x,0))z \ge Cz^2$$
, $C > 0$, for all x large, (4)

there exists a unique global attractor \mathcal{A} of the semigroup

$$S_t \colon (u, u_t)(0) \to (u, u_t)(t)$$

on X, i.e.,

$$A \subset X$$
 is compact, (5)

AMS Subject Classification (1991): 35B40, 35L05. Key words: semilinear wave equation, asymptotic behavior, attractor.

$$S_t(\mathcal{A}) = \mathcal{A} \quad \text{for all } t \ge 0 \,,$$
 (6)

$$\operatorname{dist}(S_t(\mathcal{B}), \mathcal{A}) \to 0 \quad \text{as} \quad t \to \infty$$
 (7)

for any bounded $\mathcal{B} \subset X$,

where

$$\operatorname{dist}(\mathcal{C}, \mathcal{D}) \equiv \sup_{c \in \mathcal{C}} \inf_{d \in \mathcal{D}} \|c - d\|_{X}.$$

Remark. Though the result is formulated for N=3, there are no essential difficulties to prove the same for a general N the growth condition (2) being modified properly.

(B) For a general noncoercive f, i.e., when $F(z) = \int_0^z f(s) ds$ is allowed to be negative for certain values of the argument z, the dynamics exhibits truly infinite-dimensional character though some compactness results are still possible. We assume that f = f(u) along with the following hypotheses

$$f \in C^1(\mathbb{R}), \ f(0) = 0, \ f'(0) = a > 0,$$
 (8)

$$f(u)u \ge -Cu^2$$
 for all $u \in \mathbb{R}$, (9)

$$|f'(u)| \le C(1+|z|^q)$$
 with $2(q+1) < \frac{2N}{N-2}$ (10)

if N > 2, q arbitrary finite otherwise.

According to the recent state of affairs, the main features of the problem may be characterized as follows :

1. If $F(w) = \int_{0}^{w} f(s) ds < 0$ for certain w and $N \geq 3$, then there is a sequence $\{\bar{u}_n\}$ of finite energy stationary states, i.e., \bar{u}_n solve

$$-\Delta v + f(v) = 0, \quad v \in H^1(\mathbb{R}^N), \tag{11}$$

such that

$$T(\bar{u}_n) \to \infty$$
 as $n \to \infty$, $T(v) = \frac{1}{2} \left(\int |\nabla v|^2 + 2F(v) \, dx \right)$

(see Berestycki-Lions [1]).

- 2. The zero solution $\bar{u}_0 \equiv 0$ is the only stable steady state in X (see Keller [5]).
- 3. The solution semigroup $\{S_t\}$ is not dissipative in X, in other words, the damping term du_t is not strong enough to ensure boundedness of the trajectories in X ([4, Corollary 5])

In this case, we claim the following:

PROPOSITION 2. [4, Theorem 1]. Under the above hypotheses, let

$$u \in C(\mathbb{R}^+, H^1), \quad u_t \in C(\mathbb{R}^+, L^2)$$

be a (weak) solution to (E) such that there is a sequence $\{t_n\}$, $t_n \to \infty$,

$$\|(u, u_t)(t_n)\|_X \le C < \infty. \tag{12}$$

Then (passing to a subsequence if necessary) we have

$$\|(u, u_t)(t_n) - \sum_{j=1}^k (\bar{u}_j(\cdot + x_j^n), 0)\|_X \to 0 \text{ as } n \to \infty,$$
 (13)

where k is a finite integer, \bar{u}_j , $j=1,\ldots,k$, are (not necessarily distinct) solutions of (11) and x_j^n , $x_i^n \in \mathbb{R}^N$,

$$\operatorname{dist}(x_j^n, x_i^n) \to \infty \quad \text{for} \quad i \neq j, \ n \to \infty.$$
 (14)

Proposition 2 is proved by means of the concentration compactness theory due to Lions [6].

Finally, it may be shown that even in case (B) there is a chance to obtain compactness changing the phase space appropriately. In addition to the above hypotheses, we shall assume

$$\lim_{|z| \to \infty} \inf_{z} \frac{f(z)}{z} \ge b > 0, \qquad f'(z) \ge -C \quad \text{for all } z.$$
 (15)

Next, we introduce the norm

$$||v||_{L_B^2}^2 = \sup_{y \in \mathbb{R}^N} \int_{|x-y| \le 1} v^2 dx$$
 (16)

along with the corresponding space L_B^2 defined as a completion of the set of all smooth and bounded functions on \mathbb{R}^N with respect to $\| \ \|_{L_B^2}$. In a similar way, the space H_B^1 is defined by means of the norm

$$||v||_{H_B^1}^2 = |||\nabla v|||_{L_B^2}^2 + ||v||_{L_B^2}^2.$$
(17)

Finally, we write

$$X_B = H_B^1 \times L_B^2. \tag{18}$$

It may be shown (see [3, Section 2]) that the Cauchy problem for (E) is well posed on X_B , and that the solution operator $\{S_t\}$ forms a group of locally Lipschitz continuous mappings on X_B .

Our final result reads as follows:

EDUARD FEIREISL

PROPOSITION 3. [3, Theorem 1]

There is a set $A \subset X_B$ enjoying the following properties:

(A1) \mathcal{A} attracts bounded sets in X_B , i.e., for any $\mathcal{B}(u, u_t) \subset X_B$ bounded, we have

$$\operatorname{dist} ig(S_t(\mathcal{B}), \mathcal{A} ig) o 0 \quad \text{as} \quad t o \infty \,,$$

(A2) A is time invariant, i.e.,

$$S_t(\mathcal{A}) = \mathcal{A}$$
 for all $t \geq 0$,

(A3) \mathcal{A} is locally compact in the sense that \mathcal{A} is bounded in X_B and compact in X_{loc} , where

$$X_{loc} = H^1_{loc}(\mathbb{R}^N) \times L^2_{loc}(\mathbb{R}^N).$$

Remark. It is clear that \mathcal{A} is uniquely determined by the conditions (A1)-(A3). Moreover, any set satisfying (A1), (A2) contains \mathcal{A} . This justifies the denomination global attractor for \mathcal{A} .

The proof of Proposition 3 does not use the conclusion of Proposition 2. The main idea is to work in weighted Sobolev spaces with weights polynomially decreasing for large values of |x|.

Acknowledgement. A substantial part of this work has been done during author's sabbatical leave at the Universidad Complutense, Madrid. He is grateful to E. Z u a z u a for many stimulating discussions.

REFERENCES

- BERESTYCKI, H.—LIONS, P. L.: Nonlinear scalar field equations II. Existence of infinitely many solutions, Arch. Rational Mech. Anal. 82 (1983), 347-375.
- [2] FEIREISL, E.: Attractors for semilinear damped wave equations on \mathbb{R}^3 , (to appear).
- [3] FEIREISL, E.: Locally compact global attractors for semilinear damped wave equations on \mathbb{R}^n , preprint.
- [4] FEIREISL, E.: On the dynamics of semilinear damped wave equations on \mathbb{R}^N , Comm. Partial Differential Equations 18 (1993), 1981–1999.
- [5] KELLER, C: Stable and unstable manifolds for the nonlinear wave equation with dissipation, J. Differential Equations 50 (1983), 330-347.
- LIONS, P. L.: The concentration compactness principle in the calculus of variations, the locally compact case, Ann. Inst. H. Poincaré 1 (1984), 109-145, 223-283.

Received September 29, 1993

Institute of Mathematics AVČR Žitná 25 115 67 Praha 1 CZECH REPUBLIC E-mail: feireisl@csearn.bitnet